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Abstract 
The analysis of stochastic marked graphs is consid- 

ered. The underlying idea is to decompose the marked 
graph into subnets, to generate state spaces and transi- 
tion matrices for these isolated parts and then to repre- 
sent the generator matrix underlying the complete net 
by means of much smaller subnet matrices combined 
via tensor operations. Based on this matrix represen- 
tation eficient numerical analysis techniques can be 
used to compute the stationary solution. Furthermore 
we propose an approximation technique which is simi- 
lar to known approximate solution techniques for this 
kind of nets, but our approach is completely integrated 
in the structured description of the generator matrix. 
This allows an estimation of the approximation error 
and the usage of the approximate results as an ini- 
tial guess for a subsequent iterative analysis, such that 
the number of required iterations is often sign$cantly 
reduced. 

1 Introduction 
The set of stochastic marked graph nets (SMGs) is 

a well-known subclass of stochastic Petri nets, which 
allows for concurrency and synchronization but not for 
decisions. SMGs can be interpreted as a weak exten- 
sion of fork join queueing networks. 

As any other stochastic Petri net the numerical 
analysis of the continuous time Markov chain (CTMC) 
underlying a SMG suffers from the state space ex- 
plosion problem, which excludes applicability of exact 
conventional analysis methods for large models. Con- 
sequently approximate analysis techniques were devel- 
oped by several authors, see, e.g. [3, 4, 7, 81. A general 
characteristic of these techniques is that they are fast 
and efficient for the price of giving approximate results 
of unknown accuracy. The latter reduces the confi- 
dence in the results significantly, even if techniques 
have shown to yield sufficiently accurate results for 
several examples. Approximate analysis techniques 
can be used for two applications in the context of per- 
formance analysis: 1. to derive results where exact 
techniques are too costly or not applicable at all or 2. 
to derive a good initial distribution for exact iterative 
techniques. The published approaches for SMGs have 
been applied for l., but, to the best of our knowledge, 
not for 2. 

Due to the state space explosion the main draw- 
back of conventional Markov chain analysis is the size 
of the stochastic generator matrix Q. For certain mod- 
elling formalisms it is possible to represent Q by tensor 
sums and products of small matrices (e.g., [l, 2,6, ll]), 
which enlarges the size of solvable models by about one 
order of magnitude. In this paper we describe such a 
structured matrix representation for SMGs and conse- 
quently yield an iterative numerical analysis technique 
which enlarges the set of solvable models. Solutions of 
this techniques are exact, as far as iterative numerical 
solution of CTMCs is exact. 

In addition to this result we show how this struc- 
tured description can be used as a framework to 
consider approximate analysis techniques; algorithms 
similar to [3, 7,8] appear quite naturally in the context 
of our structured description. This yields the following 
desired effect. 

The quality of an approximate result can be easily 
measured by the residuals obtained by a single matrix 
vector calculation which is computable even for large 
models with several millions of states. If accuracy is 
not sufficient, results of the approximation can be used 
as a good initial distribution to proceed with our exact 
iterative numerical technique which exploits the tensor 
based representation of the matrix. 

The paper is organized as follows. In Sec. 2 basic 
definitions and an appropriate aggregation are given, 
which are then used in Sec. 3 to establish a struc- 
tured description of generator matrix Q and to outline 
the usage of iterative techniques exploiting this struc- 
ture. Approximate analysis and the relationship of 
the proposed approach to different approximate anal- 
ysis techniques known from literature are discussed in 
Sec. 4. Finally the usefulness and applicability of our 
approach is demonstrated by an example in Sec. 5. 

2 Appropriate aggregations for struc- 
t ured descriptions 

The notation follows [3], thus we only briefly in- 
troduce basic notations on P/T nets and SMGs, for 
details we refer to the literature [3, lo]. N = (P, T, F) 
is a net if P and T are disjoint sets of places and tran- 
sitions and F c (P x 2’) U (T x P). We consider nets 
consisting of non-empty and finite sets of places and 

32 
1063-671419.5 $4.00 0 1995 IEEE 

Proceedings of the Sixth International Workshop on Petri Nets and Performance Models (PNPM '95) 
1063-6714/95 $10.00 © 1995 IEEE 



transitions, respectively. A path of JV’ = (P, T, F) is a 
sequence 21 . . . XL with xi E PUT and (xi-r, xi) E F 
for 1 < i 5 k. A path is a circuit if x1 = xk. A 
path or circuit is simple if all its elements are disjoint 
(apart from XI, Xk in case of a circuit). In the sequel 
we consider only simple paths and circuits. A funda- 
mental circuit is a concatenation of paths such that 
the resulting sequence is simple and fulfills x1 = zk 
but it need not be a path itself, i.e. some paths in- 
side the sequence might be in opposit,e direction. The 
set P (x, y) denotes the set of all simple paths from 
x to y. This notation can be extended to sets. Let 
X, Y C P U T, then P (X, Y) = UltixUyEyP (x, y). 
A net% strongly connected if for every two elements 
x, y E P U T : P(x, y) # 8. Pre- and post-sets of 
elements are denoted by ox = {yl(y, x) E F} and 
xo = {y](x,y) E F}. The notation can also be ex- 
tended to sets of elements. 

A marking is a function M  : P --+ N which is usually 
represented in vector form. M[p’j denotes the number 
of tokens on place p. A net system is a tuple (N, MO) 
where Mc is the initial marking. Transition t E T is 
enabled in marking 44, if M[p] > 0 for all p E et. A 
transition t enabled in marking h4 can fire yielding a 
new marking M’ with M’b] = Mb] - S(p E l t)+S(p E 
te), where 6(x E X) = 1 for x E X and 0 other- 
wise. This is denoted as M[t > M’, for a sequence 
c-7 = t1t2.. .tk with Ml[tl > M2[t2 :> . . . [tk > Mk+l 
we use the abbreviation Ml [fl > Mk+,I, marking Mk+i 
is reachable from Ml by firing 6. The reachability set 
R(N, Ma) is the set of all markings reachable from 
MO. We consider in this paper only nets with finite 
reachability sets, which implies that the possible num- 
ber of tokens on all places is bounded. A net system 
is live, if for every reachable marking M  and every 
transition t holds: 3a : M[o > M’ A M’[t >. The 
language L(N, M  ) f c o a net system is defined as the 
set of all firing sequences {u] Mo[a >). 

A marked graph (MG) is a Petri net, where all 
places have exactly one input- and one output transi- 
tion (i.e., 10~1 = ]p*] = 1). We consider here stochastic 
marked graphs (SMGs), which are M:Gs, where every 
transition has an exponentially distributed firing de- 
lay with mean value (X,)-i, which might depend, in 
a restricted way, on the marking of t,he net. Allowed 
restrictions are outlined below. 

Definition 1 Let N = (P, T, F) be a strongly con- 
nected MG. A subset of places Q  C I’, is said to be a 
cut of N  iff there exist two subnets, J\/1 = (PI, Tl, Fl) 
and n/z = (P2,T2, F2) , of N  verifyin:g 

1. T1 u T2 = T, Tl n T2 = 8 

2. P1 = l T1 uT1.,P2 = l T2 u T2* 

9. Pl u P2 = P, P1 n P2 = Q 

4, Fi = F n ((Pi x z) u (z x Pi)), i E  {1,2} 

Qjn := OE n Q (Qyt := Ti o nQ) for i E { 1,2} is the 
set of input (output) places of subnet Ni, Tj” := l Qi” 
(yt := •QP”~) is th 
for x. 

e set of input (output) transitions 

According to the above definition and the proper- 
ties of MGs Q”1” n &in = 0 and Qy U Qp = Q. A 
marking structurally implicit place (MSIP) is a place 
which is never the unique reason to restrict the firing 
of its output transitions independently from an initial 
marking MO* The main characteristic of a MSIP p is 
that there is a path from l p to p* circumventing p. 
Such a pat,h can be described by a vector Y E N[. 

Theorem 1 ([3]) Let N = (P, T, F) be a net where 
p 6 P is added to N yielding a net NP with incidence 
vector Ip for p. Place p is an MSIP in NJ’ iff there 
exists Y 2 0 such that YTC = Ip, where C is the 
incidence matrix of N. 

We are interested in adding MSIPs onto a MG such 
that the resulting net is a MG again. These MSIPs are 
called TT-MSIPs, since they have exactly one input 
and one output transition. 

Theorem 2 ([3]) Let N = (P,T, F) be a strongly 
connected MG and p $ P be a place added with one 
input transition ti E T(op = {ta})and one output tran- 
sition t, E T(pe = {t,,}). Place p is a TT-MSIP with 
respect to N and ‘drr EP (tip t,,) : Ir = CpjTr Ipi. p 
is an implicit place in (Nr, M[) for all in&al mark- 
ings which satisfy Mob] 2 Mri”b]. This minimal 
initial number of tokens on p is defined by Mr”“[p] := 
min{CpjEn Mof~j]jllr EP (&to)}. 

The following definition of aggregable parts differs 
from the aggregable subnets considered in [3] in that 
it integrates Qi” into the subnet which will be aggre- 
gated. For these reasons we use a different terminology 
than [3] for the different parts. 

Definition 2 Let (N, MO) be a strongly connected, 
live MG, Q  & P be a cut of N. 

The subnets NA, = (PA,,TA,,FA,) for i E {1,2) 
are called the aggregable parts of cut Q, where 

1. PAi = Pi\&?” 

2. TA, = Ti\r” 

3. FA, = Fa n ((PA; X  TAG) U (TAi X  PA,)) 

Places in p E PAN with l p n TA, = 8 are source 
places and places p E PA; with p l nTa, = 8 are 
sink places of NAP. PAi denotes the set of paths in 
N;li from a source place to a sink place. IPA, is the 
set of TT.-MSIPs which result from PAN . For any 
= @A, we introduce a TT-MSIP p, E  IPA, given by 
the linear combinations of the rows in the incidence 
matrix corresponding to the places in rr. We denote 
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IP = IPA, u IPA,. The initial marking is denoted as 
M{ and is given by MtEp] := min{CpJER Mo[pj]]l, = 
CpjEa lpj A rr E PA, } if p E IP and A4tb] := M O @  
otherwise. 

IP4 < 

Figure 1: a) example SMG and b) extended system 

Observe that ?A! = (PA,, TA,, FA,) does not con- 
tain output transitions Tyt and output places in- 
cluded in the cut. Figure 1 a) shows an example net 
with a cut & = { 9, Pg, Pg} where each resulting ag- 
gregable part is contained in a shaded box. 

According to Theorem 2 TT-MSIPs with a suffi- 
cient initial marking can be added to a net system 
without affecting its reachability set or language. The 
interesting point is that even substitution of an aggre- 
gable part by its set IPA, still yields a reachability set 
and a language which are equivalent up to the missing 
transitions, resp. places. Such a substitution can be 
seen as an abstraction. 

Definition 3 Let (N, MO) be a strongly connected, 
live MG, Q  s P be a cut of N  yielding two subnets 
Nl = (f’l,T~,Fl) and Nz = (Pz,Tz, Fz) . 

Extended system ES = (EN, MEN): ES is de- 
rived by adding sets IPA,, for i E {1,2} to N 
and defining MOEN according to Def. (2). 

Low level system LSa = (LNj, M,LNi), i E {1,2}: 
LS, is derived by subtracting 
NAj = (PA~,TA~,FA~) , j # i from ES, i.e. 
PLN, '=PEN\PAJ~ TLNi '=TEN\'N~~~ FLN, '= 

FEN II ((PLN, x TLN,) U (TLN, x PLN,)), and 
&fL& .- 

0 .- WIPLN,~ 

High level system HS = (HN, A4fN): HS de- 
rived by subtracting NA, for an i E {1,2} from 
LSd in the same way as LSi was derived from 
ES. 

In other words the high level system remains after sub- 
tracting both aggregable parts from the extended sys- 
tem. Note that HS and N have only l Q  in common, 
but do not share any places’. MSIPs are generated 
for all shortest paths from input to output places in 
a subnet. Figure 1 shows an example SMG and the 
extended system for a cut & = {PI, Pg, Pg}, where the 
additional MSIPs are shaded. The corresponding low 
level systems LN1, LN2 and the high level system are 
given in Fig. 2 in Sec. 5. 

Theorem 3 Let (N, MO be a strongly connected, live 
MG, Q  c P be a cut of JJ implying an extended system 
ES, two low level systems LSl,LS:! and a high level 
system HS. 

1. L(ES) = L(N,M,,) 

2. R(ES)b, = R(N, MO) 

3. L(ES)IT,,, = L(LSi) for i, j E { 1,2}, i # j 

4. WWb,,,  = R(LSa) for i,j E {1,2},i# j 

5. L(ES)]T,, = L(HS) 

6. R(ES)]p,, = R(HS) 

Proof. 1. and 2. by definition of TT-MSIP and choice 
of initial marking according to Theorem 2 
3. The argumentation given in [3] can be directly ap- 
plied: 
L(ES) ITLS, c L(LSa): All sequences firable in ES 
are also firable in LS, after removing the transitions 
of Taz. This is because we have removed all firing 
constraints appearing in ES imposed by &,. 
L(Lsa > S L(ES) Ins, : We prove this part by con- 
tradiction. Let c be a sequence of L(LSa) for which 
there is no u’ E L(ES)]T~~, such that d = c’]T~~.. 
Let 60 be the maximal prefix of 0 for which there is 
a sequence crh E L(ES)]T,,; verifying CO = ~~~~~~~~ If 

‘This is the main difference to the basic skeletonin [3], which 
contains the elements of the cut. 

34 

Proceedings of the Sixth International Workshop on Petri Nets and Performance Models (PNPM '95) 
1063-6714/95 $10.00 © 1995 IEEE 



M~‘[cT~ > MES and Mt”[60 > ML'*, then trivially 
Vp E PLS! : MESkI  = MLsib]. Thle next transition 
to 60, t, m  u must be an output transition of a sink 
place of NAP, because these transitions are the unique 
transitions of LSi with additional constraints to fire in 
ES. Since places IPA~ are implicit, Ithese constraints 
must arise from Naj. All maximal firable sequences in 
(EN, M) containing only transitions (of Na, never can 
enable transition t because 60 is the rnaximal prefix of 
cr for which there is a sequence 0; E LITHER ver- 
ifying 60 = 6;]~~~,. Let M’ be a marking reachable 
in (EN, M) firing a maximal sequence 61 containing 
only transitions in NAj. At M’ all transitions of NAP 
are not enabled, hence have at least one empty input 
place. Moreover t has at least one empty input place 
being a sink place of NAj because t is not enabled at 
M’. Consequently an empty path from a source place 
to a sink place in NAj exists, which means that a place 
in IPaj correspondmg to this path is an input place 
of t containing zero token. This contradicts the hy- 
pothesis that t is enabled in L,S’i at !MLs* reached by 
M,fsz [go > M  LSi . 
4. To prove this observe that the set of relevant places 
coincide and according to 3. this equality holds. 
5. and 6. follows from equivalent a,rgumentation as 
for 3. and 4. since HS is in the sam’e relation to LSi 
as LSa to ES. 0 

With this result the approximation algorithm given 
in [3] can be applied, i.e., a reduced set of TT-MSIPs is 
calculated by solving the all-pairs-shortest-path prob- 
lem and the resulting high level an.d low level sys- 
tems are solved successively to receive an approximate 
throughput as described by the Pelota algorithm in 
[3]. We propose in the following section an alternative 
method based on a decomposition omf the underlying 
CTMC resulting directly from the decomposition of 
the SMG. 

3 Matrix structures for am exact nu- 
merical analysis 

Every marking M  = (Ml, M2) E; R(HS) can be 
decomposed into the components &Ti, including the 
marking of TT-MSIPs IPA, belonging to LS1 and Mz, 
including the marking of TT-MSIPs IPA, belonging to 
LS2. Let 7385 be the number of markings in R(HS) 
and markings in R(HS) are numbered consecutively 
from 1 to 728s. This establishes a bijective mapping 
index : R(HS) - { 1, . . . , n~s}, such that a marking 
from R(HS) can be uniquely related to its number and 
vice versa, so numbers and markings are used inter- 
changeable in the sequel. Define a nHs x 128s matrix 
QHS with QHS(Z, y) = t for t E THS, if t is enabled 
in marking 2 and the firing yields a, new marking y 
and 0 otherwise. Since we consider marked graphs, if 
z[t > y, then no t’ # t with z[t’ > y can exist. Ob- 
serve that QHS(Z,Z) = 0 and QHS(X,Y) = t implies 
QHS(Z, .z) # t for all z. 

In the example QHs results from the net shown in 
Fig. 2.~) and contains as non-zero elements the indices 
of the transitions ITi. 

The reacha.bility set of low level system i can be de- 
composed into disjoint subsets according to the mark- 
ing of the TT-MSIPs, i.e., the corresponding marking 
of the high level system. So, let 

R,(LSj) := 
{M’ E .R(LSi)lM’lp,, = M  A index(M) = z} 

forz E {l,... , pz~s} be the set of markings of LSi with 
marking z on the places IPA!. Let ni := jR(LSa)l 
be the number of markings m  R(LSi) and denote 
by ni(z) := IR,(LSi)l the number of markings in 
R,(LSi). As above assume that markings are num- 
bered consecutively with respect to the markings of 
the high level syst’em they belong to. Thus all mark- 
ings from RI (1;Si) are followed by the markings from 
Rz(LSi) and so on. 

For a low level system i we describe a set of ma- 
trices which all together describe the transition rates 
on the underlying CTMC. The firing of a transition 
from Tj’” U Tyt in a marking M  E R,(LSa) uniquely 
determines the successor marking Z’ E R(MS). For 
matrix generation the rates of transitions from Tjn 
are set to 1.0 and we assume single server semantic, 
which implies that the corresponding values can be 
interpreted as conditional probabilities of a transition 
on state space level after arrival of a token output bag 
in the low level system. For low level system i we gen- 
erate two different sorts of matrices, active matrices 
describing transitions originated in i and passive ma- 
trices describing the reaction of the low level system 
after an arrival. Let [t, z, z’] for 1 E Tyt U {T} be a 
matrix including all transition rates related to transi- 
tion t starting in a marking from R,(LSi) and ending 
in a marking from R,,(L&). The situation t = 7 cov- 
ers all transitions in TA,. Q[r, Z, z] is a ni(z) x ni(z) 
matrix since the successor marking has to be also in 
R,(LSi), when firing a transition t $! Tjn U Ttut in 
some marking from &(LSi). Q[t,z,z’] for t E 7p”’ 
is a ni(z) x ni(z’) matrix for QHS(Z, z’) = t. ‘The 
diagonal elemLents of Qi[T, Z, Z] are defined as 

= - >3 c c Qi[ttv’l(~,~) . 
tET-‘*LJ{~} z’eR(HS) yc32,,(Ls,) * 

In a similar way can define for t E qjn matrices 
Ui[t, Z, z’] describing transitions originated in a mark- 
ing from Rd( LSi) and ending in a marking from 
Rtf(L§a) for QHS(z, z’) = t, which implies that 
Ui[t, Z, z’] is a ni(.~) x ni(z’) matrix. It is easy to show 
that every row of Ua [t, Z, z’] contains only a single el- 
ement with a value equal to 1, all other elements have 
zero values. For the sake of completeness we define 
Qi[t, z, z’] = Ui[t, z, z’] = 0 for QHS(Z, 2’) # t. 
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For LSr shown in Fig. 2.a) matrices Q[..] are gener- 
ated for r, covering the firing of transitions Tl, . , T3, 
for T4 and for T5. Matrices U[..] are generated for T8 
corresponding to IT3 in the specification of LS1. For 
L& shown in Fig. 2.b) matrices &[..I are generated 
for r-, covering Tc,T7, and for Tg. Matrices U[..] are 
required for T4 corresponding to ITI and T5 corre- 
sponding to IT2. 

In the following we want to generate the reacha- 
bility set R(N, MO) m  a compositional way from the 
reachability sets of the high level system and the low 
level systems. To do so we make use of the well-known 
fact that the reachability problem for a live MG can 
be decided by considering its fundamental circuits, i.e. 
all reachable markings agree with the initial marking 
on the algebraic sum of tokens on all fundamental cir- 
cuits. Note that a fundamental circuit f can contain 
paths in inverse directions, i.e. some coefficients in its 
vectorial description b, might be negative. 

Theorem 4 ([lo]) In a live marked graph (N, MO), 
Md is reachable from MO iff Bf MO = Bf Md, where 
Bf is the fundamental circuit matrix. 

Theorem 5 The set R(ES) can be characterized as 

R(ES) = USER& = 
UzcR(HS)Z X &(LSI)IP.+ X R&S~)IP+ 

Proof. R(ES) = UzE~(~s) R,(ES) follows directly 
from the definition of R,(ES). It remains to show 
that for an arbitrary but fixed t E R(HS) : 
R,(ES) = z x R&SI)IP.+ x R&&>IP,, 
We prove first R,(ES) g z x R,(LSl)lpAl x 
&(L&)~P,, . 
Obviously z x R,(LSi)lp,, = RZ(LSi) holds. Further- 
more the general result 

R(Es)l~lu~a C R(ES)lp, x WWIP, 

holds for arbitrary disjoint sets of places PI and P2. 
Applying the results from Theorem 3 we get 

R,(ES) C=RW~)I~~i~~~,~~~ 
- 2 PHS x WS%P.+ x W-WIP,, 

= 2 x R,(ES)IP,~ x &(ES)IP.+ 

It remains to show that R,(ES) 2 z x Rt(LS1)IpA, x 
RGWIP~~ 
Assume the contrary: let Md = (r, al, ~2) be such that 
2 E R(ffS), (z, ~1) E R,(LSl) and (z, a) E R,(LSz) 
but Md # R,(ES). A ccording to Theorem 4 exists at 
least one fundamental circuit C  with bc ME’ # bcMd, 
where bc is a fundamental circuit vector correspond- 
ing to C. Note that C is fundamental, i.e. it does 
not contain a circuit as a real subset, but it is not 
necessarily directed, i.e. it can contain paths which 
are reverse to the arc direction in N resulting in neg- 
ative coefficients in bc. Since Mtsa = M~‘/P~~, and 

R(LSi) = -(Es)l~,., C  cannot be completely in 
LNi , i E { 1,2}. We will use this fact to derive the 
desired contradiction to our assumption. To get there 
we will transform C step by step into a circuit cd such 
that cd will be completely in LS1 and the transfor- 
mation will ensure that bCd ME’ # bcdMd holds iff 
bCM,ES # bcMd. 
We partition C into two sets of paths Hr, II2 such II1 
contains the paths which are in LNl and II2 con- 
tains the paths left in C. The paths in III, II2 are 
chosen to be of maximal length, such that C is the 
concatenation of paths taken alternately from Hi, Hz. 
Obviously any K E II2 is a path with a correspond- 
ing TT-MSIP x in EN (by definition of EN). Hence 
r together with x forms a fundamental circuit C’ in 
EN. C’ is completely in LN2, so by the same argu- 
mentation as above bC,MoES = bc!Md must hold for 
the corresponding circuit vector bc, since (z, ~2) is 
reachable in LS2. If we exchange path ir in C by x 
we yield another fundamental circuit C” which has 
a corresponding vector bc,l = bc - bcl. Now we 
get bcMd = (bc,, + bc,)Md = bC”Md + bc,MeS, 
which means that we can regard C” instead of C 
to argue that h&d is not reachable. This argumen- 
tation can be applied stepwise and consecutively for 
every element of Hz, such that finally all elements 
of II2 are exchanged with their corresponding TT- 
MSIPs and the resulting circuit cd is completely in 
LN1 and bC,MtS # bc,Md. But this contradicts 
(z, 4 E %(LSl). 0 

The previous theorem allows the representation of 
R(ES) using R(HS) and R(LSi). The reachability 
set of the complete net can be completely character- 
ized knowing the local reachability sets R(LSa) and 
R(HS). For non-trivial low level systems the reacha- 
bility sets of the low level systems and the high level 
system are much smaller than the reachability set of 
the complete SMG. However, only the former need to 
be generated and stored. For the number of markings 
in the different sets we get the following relation. 

n = C nl(%)n2(%) 
z=l 

In a similar way the generator matrix of the CTMC 
underlying the complete SMG can be computed. The 
state space of the CTMC is isomorphic to R(ES), 
if we assume exponentially distributed firing times 
for all transitions, which is the case here. Instead 
of the cross-product of subspaces we now use tensor 
(kronecker) products and sums [2, 5, 111 to combine 
submatrices related to low level systems. Let Q  be 
the n x n generator matrix and let Q[z, z’] be the 
n(z) x n(2) submatrix describing transitions between 
markings from R, (ES) and R,/(ES). Q  is block- 
structured in these submatrices and to every block 
Q  [z, z’] belongs one element QHS (z, z’). The differ- 
ent blocks can be computed from the matrices of the 

36 

Proceedings of the Sixth International Workshop on Petri Nets and Performance Models (PNPM '95) 
1063-6714/95 $10.00 © 1995 IEEE 



low level systems as follows. 

Qk, 4 = 

Q~[T,z,z]$Q~[T,z,z] ifz=:z’ 

Ql[t, z, z’] 8 U2[t, z, z’] if QIts(z, z’) = t 
and t E Tfut 

Ul[t, z, z’l @  Qdt, z, z’l if Qlis(z, z’) = t 
and t E Tpt 

0 otherwise 
(1) 

The above representation can be used to generate 
Q  efficiently and it can be directly exploited in itera- 
tive numerical solution techniques for stationary and 
transient analysis of the underlying CTMC. The sta- 
tionary or transient distribution of the CTMC is com- 
puted with an established iterative solution technique, 
but without storing or generating rnatrix Q, corre- 
sponding algorithms are proposed in [2, 12, 131. This 
analysis approach allows the analysits of models with 
a very large state space, much larger (i.e. by an order 
of a magnitude) than solvable with conventional meth- 
ods. But the method is still exact, in the framework of 
numerical analysis, and introduces no approximation 
error. However, realistic models often yield extremely 
huge state spaces, which require long solution times 
or cannot be solved at all, even with the tensor based 
solution techniques. For these models approximate so- 
lution techniques have to be developed. 

4 Approximate solution methods in 
the framework of tensor based ma- 
trix structures 

We propose here an approach based on the above 
matrix representation which coincides with other 
known approximations [3, 4, 7, 81 and gives therefore 
a theoretical underpinning of these approaches. Addi- 
tionally, the integration of the approximation in the 
above matrix representation enables us to compute 
some estimate for the approximatio:n error, which is 
usually not possible with other known techniques. If 
the errors of the approximation are t,oo large and the 
state space of the model is in the range of a few mil- 
lion states, then the approximation can be used as 
initial guess for an iterative solution technique based 
on the tensor representation. This two level solution 
often reduces the time of an exact analysis technique 
drastically compared with the standard method start- 
ing with an arbitrary initial distribution for iterative 
numerical analysis. 

4.1 A general approximation scheme 
The general idea of the approximlation techniques 

can be summarized in the following isteps for a single 
cut. The extension to more than two low level systems 
is straight forward (see also the remarks at the end 

of this paper). Other approximation methods known 
from literature are usually based on the steps 1 to 6 
in the proposed or a similar form. 

Decompose the MG in LS1, LS2 and HS (step 1) 
CoEmnteTinitial aggregate; for LSi (step 2j - 

Analyze LSi, where LSj is represented by the 
aggregate (i = 1,2) (step 3) 
Compute new aggregate parameters (step 4) 
Solve HS, -where LSa is represented by the coresp. 
aggregate or estimate the solution (step 5) 

UNTIL convergence of the solution (step 6) 
Estimate the approximation error (step 7) 
IF approximation error too large THEN 

Perform iterative solution (step 8) 
Compute required performance quantities (step 9) 

We now describe the different steps of the approach. 
The decomposition of the net performed in step 1 has 
already been introduced, iterative solution based on 
the tensor representation, as required in step 8, have 
been mentioned above. The remaining seven steps are 
explained in the following. Naturally different possi- 
bilities exist to define these steps and we consequently 
present some alternatives. 
4.2 Subnet analysis and aggregate param- 

eter computation 
First the aggregate type for a low level system has 

to be fixed, we use here an aggregate which reduces 
LS, to the set Tput. So, every t E Tiout describes 
an ‘exponential trdansition with state independent or 
state dependent transition rate. If the transition rate 
is state dependent, then it is allowed to depend on 
the marking of the places in IP. With this approach 
aggregates can be integrated directly in the high level 
system and the low level systems by simply assign- 
ing tra.nsition rates to the corresponding transitions. 
In fact, the aggregate for LSi is part of the specifica- 
tion of LSj, only transition rates have to be added. 
HS includes, up to the transition rates, aggregates 
for L& and L&. Denote by Xt the transition rate of 
transition t EI Ti which might depend on the current 
marking, however, marking dependency is restricted 
to markings of places in the same low level system and 
to non-zero values for all markings where t is enabled. 
In LS, the transition rates for transitions from Tin, 
which .represent an aggregate for LSi , are denoted as 
ht(z), where t E T:‘” and z E (1,. . . ,n~s} describes 
the marking of the places in IP. 

To perform step 2 the values pt (z) can be set to 
some values pClt which is a guess for the aggregate pa- 
rameters. Al.ternatively one can compute aggregate 
parameters by pre-analysis, which means to solve the 
following set of equations. 

yi[r]Q&, z, z] + x Qi[t, z, z’lGi[%‘, ~1 = 0 (2) 
tcr=’ 
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and yi [z]eT = 1.0, where z[t > z’, eT denotes the unit- 
vector and Gi[Z, z’] is a non-negative ni(z) x nd (z’) 
matrix with unit row sum. 

The choice of the G-matrices is in principle ar- 
bitrary, sometimes they might be realized by a cor- 
responding U-matrices, if they exist, such that the 
equations describe the short-circuited low level sys- 
tem. From the vector yi[z] the aggregate parameters 
can be computed as 

w(z) = Yi[zlQ[t, z, zleT (3) 
To perform step 3, the analysis of low level sys- 

tem i combined with an aggregate for system j, the 
above aggregate parameters can be used. The gen- 
erator matrix Qi of the resulting system can be eas- 
ily derived from equation (1). Qi is, like Q, block- 
structured corresponding to the the marking of the 
places IP. Block Q*[z, z’] is computed with the same 
formulas than Q[z, z’] except all matrices belonging 
to LSj are substituted by the corresponding aggre- 
gate parameters. Thus, a non-zero matrix U ‘[t, z, t’] 
is substituted by 1.0 and a matrix Qj[t, z, z’ f is sub- 
stituted by pt(z). Ob serve that the number of mark- 
ings in R,(ES) is reduced from ni(z)nz(z) to nl(z) 
or 122(z) by this aggregation step. Apart from data 
structures for the aggregate parameters, no additional 
data structures are required to represent Q1 and Q2, 
when Q is represented exploiting the tensor structure. 
Analysis of LSi means the solution of the system 

piQi = 0 and pieT = 1.0 (4) 
Each vector pi can be decomposed into subvectors 

pi[z] including probabilities for states from R,(LSi), 
due to the ordering of states p” = (pi[l], . . , pi[n~s]). 
Define p”[z] as p"[z]/(p"[z]eT), i.e. the subvector is 
normalized to 1. New aggregate parameters, in step 
4, are computed from p2 as 

pt(z) = Pi[z]Qi[t, z, z’]eT , (5) 

which yields an aggregate with marking dependent pa- 
rameters, similar to the approach chosen in [7]. The 
aggregate parameters for LSj reflect the conditional 
throughputs oft E Ti” with marking z on the places 
IP. In [3, 81 aggregates with state independent pa- 
rameters, approximating the mean delay of a low level 
system have been introduced. Corresponding aggre- 
gate parameters can be computed as follows. 

In this case aggregate parameters reflect the mean 
throughput of the corresponding transition. 

Observe that (5) and (6) are not identical to the 
corresponding computations in [3, 7, 81. With the 
detailed knowledge of conditional distributions our 
methods of parameter computations seem to be more 

natural and efficient. The alternative approaches pro- 
posed in the mentioned papers compute aggregate pa- 
rameters in a more complex way using net-level re- 
sults. However, this introduces additional effort and, 
possibly, convergence problems. Nevertheless, other 
forms of aggregate parameter computation can be in- 
tegrated in our framework and do not affect the gen- 
eral approach. At the current stage it is not possible 
to decide in general which form of parameter compu- 
tation gives the best results, although examples in- 
dicate that state dependent rates yield significantly 
smaller errors without introducing additional effort or 
convergence problems (see also the example in Sec. 5). 
This result has also been observed in a recent paper 
analyzing a more general class of nets with a similar 
technique [9]. 

Step 5 is optional but needs not much effort, it is re- 
quired if the overall solution should be approximated 
by means of the solutions p2 and it might also be use- 
ful in improving the approximation as proposed in [3]. 
The generator matrix of the HS, where LS1 and LS2 
are substituted by their aggregates has the same struc- 
ture as QHS. The matrix elements can be computed 
from (1) after substituting all non-zero U-matrices by 
1.0 and all matrices Qi[t, z, z’] by pt(z). We denote 
the resulting matrix by Q”, since it can be directly 
derived from (1)) no additional data structures are re- 
quired for this matrix. The stationary solution p" for 
this system is computed via (4) setting i = 0. From 
p” the throughput of HS can be computed and com- 
pared with the throughputs determined from p1 and 
p2, if the values differ, aggregate parameters might be 
scaled as outlined in [3]. 

The convergence of the approach, which is checked 
in step 6, is a crucial point. First of all, neither 
[3, 4, 7, 81 nor us can guarantee that the specific ap- 
proximate method converges and even if it does, the 
quality of the gained approximate results is unknown. 
However, experience shows that usually only a few it- 
erations are required before convergence is reached. 
Convergence is assumed if the parameters computed 
for the aggregates or the solution vectors for the ag- 
gregated systems differ only by a small factor in con- 
secutive iterations. Let pi ck) and pi61 be the solution 
vector and aggregate parameter computed in the &th 
iteration of the algorithm. Convergence according to 
the solution vector is assumed when 

lip i (k) -pi (‘-l)]] L: ~1 and (7) 

C IP1 (k)[Z]eT - p2 (‘)[z]eTI 5 t2 (8) 
t=l 

holds. Convergence according to the aggregate param- 
eters is given when 

pj”‘(z) - p-l)(Z) 
&Z) 

<cforallzE{I,...,nHg} 
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is observed. Which of both approaches is preferable 
cannot be decided at the current stage. Thus, both 
criterions might be checked. 
4.3 Error estimation and result improve- 

ment 
Once the iteration has terminated, the quality of 

the results is usually unknown, even if convergence has 
been observed. This is one of the main drawbacks of 
most approximate solution techniques. However, it is 
important to get at least an estimate of the error. The 
solution of the complete model can be approximated 
via 

Let p be the stationary solution of the complete 
system (i.e. pQ = 0 and peT = 1.0). The error of the 
approximation is described by I/p - @II, however, since 
p is unknown it cannot be computed exactly. An al- 
ternative is to check the residuals I/~&l/ as an error es- 
timate, which usually works fine, although we cannot 
guarantee that small residuals imply a good approx- 
imation [13]. Additionally, a bad approximation of 
the solution vector does not imply that performance 
quantities like throughputs are also bad approxima- 
tions. However, the computation of residuals is much 
better than nothing and helps in almost all cases to 
decide whether the approximation meets the required 
accuracy. It should be noticed that the residuals can 
be computed without generating Q  by exploitation of 
the tensor structure, and they can even be computed 
without a memory expensive representation of 6 since 
elements of 6 can be generated from the vectors of the 
aggregated systems on demand. 

If the residuals indicate a large error, some iteration 
steps should be performed starting with 6. This is 
possible by the tensor based approach for all systems, 
for which we are able to store the isolated matrices 
plus two vectors of size n. On current workstations 
this works well for state spaces with several millions 
of states. 

Performance quantities of the system, as required 
in step 8, are usually defined locally in LSa or HS, 
Thus they are computed directly from the vector pz 
(i = 0, 1,2) or, if 6 has been improved by an itera- 
tive technique, by mapping i, on p”, which is done by 
appropriately summing of vector components. 

5 Example 
We use here a very simple example, which, however, 

is sufficient to show the benefits of the new approach. 
The different parts of the example are shown in Figs. 
1 and 2. Implicit places from IP are shaded, the ex- 
tended system ES in Fig. 1 b) results from the original 
net a) by adding implicit places. The cut & contains 
the places 9, Pa and Pg. We assume that all transi- 
tions have single server semantics and, apart from T2, 
T3, T6 and T7, have transition rate 1.0. Transitions 
T2 and TS have rate X, transitions T3 and T7 rate p. 

The initial markings for the different nets are shown in 
the graphical representation, K is an integer parame- 
ter which is modified to generate reachability sets of 
different sizes. 

a> r--- 

b) IPl ITI 

C:l IPl IT1 

Figure 2: a) low level system LS1, b) low level system 
LS2, and c) high level system HS for example SMG 

In a first step the marking sets and matrices for 
the low level systems and the high level system are 
computed. In Tab. 1 the sizes of the different mark- 
ing sets and the number of non-zero elements in the 
different matrices are shown for different values of K. 
The number of states grows rapidly if the value of K 
is increased. The number of non-zero elements in Q  
(#n%(Q)), which is shown in the third column, grows 
even faster. For a numerical analysis using standard 
techniques and sparse storage of Q  the required space 
is proportional to 2n~s + #nz(Q). If the tensor struc- 
ture is exploited in an iterative solution, then the re- 
quired storage is proportional to 2nES + #nz(Qa, Vi), 

39 

Proceedings of the Sixth International Workshop on Petri Nets and Performance Models (PNPM '95) 
1063-6714/95 $10.00 © 1995 IEEE 



K nES #nz Q nHS nLsl #nz(Qi,U) 
3 228 876 16 8 nLsi 635 

1 

5 1704 8224 36 476 243 2995 
10 38476 234830 121 5201 1633 35586 
15 262348 1486488 256 22926 5173 155721 

Table 1: Reachability set and matrix size of the example 

where the latter describes the number of non-zero el- 
ements in the isolated matrices required to represent 
the generator. For large reachability sets the number 
of states exceeds the number of non-zeros in the iso- 
lated matrices even if a net is cut only in two parts. 
Simple comparison of storage requirements shows that 
the size of state spaces solvable by the structured ap- 
proach is about one order of magnitude larger than 
the size of state spaces solvable by the conventional 
approach. Additionally, state space and matrix gen- 
eration is faster in the structured approach, since the 
generation of a few small state spaces is much more 
efficient than the generation of one large state space. 

Table 2 compares the quality of results obtained 
from different approximate analysis techniques for the 
example SMG. In all techniques the iteration stops 
when the normalized difference of the transition rates 
for the aggregates is less than E = 0.0001. This turns 
out to allow a very fast solution with every chosen 
technique: the number of iterations is 3 or 4. 

Three particular performance measures are consid- 
ered, namely the throughput, which is identical for all 
transitions in the net, the mean population on place 
IP3 and the mean population on place PII. The for- 
mer two results are computed from HS, the latter 
from LS2. Table 2 gives the relative errors for the 
mentioned quantities; errors smaller than 0.01% are 
denoted as 0.0%. The results show that the state de- 
pendent aggregate is superior to the aggregate with 
fixed transition rates. This is caused by the structure 
of the example, which contains a serialization in firing 
transitions Tz and T3 or T6 and T7. Aggregates with 
fixed transition rates do no reflect this behavior ade- 
quately. The results for the state dependent aggregate 
are nearly exact and probably sufficiently accurate for 
most applications. The values of the maximum norm 
of the vector of residuals gives a fairly accurate esti- 
mate of the quality of results, although we cannot ex- 
pect a linear dependency between the maximum norm 
of the residuals and the errors in results like mean 
throughput or population. 

In Tab. 3 we compare the convergence of the 
power method starting with different initial distribu- 
tions. We compare the exact solution p with the so- 
lution reached after iter iteration steps. The initial 
distribution ei assigns probability 1.0 to the initial 
state/marking and probability 0.0 to all other states. 
This initial distribution is often used in tensor based 
approaches for the analysis of stochastic automata 
based models [6, 111. However in this example, it gives 

iter l/ne 1 
0 11 9.91e-Z 1 7.07e-03 I 2.54,~E! I 4.3leE 

10 7.10e-02 5.73e-03 5.97e-03 l.O2e-04 
50 2.36e-03 4.96e-04 4.63e-04 l.l7e-06 

100 l.O2e-04 2.17e-05 2.03e-05 5.03e-08 
300 3.56e-10 S.Ole-11 7.48e-11 1.76e-13 

Table 3: I/p - pcite’) I/W for different initial distribu- 
tions. 

a bad convergence. The uniform distribution denoted 
by l/ne performs much better. The values in col- 
umn fii are obtained with the approximate solution 
calculated by the aggregation approach with state in- 
dependent aggregates. This distribution is not better 
than the uniform distribution, although performance 
quantities resulting from the direct use vector l/ne as 
an approximation of p yield much larger errors than 
for 61. fiz is the distribution resulting from the ap- 
proximation with state dependent aggregates, it is ob- 
viously the best choice of an initial distribution for 
this example. The initial distribution has a significant 
effect on the number of iterations necessary to reach a 
required accuracy for the solution. For an estimated 
accuracy of 10w5, 160 iterations are needed starting 
with el, with l/ne and fii 130 iterations are required 
and starting with fiz only 40 iterations are necessary. 
Since approximate solutions can be computed for large 
models very efficiently compared to the solution time 
of the complete model, a combination of approximate 
and exact analysis will often yield a significant reduc- 
tion of the overall solution time. 

6 Conclusions 
In this paper we describe an exact iterative numer- 

ical technique and an approximation technique to an- 
alyze Markov chains described by stochastic marked 
graph nets. The techniques are based on a structured 
description of the generator matrix Q, such that that 
submatrices are described by tensor sums and prod- 
ucts of relatively small matrices. We prove that the 
structured description not just describes a superset of 
Q - which is often the case in tensor based approaches 
- our structured description exactly matches Q. This 
allows to choose freely an initial distribution for the 
iterative numerical technique, e.g. one derived from 
an approximate technique. The memory efficient rep- 
resentation of Q enlarges the size of solvable models 
by about one order of magnitude compared to conven- 
tional methods. 
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Table 2: Approximation results for the example with K = 3. 

From a theoretical point of view this new structured 
description gives a nice notational framework to clas- 
sify and compare well-known approximate techniques 
as proposed by [3, 4, 7, 81. The practical implica- 
tions are twofold: The quality of the approximate re- 
sults can be checked for fairly large state spaces by 
analyzing the vectors of residuals and exact solution 
techniques can be accelerated by using approximate 
results as initial distribution for exact iterative solu- 
tion techniques. 

The example given above nicely demonstrates how 
the numerical analysis of SMGs profits from our new 
technique. 

Generalizing our approach from a single, simple cut 
to a partition of a SMG into more than two parts is 
straightforward, since the parts are SMGs again. This 
generalization is left out here due to lack of space, but 
we recommend to take it into consideration for prac- 
tical applications. One decision to make is where to 
cut a SMG. First, cuts can be chosen according to 
the physical structure of the modeled system. Second, 
cuts can be made to support the solution. In the latter 
case subnets should be chosen such that their marking 
sets are approximately of the same size, which allows 
a representation of Q  with minimum storage require- 
ments. 
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