X CS780 Discrete-State Models

" Instructor: Peter Kemper

R 006, phone 221-3462, email:kemper@cs.wm.edu
Office hours: Mon,Wed 3-5 pm

Today:

Milner's Calculus of Communicating Systems
Strong & Weak Bisimulation
Observational Congruence

Quick Reference:
Robin Milner, A Calculus of Communicating Systems,

1N

Springer, LNCS 92, 1980.
Robin Miner, Communication and Concurrency, Prentice Hall,
1989.

Outline

N

Origin of Process Algebras:
Calculus of Communicating Systems (CCS)
Trace Equivalence

Bisimulation
= Strong

= Weak
Observational Congruence

Credits:
= Slides from Noll, Katoen, RWTH Aachen, Germany, 2007/08

Definition 1.2 (Syntax of CCS)
@ Let N be a set of (action) names.
@ N :={@|a € N} denotes the set of co-names.

@ Act := NUN U{7} is the set of actions where 7 denotes the silent
(or: unobservable) action.

@ Let Pid be a set of process identifiers.

@ The set Prc of process expressions is defined by the following

syntax: P ::= nil (inaction)
«.P (prefixing)
P+ P (choice)
P || P (parallel composition)
new a P (restriction)
Alag, ... ap) (process call)

where a € Act, a,a; € N, and A € Pid.

(]

N

Definition 1.2 (continued)

@ A (recursive) process definition is an equation system of the form

where k& > 1, A; € Pid (pairwise different), a;; € N, and F; € Prc
(with process identifiers from {Aq,..., Ax}).

7

_Meaning of CCS Operators

U7

nil is an inactive process that can do nothing.

a.P can execute a and then behaves as P.

An action a € N (@ € N) is interpreted as an input (output, resp.)

operation. Both are complementary: if executed in parallel (i.e., in
Py || P»), they are merged into a 7-action.

@ P + I represents the non-deterministic choice between P; and Ps.

@ P || P, denotes the concurrent execution of P; and P, involving
interleaving or communication.

@ The restriction newa P declares a as a local name which is only
known in P.

@ The behavior of a process call A(aq,...,a,) is defined by the
right-hand side of the corresponding equation where aq,a,
replace the formal name parameters.

e © ¢ ¢

Notational Conventions

@ means a
P+ ...+ P, (n € N) sometimes written as Y ;" ; P, where
S B o=nil

1=1"1t"
“.nil” can be omitted: a.b means a.b.nil
new a, b P means new a new b P
A(ai,...,ay) sometimes written as A(a), A() as A
prefixing and restriction binds stronger than composition,
composition binds stronger than choice:

newa P+ 0.Q || R means (newa P)+ ((b.Q) || R)

Labelled Transition System

N

Goal: represent behavior of system by (infinite) graph
@ nodes = system states

@ edges = transitions between states

Definition 2.1 (Labeled transition system)

A (Act-)labeled transition system (LTS) is a triple (S, Act, —)
consisting of

@ a set S of states
@ a set Act of (action) labels
@ a transition relation — C S x Act X S

If (s,q, s') € — we write s — s’. An LTS is called finite if S is so.

»

Remarks:
@ sometimes an initial state so € § is distinguished

@ (finite) LT'Ss correspond to (finite) automata without final states

. Semantics of CCS

\V

We define the assignment

syntax — semantics

process definition +— LTS

by induction over the syntactic structure of process expressions. Here
we employ derivation rules of the form

remise(s
b () rule name

conclusion

which can be composed to complete derivation trees.

Semantics of CCS
Definition 2.2 (Semantics of CCS)

A process definition (A;(a;1,...,ain,) = P | 1 <i < k) determines the
LTS (Prc, Act,—) whose transitions can be inferred from the
following rules (P, P',Q,Q’ € Prc, a € Act, \€ NUN, a € N):
A / X /
— (Act) P PT @ @ (Com)
a.P— P P||Q— P'| Q
«x / 8 /
P —>aP (Sum;y) @ QQ (Sumy)
P+Q— P P+Q— @
o pr -NsY
P = P (Pary) @ — Q (Par;)
PllQ— P Q PlQ—P|Q
= P a qd) = q — b -2 P/
P P ao: ¢ {a,a} (New) A(a) Pf[aa|—> b] P (Call
newa P — newa P’ A(b) — P
(Here Pld — l—)] denotes the replacement of every a; by b; in P.)

Semantics of CCS

Example 2.3

@ One-place buffer:
B(in, out) = in.out.B(in, out)

Q Sequential two-place buffer:

By(in, out) = in.Bi(in, out)
Bq(in, out) = out.By(in, out) + in.By(in, out)
By(in, out) = out.Bi(in, out)

@ Parallel two-place buffer:

By(in, out) = new com (B(in,com) | B(com, out))

B(in, out) = in.out.B(in, out)

10

. Semantics of CCS

I

Example 2.3 (continued)
Complete LTS of parallel two-place buffer:

By (in, out) new com (B(in, com) || B(com, out))
lin /in Tout
new com (Tom.B(in, com) || — new com (B(in, com) ||
B(com, out)) out.B(com, out))
Noout in

new com (com.B(in, com) || out.B(com, out))

11

(]

Recursion

N

Here: recursive processes defined using equations such as
B(in, out) = in.out.B(in, out)
(simultaneous recursion)

Alternative: explicit fixpoint operator

@ syntax: Pu=nil|...|fixAP & Prc (where A € Pid)
P[A+— P]| = P’
fix AP — fix A P/

@ semantics:

(Fix)

(Act)

in.out.in.out.B — out.in.out.B ,
@ example: (Fix)

fix Bin.out.B — fix B out.in.out.B
(nested scalar recursion)

Advantage: only process term level required (no equations)
—> simplification of theory

Disadvantage: bad readability of process definitions

12

_ Equivalence

\IJ

Goal: identify process expressions which have the same “meaning” but
differ in their syntax

Definition 3.1 (Equivalence relation)

Let = C S x S be a binary relation over some set S. Then = is called
an equivalence relation if it is

o reflexive, i.e., s = s for every s € S,

@ symmetric, i.e., s =t implies t = s for every s,t € S, and

o transitive, i.e., s =t and t = u implies s = u for every s,t,u € S.

o

13

_ Equivalence of CCS Processes

o Generally: two syntactic objects are equivalent if they have the
same “meaning”’

o Here: two processes are equivalent if they have the same
“behavior” (i.e., communication potential)

o Communication potential described by LTS

o Idea: choose

meaning of a process P := LTS(P)
e But: yields too many distinctions:

Example 3.2
X(a)=a.X(a) Y(a)=a.a.Y(a)
LTS: <;5 ; l:T ;

although both processes can (only) execute infinitely many a-actions,
and should be considered equivalent therefore

14

_ Desired Properties of Equivalence
N

Wanted: a “feasible” (i.e., efficiently decidable) semantic equivalence
between CCS processes which

Q identifies processes whose L'I'Ss coincide,

@ implies trace equivalence, i.e., considers two processes equivalent
only if both can execute the same actions sequences (formal
definition later), and

@ is a congruence, i.e., allows to replace a subprocess by an
equivalent counterpart without changing the overall semantics of
the system (formal definition later).

Formally: we are looking for a congruence relation = C Prc x Prc
such that

LTS(P)=LTS(Q) = P=Q = Tr(P)= Tr(Q)

15

_Congruence

N

Goal: replacing a subcomponent of a system by an equivalent process
should yield an equivalent systems

—> modular system development

Definition 3.3 (CCS congruence)

An equivalence relation = C Prc x Prc is said to be a CCS congruence
if it is preserved by the CCS constructs; that is, if P, Q, R € Prc such
that P = () then
a.P = a.0

P+R=Q+R

R+P=R+4+0Q

P|IR=QI R

R|P=R]Q

newa P = newa Q)

for every aw € Act and a € N.

16

Trace Equivalence

Definition 3.4 (Trace language)

For every P € Pre, let
Tr(P) := {w € Act® | ex. P' € Prc such that P N P’}

be the trace language of P.

P, Q € Prc are called trace equivalent if Tr(P) = Tr(Q).

Example 3.5 (One-place buffer)
B(in, out) = in.out.B(in, out)
— Tr(B) = (in - out)* - (in + ¢)

17

_ Trace Equivalence

N
Remarks:

@ The trace language of P € Prc is accepted by the LTS of P,
interpreted as an automaton where every state is final.

e Trace equivalence is obviously an equivalence relation
(i.e., reflexive, symmetric, and transitive).

e Trace equivalence possesses the postulated properties of a process
equivalence:

@ it identifies processes with identical L'I'Ss: the trace language of a
process consists of the (finite) paths in the LTS. Hence processes
with identical LTSs are trace equivalent.

@ it implies trace equivalence: trivial

© it is a congruence:

18

Congruence

N

%

Goal: replacing a subcomponent of a system by an equivalent process
should yield an equivalent systems
—> modular system development

Definition (CCS congruence)

An equivalence relation = C Prc x Prc is said to be a CCS congruence
if it is preserved by the CCS constructs; that is, if P = @) then

aP = a.Q
P+R =2 Q+R
R+P = R+Q
PR = QR
RI|P = R|Q
newa P = newa(

for every a € Act, R € Prc, and a € N.

19

Trace Equivalence

Theorem 3.6
Trace equivalence is a congruence.

Proof.
(only for +; remaining operators analogously)
Clearly we have:

T’P(Pl -+ P2) = T’I’(Pl) U T’I’(PQ)
Now let P,Q, R € Prc with Tr(P) = Tr(Q). Then:
Ir(R

Tr(P + R) P)

Tr(P)U Tr(R) T'r*(R) U Tr(P)
Tr(Q)U Tr(R) T’r(R) U Tr(Q)
— T(Q+R) — (R+Q)

— P+ R,Q+ R trace equiv. = R+ P, R+ Q trace equiv.

[]

20

>

Trace Equivalence

Gf
e We have found a process equivalence with the three required

properties.
@ Are we satisfied? No!

P o and Q: e
a / \, a | a
bl 1o
are trace equivalent (1r(P) = Tr(Q) = {¢s,a,ab})

e But P and @ are distinguishable:

e both can execute ab
e but P can deny b

o while) always has to offer b after a

— take into account such deadlock properties

21

Deadlock

U7

Definition 3.7 (Deadlock)

Let P,Q € Prc and w € Act® such that P Ny Q and Q +—.
Then @ is called a w-deadlock of P.

@ Thus P := a.b.nil + a.nil has an a-deadlock, in contrast to
Q = a.b.nil.

@ Such properties are important since it can be crucial that a certain
communication is eventually possible.

o We therefore extend our set of postulates: our semantic
equivalence = should
Q identity processes with identical LT'Ss;
Q imply trace equivalence;
© be a congruence; and
Q@ be deadlock sensitive, i.e., if P = @Q and if P has a w-deadlock, then
Q@ has a w-deadlock (and vice versa, by equivalence).

22

. Deadlock

N
The combination of congruence and deadlock sensitivity also excludes
the following equivalence:

la 9 L A
b N, ¢ bl Je

If P = @, by congruence this equivalence should hold in every context.
But C[-] :=newa, b, c(@.b.nil || -) yields the following conflict:

C|P| : C :
Plie Qe
® L J [J
|7 T |
[] []
no 7-deadlock T-deadlock

(Note: P and @ are obviously trace equivalent)

23

_ Desired Properties of Equivalence

\‘/

Wanted: a “feasible” (i.e., efficiently decidable) semantic equivalence
between CCS processes which

Q identifies processes whose L'I'Ss coincide,

@ implies trace equivalence, i.e., considers two processes equivalent
only if both can execute the same actions sequences (formal
definition later), and

@ is a congruence, i.e., allows to replace a subprocess by an
equivalent counterpart without changing the overall semantics of
the system (formal definition later).

Q is deadlock sensitive, i.e., if P = (@) and if P has a w-deadlock,
then @ has a w-deadlock (and vice versa, by equivalence).

Formally: we are looking for a deadlock-sensitive congruence relation
=~ C Prc x Prc such that

LTS(P) = LTS(Q) = P~Q = Tr(P)= Tr(Q)

24

_ Strong Bisimulation
\IJ

Observation: equivalence should be deadlock sensitive
— needs to take branching structure of processes into account

This is guaranteed by a definition according to the following scheme:

Bisimulation scheme

P, Q) € Prc are equivalent iff, for every a € Act, every a-successor of P
is equivalent to some a-successor of (), and vice versa.

In the first version we will ignore the special function of the silent
action 7 (= weak bisimulation)

25

_ Strong Bisimulation
\IJ

Definition 4.1 (Strong bisimulation)

A relation p C Prc x Prc is called a strong bisimulation if Pp(@Q) implies,
for every a € Act,

Q@ P P — ex. Q € Prcsuch that Q —— Q' and P'pQ’
Q@ Q- Q = ex. P' € Prcsuch that P — P’ and P'pQ’

P, Q € Prc are called strongly bisimilar (notation: P ~ Q) if there
exists a strong bisimulation p such that PpQ).

>

Theorem 4.2
~ 15 an equivalence relation.

26

_ Strong Bisimulation

N o

P
O alla

a Q2

P P* Q

la a,/ \\a

P Q1 Q3
b,/ \. c bl |ec
Py P Q2 Q4

(remember: Tr(P) = Tr(Q))

27

Strong Bisimulation

Example 4.4

Binary semaphore
(controls exclusive access to two instances of a resource)
Sequential definition:

Semo(get, put) = get.Sem1(get, put)
Semy (get, put) = get.Sema(get, put) + put.Semo(get, put)
Sema(get, put) = put.Semq(get, put)

Parallel definition:

S(get,put) = So(get, put) || So(get, put)
So(get,put) = get.S1(get, put)
Si(get,put) = put.So(get, put)

Proposition: Semq(get, put) ~ S(get, put) How to prove this?

28

_ Strong Bisimulation

Example 4.5

Two-place buffer
Sequential definition:

Bo(in, out) = in.By(in, out)
Bi(in, out) = out.Bo(in, out) + in.Bs(in, out)
Bs(in, out) = out.Bi(in, out)

Parallel definition:

B (in,out) = new com (B(in,com) || B(com, out))

B(in, out) = in.out.B(in, out)

Proposition: By(in, out) # B (in, out) How to prove this?

29

_ Properties of Strong Bisimulation

\‘/

It remains to show that strong bisimulation has the required properties
of a process equivalence:

Q Identification of processes with identical L'I'Ss:
since the definition of strong bisimulation directly relies on the
transition relation, processes with identical transition trees are
clearly strongly bisimilar

@ Implication of trace equivalence: following slides

©

CCS congruence: following slides

@ Deadlock sensitivity: following slides

30

Strong Bisimulation => Trace Equivalence

Definition (Trace language; repetition)

The trace language of P € Prc is given by .
Tr(P) := {w € Act* | ex. P’ € Prc such that P — P'}.

Theorem 5.1
For every P,Q € Prc, P ~ Q implies Tr(P) = Tr(Q).

o Assume that P ~ Q but w € Tr(P) \ 1Tr(Q).

o Let v € Act™ be the longest prefix of w such that v € Tr(Q)
(i.e., w = vau for some o € Act and u € Act™).

o Let P, P" € Prc such that P -~ P -2, p’.

o Since P ~ Q there exists Q' € Pre such that Q — Q' and
P’ ~ @ (by induction on |v]).

o But we have that P/ = P’ whereas Q' /— = contradiction

D/
31

Congruence Property

N

Makes use o

f following Lemma

Lemma 5.2

For every P,Q, R € Prc,

Q P -
Q@ P -
Q@ P -
QP
QP

-FQ ~Q+ P

- (Q+R)~(P+Q)+ R
- nil ~ P

Q~Q| P

QIR ~(P|Q IR

QP

nil ~ P

32

Congruence

&

Definition (CCS congruence; repetition)

An equivalence relation = C Prc x Prc is said to be a CCS congruence
if it is preserved by the CCS constructs; that is, if P = @) then
a.P = a.Q

P+ R=0Q+R

R+P=R+Q

P|R=Q| R

R|P=R]|Q

newa P = newa Q)

for every a € Act, R € Prc, and a € N.

>

Theorem 5.3
~ is a CCS congruence.

33

. Deadlock
\‘/

Definition (Deadlock; repetition)
Let P,Q € Prc and w € Act® such that P 7 Q and @ +#—. Then Q

is called a w-deadlock of P.
An equivalence relation = C Prc x Prc is called deadlock sensitive if for
every P = () such that P has a w-deadlock, @) also has a w-deadlock.

»

Theorem 5.4
~ 18 deadlock sensitive.

34

Summary

Definition (Strong bisimulation)

A relation p C Prc x Prc is called a strong bisimulation if PpQ) implies,
for every a € Act,

Q@ P P — ex. Q' € Prcsuch that Q —— Q' and P’pQ’
Q@ Q - Q = ex. P’ € Prc such that P — P’ and P'pQ’

P, Q € Prc are called strongly bisimilar (notation: P ~ Q) if there
exists a strong bisimulation p such that PpQ.

Theorem

Q ~ is an equivalence relation
Q@ LTS(P)=LTS(Q) = P~Q
Q@ P~Q = Tr(P)=1TrQ)

Q@ ~ is a CCS congruence

Q ~ is deadlock sensitive

35

. Traces and Deadlocks

Remark: traces and deadlocks are independent in the following sense

Example 6.1

P Q P Q
a,/ \, a la a,/\ b a/\c
b | 1 b O b O c

same traces different traces
different deadlocks same deadlocks

But: if all traces are finite, then processes with identical deadlocks are
trace equivalent (since every trace is a prefix of some deadlock)

36

Computing Equivalences

N

%

Problem

Given: P,Q € Prc
Question: P ~ Q7

Basic Algorithm:

» Paige, Tarjan: Three partition refinement algoriths, SIAM J. Computing,
16, 1987.

Multiple variants and refinements, in particular wrt stochastic models

= P. Buchholz. Exact and ordinary lumpability in finite Markov chains.
Journal of Applied Probability, 31:59-75, 1994.

s S. Derisavi, H. Hermanns, and W. H. Sanders. Optimal State-Space
Lumping in Markov Chains, Information Proc. Letters, 87, 6, 2003

Remark: if states from two disjoint L'T'Ss (51, Acty, —1) and
(Sa, Acta, —9) (where S; N Sy = () are to be compared, their union

(S1 U Sy, Acty U Acty, —1 U —»5) is chosen as input (here usually
Acty = Acts)

37

_ Partition Refinement Algorithm

\‘)

Theorem 6.2 (Partitioning algorithm for ~)

Input: LTS (S, Act,—) (S finite)

Procedure: @ Start with initial partition II := {S'}
@ Let B €11 be a block and oo € Act an action
Q@ For every P € B, let

a(P):={C cIl|ex. P C with P = P'}
be the set of P’s a-successor blocks
O Partition B = Ule B; such that

P,Q e B; < «a(P)=a(Q) for every a € Act
Q@ LetIl:=(IT\{B})U{By,...,Br}
@ Continue with (2) until 11 is stable

Output: Partition I of S

Then, for every P,Q € S,
P~Q < ex. Bell with P,Q < B

38

_ Strong Simulation

U7

Observation: sometimes, the concept of strong bisimulation is too
strong (example: extending a system by new features)

Definition 7.1 (Strong simulation)

A relation p C Prc x Prc is called a strong simulation if, whenever Pp(Q
and P —= P’, there exists Q' € Prc such that Q —— Q' and P'pQ’.

We say that @ strongly simulates P if there exists a strong simulation
p such that PpQ.

Thus: if @ strongly simulates P, then whatever transition path P
takes, () can match it by a path which retains all of P’s options.

Example 7.2

P Q
N o Q) strongly simulates P,
o A but not vi
bl |ec b "\, c ut not vice versa
Py Py Q2 Qs

39

Strong Simulation and Bisimulation

If P ~ Q), then Q) strongly simulates P, and P strongly simulates Q. \

A strong bisimulation p € Prc x Prc for P ~ () is a strong simulation
for both directions. []

Caveat: the converse does generally not hold!

Example 7.4
Q

P
ap/ \Pa é a Q simulates P and vice versa,
I 1
b b but P + Q)
P2 QQ

40

_ Strong Bisimulation is not an ideal solution!

Example 7.5

Sequential and parallel two-place buffer:

Bo(in, out) = in.By(in, out) B (in, out) = new com (B(in, com) |
B (in, out) = out.By(in, out)+ B(com, out))
in.Ba(in, out) B(in, out) = in.out.B(in, out)

Bs(in, out) = out.By(in, out)

in |1 out in /N out
. — % _QL>0.
mn l.T out out \/ in

41

Weak Bisimulation

Idea: abstract from silent actions

Definition 7.6

o Given w € Act*, 1 € (N U N)* denotes the sequence of
non-7-actions in w (in particular, 7 = ¢ for every n € N).

o Forw=ay...q, € Act™ and P, € Prc, we let

P2 Q « P(L) 2h (L) (D) 2 (D)7 Q

(and hence: = = (—=)*).
@ A relation p C Prc x Prc is called a weak bisimulation if PpQ
implies, for every a € Act,
Q@ P> P — ex. Q' € Pre¢such that Q N Q" and P’'pQ)’
Q@ Q = Q = ex. P’ € Prcsuch that P % P’ and P’ pQ’
@ P,Q € Prc are called weakly bisimilar (notation: P ~ Q) if there
exists a weak bisimulation p such that PpQ.

42

. Weak Bisimulation

\‘)

Remark: each of the two clauses in the definition of weak bisimulation
subsumes two cases:

o P P where a # 7

— ex. () € Pre such that Q (—)* - (—=)* Q" and P'pQ’
o P P

— ex. () € Pre such that Q (—)* Q" and P'pQ’

(where Q" = @ is admissible)

43

. Weak Bisimulation

N

Theorem 7.8

~ 15 an equivalence relation.

in analogy to the corresponding proof for ~ (Theorem 4.2)

In particular, the following characterization is still valid:

= U{ p | p weak bisimulation},

l.e., &~ is again itself a weak bisimulation. []

44

i Weak Bisimulation

T

Moreover Definition 7.6 implies that every strong bisimulation is also a

. « 8" . . .
weak one (since, for every a € Act, — C =). This yields the desired
connection to LI'S equivalence: for every P,(Q) € Prec,

LTS(P) = LTS(Q) = P~Q — P~Q.

Furthermore trace equivalence is implied if the definition is adapted:
P~Q = Tr(P)=1Tr(Q)

where TT(P) ={w|we Tr(P)} C (NUN)*.

45

Weak Bisimulation

For every P € Pre,

We show that
P = {(P~ TP)} U id pre

is a weak bisimulation:

Q let P P
— 7P PSP
— 7.P = P’ with P'pP’ (since idp,. C p)

@ the only transition of 7.P is 7.P —— P;
it is simulated by P = P with PpP

46

. Weak Bisimulation

\‘/

Using Lemma 7.9, however, we can show that ~ is not a congruence:

It is true that b.nil & 7.0.nil (Theorem 7.8, Lemma 7.9)
but a.nil 4+ b.nil 2 a.nil + 7.6.nil (Example 7.7(b))

The other operators are uncritical, i.e., weak bisimilarity is preserved
under prefixing, parallel composition, and restriction.

47

Weak Bisimulation

N

%

Also deadlock sensitivity is guaranteed if T-actions are appropriately
handled:

Theorem 7.10

Let P,Q € Prc such that P ~ Q. Then, for every w € (N U N)*,

P=/s — Q=/.

analogously to Theorem 5.4 (induction on |w|) []

48

Properties of Weak Bisimulation

N

%

Q P~Q = P=Q

©©0 0 0 0

~ is not a congruence:

~ is an equivalence relation
LTS(P)=LTS(Q) = P=~Q
P~Q = Tr(P) = TrQ)

~ is (non-7) deadlock sensitive

For every P € Prc, P~ 1.P

It is true that b.nil &~ 7.b.nil

but

a.nil + b.nil % a.nil + 7.b.nil

49

-

Properties of Weak Bisimulation

Lemma8l _ |

For every P,Q, R € Prc,
Q P+Q~Q+P

Q P+(Q+R)~(P+Q)+R

Q@ P+nilx P
Q P|lQ~Q| P
QPI[QRIR~PIQ)IR

QF

nil ~ P

50

Observation Congruence

N

%

Goal: introduce an equivalence which has most of the desirable
properties of ~ and which is preserved under all CCS operators

Definition 8.2

P, Q € Prc are called observationally congruent (notation: P ~ Q) if,
for every a € Act,

Q@ P P — ex. Q' € Prcsuch that Q = Q' and P’ ~ ('
Q@ Q = Q = ex. P’ € Prcsuch that P = P’ and P' ~ Q’

Remark: ~ differs from ~ only in the use of = rather than =, i.e.,
it requires T-actions from P or @) to be simulated by at least one T-step
in the other process. This only applies to the first step; the successors
just have to satisfy P’ ~ Q" (and not P’ ~ @Q’).

51

Observation Congruence

N

%

Example 8.3

Q@ Sequential and parallel two-place buffer:

Py Q1
in |T out in /_out
Py Q2 — Q3
in |1 out out \/ in
P3 Q4

P >~ @y since P, =~)1 (cf. Example 7.7) and neither P, nor Q)
has initial 7-steps

Q 7.a.nil 2 a.nil
(since T.a.nil = but a.nil £=)

@ a.7.nil ~ a.nil
(since 7.nil & nil)

52

Observation Congruence

N

%

Corollary 8.4

For every P,(Q € Pre,
Q@ P~Q = P~Q
Q P~Q = P=Q

Q since — C = and ~ C ~

. « Q
Q since — C —

Remark: this implies that
@ processes with identical L'I'Ss are ~-equivalent,
e ~-equivalent processes are (non-7) trace equivalent, and
e ~ is (non-7) deadlock sensitive.

53

Observation Congruence

N

L
Theorem 8.5

For every P,Q € Prc,

P~Q < P+ R=~Q+ R for every R € Prec.

Remark: ~ is therefore the largest congruence contained in ~

Theorem 8.6

~ 45 an equivalence relation.

Theorem 8.7
~ 45 a CCS congruence.

Theorem 8.8

For every P,Q € Prc,

P~Q < P~Q orP~71.Q or7.P ~ Q.

54

Observation Congruence

N

%

Goal: introduce an equivalence which has most of the desirable
properties of ~ and which is preserved under all CCS operators

P, @Q € Prc are called observationally congruent (notation: P ~ Q) if,
for every a € Act,

@ P P — ex. Q' € Prcsuch that Q = Q' and P’ ~ Q'
Q@ Q = Q@ = ex. P’ € Prcsuch that P = P’ and P’ ~ Q'

Remark: ~ differs from ~ only in the use of == rather than =, i.e.,
it requires T-actions from P or) to be simulated by at least one 7-step
in the other process. This only applies to the first step; the successors
just have to satisfy P’ ~ Q' (and not P’ ~ Q).

55

Observation Congruence

N

o LTS(P) = LTS(Q)
— P~Q
— P ~Q
— P=Q
— Ir(P) = 1Tr(Q)
@ ~ is an equivalence relation

© ~ is (non-7) deadlock sensitive
Q@ ~ is a CCS congruence

@ For every P,(Q € Pre,
P~Q < P+ R=~CQ+ R for every R € Prc

@ For every P,(Q € Pre,
P~Q@Q <— P~Qor P~T1.Qor7.P~Q

56

Observation Congruence

Theorem 9.1 (Partitioning algorithm for)

Input: LTS (S, Act,—) (S finite)
Procedure: @ Start with initial partition Il := {S}
@ Let B €11 be a block and aw € Act an action
Q@ For every P € B, let
a*(P):={C eIl | ex. P' € C with P EN P’}
be the set of P’s a—successor blocks
Q Partition B = Y%, B; such that
P,Q e B;, < ao*(P) =a*(Q) for every a € Act
Q@ Letll:=(IT\{B})U{By,...,B}
@ Continue with (2) until IT is stable

Output: Partition II of S

Then, for every P,Q € S,
P~Q < ex. Bell with P,Q € B

57

Observation Congruence

N

%

Remarks:

Q Since S is finite, a*(P) is effectively computable in step (3) of the
algorithm.
@ The ~—partitioning algorithm can be interpreted as the application
of the ~—partitioning algorithm to an appropriately modified LT'S:
Theorem 9.1 for (S, Act, —)
= Theorem 6.2 for (S, Act, —")

/ a . a ! &
where —" 1= c4ey — With — ==

Since the definition of ~ requires the weak bisimilarity of the
intermediate states after the first step, Theorem 9.1 yields the
decidability of ~:

Theorem 9.2 (Decidability of ~)

Let (S, Act,—) and I1 as in Theorem 9.1. Then, for every P,Q € S,
P~Q < a(P)=a"(Q) for every a € Act
where at(P) := {C €11 | ex. P’ € C with P = P'}.

Summary

N

L/
Origin of Process Algebras:
Calculus of Communicating Systems (CCS)

Trace Equivalence
s Insensitive to deadlocks!

Bisimulation

= Strong Bisimulation:

too restrictive to be used for an equivalence between an abstract
specification and a detailed implementation model,

we need to abstract from internal operations
= Weak Bisimulation:
no congruence wrt to choice, problem is an initial Tau step
QObservational Congruence
= Compromise between strong and week bisimulation
= Yields congruence wrt CCS operations

Equivalence classes can be determined with algorithms based on

partition refinement

59

