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Abstract 
The numerical analysis of various modeling for- 

malisms (4, 10, 141 profits from a structured repre- 
sentation for the generator matrix Q of the underlying 
continuous time Markov chain, where Q is described by 
a sum of tensor (kronecker) products of much smaller 
matrices. In this paper we describe such a representa- 
tion for the class of superposed generalized stochastic 
Petri nets (SGSPNS), which is less restrictive than de- 
scriptions given before [lo]. Furthermore a new itera- 
tive analysis algorithm is proposed which pays special 
attention to a memory efficient representation of iter- 
ation vectors as well as to a memory efficient, struc- 
tured representation of Q. In consequence the new al- 
gorithm is able to solve models which have state spaces 
with several millions of states and where other exact 
numerical methods become impracticable on a common 
workstation. 

1 Introduction 
Generalized stochastic Petri nets (GSPNs) [l] pro- 

vide a concise and powerful method for the speci- 
fication and analysis of complex, dynamic systems. 
Their mapping to a continuous time Markov chain 
(CTMC) and b q su se uent analysis for transient and 
steady state distributions to derive performance mea- 
sures has been known for long, and a rich variety of 
software tools exists which employ this (conventional) 
numerical analysis, among others [3, 5, 6, 111. Due to 
the well known state space explosion problem numeri- 
cal analysis is cumbersome for large models where the 
underlying CTMC contains more than lo6 states. In 
these cases the conventional method, which typically 
includes three main steps namely state space genera- 
tion, elimination of vanishing markings, and applica- 
tion of a numerical iteration scheme, frequently col- 
lapses for a given computer configuration due to lack 
of primary memory even if sparse matrix structures 
are employed for the representation of the stochastic 
generator matrix Q of the CTMC. 

If the CTMC shows certain regularities which are 
usually imposed by the modeling formalism it is de- 
rived from, then Q can be described by a set of much 
smaller matrices which are combined via tensor oper- 
ations [8]. This memory efficient representation of Q 
usually increases the size of solvable models by one 
order of magnitude. Such structured representations 

are known for stochastic automata networks (SANs) 
[I4, I5 , 

1 
certain hierarchical colored stochastic Petri 

nets [4 , and superposed generalized stochastic Petri 
nets (SGSPNs) [lo] as an extension of superposed 
stochastic automata [9]. The idea in SGSPNs is to 
combine a set of originally independent GSPNs into a 
single, superposed GSPN by synchronization of timed 
transitions. This concept is closely related to the con- 
cept of SANs and Markovian process algebras which 
also consider synchronized actions. 

In SGSPNs the superposition of component GSPNs 
can be used for a structured representation of Q under 
the following restrictions [lo]: 1. all synchronized tran- 
sitions are timed, 2. the tangible reachability graphs 
(TRGs) of the isolated components are strongly con- 
nected, and 3. firing of a synchronized transition leads 
to a tangible state. In this case Q is described by a 
sum of tensor products considering matrices derived 
from the TRGs of the isolated components. The 3rd 
restriction is rather awkward from a modeler’s point of 
view. In this paper we give a similar structured repre- 
sentation of Q which allows to drop the 3rd restriction, 
i.e. in our description of Q the firing of synchronized 
transitions may lead to vanishing or tangible states. 
This extends the set of SGSPNs for which a concise1 
structured description of Q is known, hence improving 
efficiency of numerical analysis methods based on it. 

The main advantage of a structured representation 
is that it is a very memory efficient matrix represen- 
tation, which is essential for the applicability of any 
numerical analysis. In case of SGSPNs the price paid 
for this advantage is that the cross product of state 
spaces of isolated components - in the following de- 
noted by PS for product space - is considered to be 
the tangible reachability set (77&S) of the SGSPN, al- 
though often [PSI >> ]lRS] due to the restrictions 
imposed by synchronization. In the context of struc- 
tured descriptions the fact that introducing additional 
restrictions might exclude reachability of certain states 
in PS has been mentioned before in [7]. 

The following simple example demonstrates the im- 
pact of synchronization on the relation between IRS 
and PS. Consider the net in Fig. 1, which consists of 
two independent GSPNs A and B, where places ul,as, 

‘in terms of the number of terms in the sum of tensor prod- 
ucts of a structured description 
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and as belong to A and all other places belong to B. If 
the transitions in a shaded box are merged into a sin- 
gle transition, the resulting GSPN is a SGSPN with 3 
synchronized transitions and components A and B. We 
assume an initial marking MO = (ai = a2 = O,a3 = 
p, bl = b2 = p + m, b3 = 0), where p and m are non- 
negative parameters. By combinatorial arguments it 
is easily obtained that 

IPS( = qp + m ) + 2 (“:“)( Q+m) ) 
2 P+2 ( > P 

= p-asl 

since for the given MO in the SGSPN only tokens on 
al, ~2, us distribute freely over places al, az, a3 and 
places bl , ba, b3 are redundant. Due to the addi- 
tional degree of freedom gained from parameter m, 
initial markings can be chosen to increase PS arbi- 
trarily compared to 772s. Obviously synchronization 
of transitions drastically reduces the independence of 
components in this example. The example is surely 
a worst case example, but it clearly indicates that 
a numerical analysis method based on a structured 
representation of Q, where Q  is a ([PSI x IPS]) ma- 
trix, must take care of this problem or otherwise the 
method becomes hopelessly inefficient for SGSPNs of 
this type. 

Figure 1: SGSPN superposed from GSPNs A and B 
by merging shaded transitions 

This problem is attacked and solved in this paper in 
that we give a numerical analysis method which em- 
ploys a structured representation of Q, restricts the 
size of iteration vectors to the size of IRS and con- 
siders only states of IRS in its iteration scheme. For 
example, the new analysis algorithm is able to analyze 
a SGSPN with [PSI M  201. lo6 and ]lRS] M  4. lo6 
on a spare station with 48 MB primary memory, as 
described in Sec. 6. 

The paper is organized as follows. In Sec. 2 we give 
some basic definitions and describe the structured rep- 
resentation of Q  for SGSPNs. The superposition of 
GSPNs into a SGSPN can impose certain constraints 
on the state spaces of components, which in turn are 
useful to reduce the size of ‘PS. These constraints are 

considered in Sec. 3. Section 4 focuses on an iteration 
scheme which1 is able to distinguish states in 7’ES and 
states in PS\7RS by means of an appropriate permu- 
tation. The new analysis algorithm is given in Sec. 5, 
and its usefulness and applicability is demonstrated 
by an example in Sec. 6. 

2 Definitions and theoretical basis 
The notation for SGSPNs follows mainly [lo], thus 

we only briefly introduce some basic notations and 
assume that the reader is familiar with GSPNs and 
their dynamic behavior. 

Definition 31 A GSPN is un eight-tuple 

where 
P is the set of places, 
T is the set of transitions such that T n P = 0, 
r : T -+ (0,l) is the priority function, 
I,O, H : T -+ Hag(P), are the input, output, and 
inhibition functions, respectively, where Bag(P) is the 
multiset on P, 
W  : T --+ iR is a function that assigns a weight to each 
transition, 
MO : P + PI is the initial marking: a function that 
assigns a nonnegative integer value to each place. 

Based on this definition the reachability set (RS), the 
reachability graph (RG), the tangible reachability set 
(TRS) and the tangible reachability graph (TRG) can 
be defined as usual. 

For GSPNs well-known-techniques apply to derive 
a state transition matrix & from the TRG, such that 
the stochastic generator-matrix & of the underlying 
CTMC is given by & = & - D with diagonal matrix D 

D(i, j) := Fk &(i, k) if i = j 
otherwise 

Superposed GSPNs are GSPNs, where additionally 
a partition of the set of places is defined such that 
SGSPNs can be seen as a set of GSPNs which are 
synchronized by certain transitions. 

Definition 2 A SGSPN is a ten-tuple 

where 
(P, T, ?T, I, O:, H, W, MO) is a GSPN, 
II = {PO,. . . ) Plv-l} is a partition of P, 
TS c {t E TIT(t) = 0) is the set of synchronized tran- 
sitions, that are timed by definition. 
Moreover II induces on T\TS a partition of transi- 
tions. Such an SGSPN contains N components 

(P”, T”, ?ri, I”, O”, H”, W ’, M;) 

for i E (0, 1, . . . , N  - l}, where 
Ti := *Pi U Rio and 
rrd,Ii,Oi,Hi,Wd,M; are the functions 
r, I, 0, H, W, Mb restricted to Pi, resp. T”. 
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Figure 1 shows two component GSPNs A and B 
in isolation. A SGSPN can be obtained by merg- 
ing the transitions which are contained in the same 
shaded box. In the following we assume a partition 
of a SGSPN into N components with an arbitrary but 
fixed index and refer to a single component by its in- 
dex. 

Note that synchronized transitions of a SGSPN 
are timed by definition. This ensures that within an 
SGSPN components have “borderlines” just built from 
timed transitions. Consequently the firing of immedi- 
ate transitions in different components is rather inde- 
pendent in that the firing of an immediate transition 
in component i cannot enable or disable the firing of 
an immediate transition in component j within the 
SGSPN. This is a nice special case of [2]: immediate 
transitions in different components cannot be in the 
same equal conflict set (ECS)? i.e. they cannot enable 
or disable each other. This simplifies the elimination 
of vanishing markings considerably. According to [2] 
the state transition matrix Q  of the whole (S)GSPN 
can be calculated from 

N-l 

Q W ) = c w(t) n Prob[F”(t, Mi) + Mjn] 
t:Mi-t+Mj n=O 

(2) 
w(t) denotes the firing rate of t imed transition t. M,? 
is the restriction of tangible marking Mj to com- 
ponent n. F”(t, Mi) denotes the successor marking 
after firing transition t in marking Mi with restric- 
tion to component n. F”(t, Mi) can be the start of 
a firing sequence u of immediate transitions which 
is local in n and leads to the tangible state Mj, so 
Prob[F”(tk, M;) + Mjp] gives the probability to reach 
MT over all such sequences 6, which can be empty, 
under the condition that t is fired in MS?. Informally 
the idea is that the probability of firing sequences of 
immediate transitions enabled by firing of a timed 
transition t is given by a product of subsequences, 
where each subsequence consists of transitions of a 
single ECS. Since transitions in different ECS do not 
interfere, their firing probabilities only require a nor- 
malization which is local to the ECS. A partition into 
ECSs is naturally given in SGSPNs by the partition 
into components, such that the product in (2) consid- 
ers all N  components in an arbitrary, but fixed order, 
which is equivalent to the introduction of additional 
priorities on different ECS in [2]. For example the 
net in Fig. 2 has components A, B, and C and fir- 
ing of synchronized transition tsl enables immediate 
transitions til, tiz, and ti3. Let Mj be a marking 
reached from F(tsl, Mi) by firing of til and ti3 in 
an arbitrary order, then (2) states that for o(i, j) it 
is sufficient to consider probabilities of isolated com- 
ponents, i.e. Prob[FA(tsi, Mi) + Mf] = 1, because 
FA(tsl, Mi) = MjA, Prob[FE(tsi, Mi) + MjB] = 
w(til)/(w(til) $ w(&)) for transition til, and 
Prob[FC(tsl, Mi) + Mjc] = w(ti3)/w(ti3) = 1 for 

transition ti3. 
We will make use of this property in proving that 

a representation of Q  for the CTMC underlying an 
SGSPN is correct, which represents Q  by a sum of 
tensor products and allows that firing of a synchro 
nized transition enables immediate transitions. The 
definition of tensor (kronecker) product is based on a 
mapping function using mixed radix number represen- 
tation [8]. 

Definition 3 Mapping function mix 
Let TRS’ := {O,l,... , k’ - 1) be some finite sets 
with arbitrary but jxed constants k” for all i E 
{O,l,...,N - 1) and k = fl:i’ k’. A mapping 
mix : x~TRS’ - {O,l, . . . , k - 1) is defined by 

N-l 

mix( xN- l ) . * , ) xl, x0) := c x’gi 

i=O 

with weights go := 1, gi := k”-lgd-l. 

A vector (xN-‘, . . . , z”) E XiTRS” is the mixed radix 
number representation of x = mix(xNml,. . . , x0) with 
respect to basis (kN-‘, . . . , k”). In the following defi- 
nition of tensor product we follow the notation in [S] 
but regard only the restricted case of square matri- 
ces to keep a concise notation, because only square 
matrices occur in the context of SGSPNs. 

Definition 4 Tensor product and sum for square ma- 
trices 
Let A’,.. , AN-l be square matrices of dimension 
(k’ x k’) then their tensor product A = @:=;I A’ 
is dejned by a(x,y) := n:i’ a’(~?, yi) where z = 
miz(xNsl, . .,x0) and y = mix(f-‘, . . . , y’). 

The tensor sum B = @:;‘A” is then given by 
@;‘A’ := CEi’ Ip @ A” @I,.; where I,;, I,.; are 
matrices of dimension 1” x l’,resp. ri x ri where ri = 
r-g’, kj , I” = nj”,;l kj and I(a,b) = 1 iff a = b and 
0 otherwise. 

A tensor product formalizes the operation of multiply- 
ing every matrix element of one matrix with all matrix 
elements of the other matrices and these products of 
matrix elements are arranged in lexicographical order 
in the resulting matrix, for more details see e.g. [16]. 

The components of a SGSPN are GSPNs them- 
selves such that they can be analyzed in isolation to 
obtain corresponding tangible reachability sets TRS 
as for any GSPN. In the following we will regard 
only SGSPNs such that the TRS of their compo 
nents are strongly connected. This restriction is men- 
tioned also in [lo]. Due to our assumption that all 
states in TRS’ are consecutively numbered from 0 
to kd, mix induces such a numbering on x~~~TRS’ 
as well. Since such a numbering allows to iden- 
tify states, we will not distinguish between a state 
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M, = (My, *. . , @?) and its number, resp. compo- 
nent numbers 2 = miz(zN-l, . . . , zO) in order to pre- 
serve readability. Furthermore let PS = x~~~TTRS 
denote the product space obtained from the TRS’ of 
isolated components of an SGSPN. The set of reach- 
able tangible states of an SGSPN is denoted by 7XS. 

Proposition 1 All x E 7’JZS are also element of PS. 

Proof Since in the cross product of TRS” obtained 
from isolated components, enabling conditions of syn- 
chronized transitions are less restrictive than in the 
SGSPN and all TRS’ are strongly connected, any 
x E TRS is reachable in PS as well. 0 

Together with TRS’, state transitions matrices Q” 
can be derived for every isolated component i such 
that a &” does not contain vanishing markings any 
more, i.e. the elimination of vani&ing markings has 
been applied beforehand. Matrix Q.can be seen as a 
sum of matrices Q’ = CteTi w(t)Qi, such that non- 
zero entries are separated according to the timed tran- 
sition t which contributes to that entry. The. elim- 
ination of vanishing markings implies that &;(x, y) 
gives the conditional probability to reach marking 
iVi if transition t is fired in Ml, or more formally 
Prob[F”(t, Mi) ---) M$ like in (2). 

The terms of the sum which correspond to unsyn- 
chronized (local) timed transitions shall be denoted by 
Of := CteTi\Ts W(t)&:- 

Theorem 1 The state-transition matrix Q for PS = 
xy=<lTRS’ of an SGSPN with strongly connected 
TRS’ equals 

N-l N-l 

i=O tcTS i=O 

where 9: = I’ if t @ T’. 

The main ideas underlying the following proof are that 
firings of local transitions are well described .by a ten- 
sor sum of local state transition matrices Q; - this is 
well known, for a detailed discussion see e.g. [16] - 
and that firing of a synchronized transition followed 
by a firing sequence of immediate transitions in vari- 
ous components profits from the fact that immediate 
transitions in different components belong to different 
ECSs, i.e. they cannot disable each other. The latter 
observation allows to exploit (2) for the calculation of 
a matrix entry, which happens to coincide with the 
matrix entries that result from CtETS w(t) @Li” 0: 
as shown below. 
Proof. Regard two markings M,, MY E PS, with 2 = 
miz(xN-l, . . . , z”) and y = miz(~-_‘, . . . , y’). 
Since the value on matrix position &(x, y) can be a 
sum of values caused by the possible firing of several 
timed transitions performing the same transformation 

of marking FM, into marking MY, let Q = CteTS Qt + 
Cr&’ Qr= b’e a representation of Q, such that Qt is 
a (PS X PS) matrix containing all non-zero entries 
caused by firing a synchronized transition t and &r= 
contains all non-zero entries caused by firing a timed 
transition of Te\TS of a component e. 
The proposed matrix representation can be trans- 
formed according to Def. 4 
g-c;’ Qf + &y w(t) tg&’ Qf = 
czil 4; @of @ ITi + CtETS w(t) 8:;’ of. 

In order to prove the theorem we show that 
1. for any component e : Qle = Ip @$a;! QD I,.= 
By definition the enabling condition and the firing rate 
of any local timed transition in e is independent of 
the marking in other components. Furthermore all 
synchronized transitions are timed, hence immediate 
transitions enabled by the firing of a local timed tran- 
sition in e must be local in e as well, and no im- 
mediate transitions in other components can be en- 
abled. In consequence the value of any non-zero entry 
QP(x, Y) = @(xe, Y”). 

4 
S ince only local transitions of 

e are involve the marking in other components re- 
mains obviously unchanged, such that in summary we 
have 

( &f(xe, ye) 
&14x, Y> = <I o 

if Mj = Mi for all i # e 
otherwise 

Since mat&es I are IL for all I(ij) where i=j 
and 0 otherwise, and a product 4 non-zero 
iff all of its factors are non-zero, Ql=(x, y) = 
[flz.kl Ii(xi, y’)] &r(xe, ye) nri,’ Ii(xi, y”) so due to 
Def. 4 follows Qr= = II= @ 0; @ Ire 

It remains to show that 
2. for any t E TS : Qt = w(t) @Es’ of 
A synchronized transition t is ena ii led in state M, E 
‘PS iff t is enabled in all components e with t E T”. 
(Note that the initial marking with k=l in Fig. 2 can 
serve as an example for M, and t = tsl to illustrate 
the argumentation.) Firing of t can only change the 
marking of places in components e with t E T”, and 
the marking of places in other components remains 
unchanged. Since M, is a tangible state, no imme- 
diate transition can be enabled at M,, and all im- 
mediate transitions enabled after firing t can again 
only be transitions in components e with t E Te. 
Since the borderline between components is formed 
by timed transitions, the immediate transitions en- 
abled by firing t which belong to different compo- 
nents belong to different EC%. So according to (2): 
t&(x, y) = w(t):flzi’ P[F”(t, M,) + Mi]. By defi- 
nition of @%$’ Q:, each non-zero element Qi ( zi , yi) 
gives I’[F”(f, Mj!) -+ M;] = P[F’(t, M,) -+ M;.] 
iff t is enabled in Mz and t E T’ according to the 
independenc,y of local immediate transitions. Once 
again the product w(t) n &;(z’, y’) ensures that the 
resulting value is non-zero iff all factors are non-zero, 
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i.e. all components i with t E r’ fulfill &i(z’, y’) = 
P[Fi(t, Mj) + M$ # 0 and all components i with 
t $ T” Qf((xi, yi) = 1 which in turn is only the case 
if Mi = Mi since for t 4’ p : Qf = I” is 1 for all 
I”(x”, y’) where xi = y’ and 0 otherwise. q 

Starting from a structured description of state tran- 
sition matrix Q, it is straightforward to derive the di- 
agonal matrix D such that the stochastic generator 
matrix is given by Q  = Q-D. In the following we will 
not attempt to obtain a structured description of D 
and rather use a standard representation, i.e. a vector 
enumerating the diagonal values of D. So far we have 
given a reprefentation of Q  based on a structured de- 
scription of Q  which can directly be employed within 
numerical analysis methods, e.g. a Jacobi iteration 
can be performed by x(“‘+‘) = x(“)QD-l. The main 
idea is that the vector-matrix multiplication z(“)& 
can be performed by multiplying appropriate projec- 
tions of xcn) with matrix elements of Qf, resp. Qf, cf. 
[16, 171. In the following we come back to the problem 
stated in Sec. 1, namely that often ]PS] >> ITRSl, 
and describe how to reduce [PSI and how to avoid 
overhead imposed by ]PS] >> ITRSI. 

3 Upper lim its derived from SGSPN 
In this section we consider the relationship be- 

tween P-invariants of an SGSPN and P-invariants of 
its components. Since the components of an SGSPN 
are superposed by synchronization of transitions, su- 
perposition of GSPNs into a SGSPN preserves the 
P-invariants of involved GSPNs. More formally let 
xi E l+lci be a P-invariant of an isolated component a, 
then the corresponding vector z E Rlr in the SGSPN 
is given by 

Lemma 1 Let x be the corresponding vector in a 
SGSPN for a P-invariant xi of a component i, then 
XC = 0, i.e. x is a P-invariant of the SGSPN. 

Proof. Since the incidence functions concerning places 
of i remain unchanged by synchronization of transi- 
tions and the corresponding vector x is padded with 
zeros for all places not contained in i, XC = 0 is satis- 
fied, hence x is a P-invariant [13]. 0 

On the other hand not all semi-positive P-invariants 
of the SGSPN can be derived from the semi-positive 
P-invariants of its components as the example net in 
Fig. 1 shows. A generating set of P-invariants in A is 
given by a unit vector; the same holds for B. Their 
corresponding vectors x and y are given in the ta- 
ble below. Nevertheless the SGSPN has additional 
semi-positive P-invariants zi , zs, zs which cannot be 
obtained as a linear combination of x and y. The ad- 
ditional P-invariants can be seen as global constraints 
imposed by superposition. 

al a2 a3 bl b2 b3 
xl1 1 1 0 0 0 
Y  0 0 0 1 1 1 

Zl 1 0 0 1 0 0 
z-2 0 1 0 0 1 0 
z3 0 0 1 0 0 1 

It is well-known that semi-positive P-invariants are 
useful to calculate upper limits for the number of to- 
kens on places which belong to their support. Con- 
sequently we suggest to obtain upper limits in this 
manner and to obey them during the generation of 
state spaces for the isolated components. These up- 
per limits can be very effective, e.g. for the net in 
Fig.1 places (b 1, 2, 3 are limited to (p+nz,p+m,p) b b ) 
for the initial marking MOB = (p + m,p + m, 0) and 
due to P-invariants zi , zs, zs. Again by combinatorial 
arguments we have: 

[PSI = ( 3+,-1)il( “‘i-‘> 
= (P;y2,(p;2)=,7-Rs, 

This way ]PS] is significantly reduced compared to (1) 
but it is still much larger than ‘TRS. 

4 A Permutation to distinguish 7% 
from PS\77&5 

The P-invariant based approach of the previous sec- 
tion attempts to reduce the number of unreachable 
states in the representation of Q. In this section we ac- 
cept that the representation of Q  contains such states 
for the price of a memory efficient matrix represen- 
tation. Instead we attack the negative consequences 
of unreachable states for numerical analysis, which 
are twofold. Firstly, they increase the size of itera- 
tion vectors, which is crucial for the applicability of 
the method. Secondly, they cause useless multiplica- 
tions of matrix and vector elements, since unreachable 
states permanently stay at zero probability. Whenever 
vector-entries corresponding to unreachable states are 
considered in the iteration it is a waste of time. 

The main problem in recognizing unreachable 
states during iteration is that their vector positions 
are mixed with positions of reachable states and the 
set of reachable states is not known. Since the latter 
can be solved by performing a state space exploration 
based on the tensor representation of &  as described 
in the following, let us assume for now the set IRS 
is known. Separating 7lU from unreachable states 
can be formally described by defining an appropriate 
permutation, which reorders states according to their 
reachability. 

Definition 5 For a SGSPN with IPSl = k, a bijective 
function perm : (0, 1, . . . , k - 1) --+ (0, 1, . . ., k - 1) 
is a TRS-permutation if 
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. VM, E PS : perm(x) < lir7ZSI e M, E 
7RS 

e VM,, My E 77U : perm(z) < perm(y) a 
X<Y 

Note that several TRS-permutations exist for the PS 
of a given SGSPN, since the definition requires only 
reachable states to be mapped in an order preserving 
way into the set (0, 1, . . . , l’7’RSl- l}, the mapping of 
unreachable states into the set { IIRSI, . . . , k - 1) is 
bijective but not necessarily order preserving. Such a 
TRS-permutation can be described by a (Ic x /z) matrix 
P with 

p(i,j) := 1 if j = perm(i) 
0 otherwise 

Let xp = XP denote the permuted vector of an iter- 
ation vector z, then the following transformation can 
be applied to an arbitrary iteration method with iter- 
ation matrix H: 

Note that perm is bijective, which ensures existence 
of P-i and that in the special case of permutation 
matrices Pm1 =-PT holds. In Jacobi iteration HJ = 
&D-l for Q  = Q-D, where Q  is the transition matrix 
and D the matrix with diagonal values of Q. 

+zz+. ;cg+l) = @)pT&(p pT)D-+ 

e xptl) = x$)(pT&p) D;’ 

where D;’ := PTDTIP is again a diagonal ma- 
trix and diagonal values are permuted according to 
perm. The practical implications of employing a TRS- 
permutation are that iteration vectors xc’, ~p+i) 
can be represented by arrays of size 1712SI, where 
perm(x) = i gives the appropriate position i for a 
state M, E IRS, as the probability of unreachable 
states is known to be zero. Furthermore D;’ can be 
represented by an array of size l7RSl in a similar way, 
and the same holds for P,PT. In fact at the end of 
this section we show that it is sufficient to use a single 
integer array of size lir%Sl to represent both P and 
PT. 

In this way no component of the modified itera- 
tion scheme is of size [PSI any more and we cured 
the problem of oversized iteration vectors. The sec- 
ond negative implication of IPSl >> IIRSI, namely 
the useless computations for unreachable states dur- 
ing iteration, can be easily avoided by consecutively 
performing computations only for states in the first 
part of xp’ , where reachable states are located. 

Of course if l7RSl is almost of size IPSl the sug- 
gested approach does not pay off, but in this case the 
algorithm can easily fall back to the standard iteration 
scheme without permutation, thus avoiding overhead 
caused by a permutation. 

Exploration of IRS and generation of P The 
definition of a P presupposes that the 7’RS is known. 
The 774s can be explored effi-ently by employing the 
structured representation of Q. The basic idea is to 
make use of the fact that the tensor operations map 
combinations of component states into the states of 
the PS according to function miz (cf. Def. 3). mix is 
bijective and hence it gives a perfect hash function, i.e. 
no collisions are possible. A simple search procedure 
follows: 

1. push(initia1 state) 

2. while stack not empty 

(a) pop(state) and calculate successors of this 
state from Q 

(b) for every successor s 
i. if s has not been reached before then 

PUS@) 

Data structures for such a procedure can be a stack 
for still-to-search states and a hash table to answer 
the question whether a state has been reached before. 
Obviously it is sufficient to use a bit-vector as a hash 
table and function mix can serve as a hash function. 

Since a state M, is represented on the stack by 
its corresponding integer value x and the size of the 
stack can not exceed /lRSl it is not critical in terms 
of memory requirements. Furthermore access to the 
stack shows a high degree of locality by nature, so 
even a large stack can be handled very well by virtual 
memory. 

The dimension of the hash table is IPSl and thus 
more critical, but since a single entry requires only 1 
bit of memory, reasonably large state spaces can be 
explored. In fact if w  2 & = 0.015625, i.e. if 
at least 1.5 %  of PS is reachable, then the hash ta- 
ble requires less(!) memory than one double-precision 
iteration vector of dimension ‘ll%?S I. 

Surely different data structures can be employed at 
this stage but experimental results show that this kind 
of state space exploration is not critical in terms of 
computation time and memory requirements. It takes 
an amount of time which is less than the time for a 
single iteration step. 

In order to obtain P, the hash table is transformed 
into an integer-vector of length ITRSl which contains 
the indices of all reachable states. A single vector is 
sufficient to represent P and PT, since the entry x at 
vector position i gives perm-l(i) and for perm(x) a 
binary search with logarithmic time complexity yields 
position i if x E IRS or denotes that x # IRS, where 
the latter tells an iteration method that x is not reach- 
able and thus irrelevant. 
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5 A numerical analysis method 
In this section we compose the results of the previ- 

ous section to a new numerical analysis method, which 
computes the steady state distribution of the CTMC 
underlying a SGSPN. SGSPNs are restricted in that 
the tangible reachability sets of their components have 
to be strongly connected. The algorithm is new in that 
it uses a memory efficient representation of the itera- 
tion matrix and(!) a memory efficient representation 
of the iteration vector, which in combination allows to 
analyze SGSPN models with tangible reachability sets 
of several million states. 

Input: SGSPN 
Output: steady state distribution if convergence is ob- 
tained 
1. Calculate minimal P-invariants of the SGSPN and 
derive upper limits for the number of tokens on places 
in P. 
2. Generate TRSi and matrices Qf , Qf for all com- 
ponents i in isolation which includes elimination of 
vanishing markings. Place capacities in the isolated 
components are set according to the upper limits de- 
rived from P-invariants. 
3. Explore the 7$!S of the SGSPN on state transition 
matrix Q  of PS and generate permutation matrix P 
from IRS as described in Sec. 4, last paragraph. 
4. Choose initial distribution on TRS, e.g. uniform 
distribution. 
5. if IlRS] << IPS] perform an iterative method 
employing the permutation matrix P 
In case of Jacobi or JOR generate D;’ from Q for 
all elements of ‘TRS, for power method generate Dp 
respectively. 
Jacobi 

N-l 

x(n+l) = [xF’PT( @  &f)P + 
P 

i=O 

N-l 

c x~‘PT(w(t) @  &“1)P]D,-’ 
tETS i=o 

Jacobi overrelaxation (JOR) 
choose relaxation factor w ~]0,2[ 

N-l 

xp+l) = (1 -w)cp + w[LzpPT( @  Qf)P + 
i=o 

N-l 

c x$+~(w(~) @) Qf)P]D;l 
tET.S i=o 

Power method 
let b := 0.99/maxjIDp(j, j)l and D’ := PT(I-bDp)P 

N-l 
xg+l) = 6[xpPT( @I &f)P + 

i=O 

N-l 

c x$‘P’(w(t) @  &f)P] + xp)D’ 
tcTS i=o 

with normalization of xptl) until convergence is ob- 
served. 
6. otherwise perform an ordinary iterative method 
In case of Jacobi or JOR generate D-’ from Q for all 
elements of PS, for powervmethod generate D respec- 
tively. 
Jacobi 

N-l N-l 

x(n+l) - - 

Jacobi overrelaxation (JOR) 
choose relaxation factor w l ]0,2[ 

N-l 
x(“+l) = (1 -w)&) + W[&) @  Qf 

i=o 
t 

N-l 

c x”+(t) @  &$)]D-’ 
tcTS i=O 

Power met hod 
let 6 := O.SS/maxjID(j,j)l and D’ := PT(I - 6D)P 

xC(n+l) - - 
N-l N-l 

S[x@) @  Of + c x’“‘(w(t) @  a;)] + xp)D’ 
i=o tETS i=O 

with normalization of xptl) until convergence is ob- 
served. 

The algorithm is implemented and tested in a vari- 
ant of QPN-Tool [3]. For step 1 an algorithm to cal- 
culate minimal P-invariants can be found in [la]. The 
generation of TRSi for an isolated component i in step 
2 follows the conventional algorithms for state space 
exploration, elimination of vanishing markings and 
matrix generation, but it additionally obeys place ca- 
pacities imposed by P-invariants of the SGSPN. These 
additional restrictions can have a major influence on 
the size of TRSi as the example in Sec. 1 shows and 
can speed up this step significantly. 

For step 3 the exploration of IRS based on Q is 
briefly described in Sec. 4. The implemented search 
algorithm follows Depth-First-Search and is based on 
hashing as a search data structure for 7YLS and a 
stack for states which require further investigation. 
Hashing profits from mapping function mix, which 
gives a perfect hash function, and uses a bit-vector 
as a hash table for IRS The hash table requires 
less memory than an iteration vector of length IIRSI 
if at least 1.5% of PS is reachable (cf. Sec. 4). The 
exploration of IRS based on Q turns out to be very 
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efficient in terms of memory requirements and calcula- 
tion time, i.e. exploration of PS with about 200 mil- 
lion states and 7TRS with about 4 million states takes 
less than 15 min elapsed time on a spare work station 
with 50 MHz CPU and 48MB primary memory. The 
resulting representation of P and PT is a single vector 
containing integer values and has length 7TRS. The P 
vector contains all states of 7’RS in increasing order, 
hence it is a TRS-permutation (cf. Sec. 4). The fact 
that states in P are ordered allows to employ binary 
search on P in order to get the position i = perm(z) 
for a state x of 77zS in O(log(7ZS)) or to recog- 
nize that x $ 772s. In the context of an iteration 
method in step 5, requests for finding i = perm(z) oc- 
cur with certain regularities such that a sophisticated 
implementation reduces the average search effort sig- 
nificantly. Obviously P provides 1: = perm-l(i) in 
O(1) by accessing P at position i. 

Diagonal values for vector D;’ can be calculated 
as a by-product of IRS exploration or in a simplified 
iteration step which sums up all non-zero row-entries 
in Q  considering all states of IRS. Note that D;’ is a 
vector of length (7%S] an since its entries are already d 
permuted according to P, the multiplication with the 
resulting vector of xc)PTaP does not consider P any 
more. If the power method is applied, Dp instead of 
D;’ has to be generated analogously. 

For step 4 the knowledge of IRS allows to choose 
an arbitrary initial distribution on IRS with respect 
to the applied iteration method, since some iteration 
methods are sensitive to zero initial probabilities for 
states in IRS [16]. An initial distribution should be 
chosen carefully due to its impact on convergence. Se- 
lection of a “good” initial distribution is surely model 
dependent, such that the degree of freedom obtained 
by the knowledge of TRS is valuablehere. 

The structured representation of Q  and the know- 
ledge of diagonal values allows to perform the power 
method as well as Jacobi iteration or Jacobi overre- 
laxation (JOR). 

Furthermore different implementations are possible 
to perform the basic vector-matrix multiplication if 
the matrix is represented by a tensor sum or prod- 
uct. For step 6 we suggest to follow the method used 
in [14, 15, 161, which enumerates the non-zero ma- 
trix entries in a specific order. This method makes 
excellent use of the regular matrix structure imposed 
by the tensor operation and is efficient if PS is not 
much larger than IRS. In this case it is advisable 
to use iteration vectors of size PS and perform an 
ordinary iteration method without permutation. The 
initial distribution chosen in step 4 on IRS is then 
projected on the corresponding subset of PS. 

If IPSl >> ]lRS], which frequently happens due 
to synchronizations, efficiency requires that an algo- 
rithm considers just non-zero matrix entries Q(x, y) 
where 2, y E TRS in step 5. Hence in this case 
the algorithm for the vector matrix multiplications 
in xg’PT(@ Qi)P and ~p’p~(~(t) 8:;’ Qf)P runs 

through all el.ements x in P ( = 77&S) and per- 
forms multiplications only for the corresponding rows 
in &!!i’ 9f and Li’ Qf. Since Q is a state tran- 
sition matrix, for any non-zero &(x, y) holds that 
x E I%$ + y E 772S. In this way the search ef- 
fort to calculate i = perm(x) can be minimized. 

6 Arnalysis of an example SG 
In this section we consider a simple example, which, 

however, is suIficient to demonstrate the benefits of the 
new approach. Fig. 2 shows a SGSPN with compo- 
nents A, B, and C. The initial marking is given in the 
graphical representation. Places without inscription 
are initially empty; k is an integer parameter which 
is modified to obtain state spaces of different sizes. 
Synchronized transitions are tsl, ts2, and tsg. Com- 
ponent l3 contains t>wo immediate transitions til and 
tia whiclh describe an non-deterministic choice for to- 
kens on place bs. All arc weights are assumed to be 1. 
Firing off synchronized transition tsl enables immedi- 
ate transitions til and tiz in B and tig in C. 

c 

-I----_ -- ------.------r ----- - 

6 

Figure 2: Example SGSPN with components A, B, 
and C 

Note that this example cannot be analyzed as it is 
by the a,pproach given in [lo], since it breaks the re- 
striction “firing of synchronized transitions leads to 
tangible states”. Surely the SGSPN can be trans- 
formed into a net which fulfills the restriction, but this 
transformation enlarges the structured description of 
Q, as tsl would be replaced by a set of synchronized 
transitions. Due to Theorem 1 this restriction does 
not apply for our approach, such that the example 
can be directly analyzed. 
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405 1848 1287 1 963242280 / 16974198 1 393 1848 1269 921629016 1 

Table 1: State spaces of example system for different values of k 

The SGSPN contains several P-invariants which are 
not P-invariants of components in isolation. Two P- 
invariants which are useful to derive upper limits for 
the number of tokens on places are 

inv&) := 1 ifpE {as,a6,a7,62,b6,b9,c5,Cs,C7) 
0 otherwise 

invz(p) ‘= 
1 ifpE {a5,a6,a7,b3,b4,b7,bs,bg,cs,cs,c7) 
0 otherwise 

Limits obtained from invl and invz in turn prove to 
be effective place capacities limiting the size of TRSA 
and TRSC of components A and C in isolation. An 
upper limit for places p in the support of a P-invariant 
inv are given by lim(p) = CzEP inv(x)M~(x)/inv(p), 
e.g lim(as) = k/l for invl. In this example the rel- 
ative impact of these limits decreases for increasing 
values of k, since a limit of k relates to a maximum 
token number of k+2 without considering limits in 
components A and C, but this effect is highly model 
dependent. Table 1 shows the sizes of TRSA, TRSB 
and TRSC for increasing values of k together with 
their IPSI once with and once without consideration 
of limits derived from the P-invariants of the SGSPN. 
Note that e.g. consideration of these limits reduces 
PS by about 12.8 million states for k=5, which is only 
about 6.3 % but saves about 1.6 MB memory for the 
hash table. Naturally the IRS remains the same if 
these limits are ignored or taken into consideration. 

Although exploiting P-invariants is useful to reduce 
PS, the results clearly indicate that considering these 
limits alone is not sufficient. It is quite obvious that an 
iteration scheme is not applicable if a single iteration 
vector exceeds the size of available primary memory. 
This happens for an iteration scheme without using 
a TRS-permutation on our test configuration with 48 
MB primary memory for k=4, where one double pre- 
cision iteration vector requires about 274 MB. 

With our new algorithm, which employs a TRS- 
permutation if l7RSl << IPSI, we are able to analyze 
the example SGSPN for k=5 on the same configura- 
tion. For k=6 it is possible to perform the state space 
exploration (cf. Sec. 4) but during the numerical iter- 
ation the algorithm relies massively on virtual mem- 
ory since one iteration vector of size IRS require8 
about 136 MB, which slows down the computation to 
an unacceptable degree. This clearly indicates that 

the bottleneck of the algorithm is the size of I’&5 
for iteration vectors, which on the other hand states 
that the employed data structures in state space ex- 
ploration, in particular the bit-vector as a hash table 
for PS, is perfectly suitable from a practical point of 
view. For the sake of completeness it should be noted 
that the conventional method fails if k 2 4. 

7 Conclusions 
In this paper we describe a numerical analysis tech- 

nique for CTMCs derived from SGSPNs. The tech- 
nique is based on a structured description of the gen- 
erator matrix Q, which describes Q by a sum of tensor 
products. Structured description8 based on tensor op- 
erations for Q matrices have been developed and suc- 
cessfully employed for various modeling formalisms in- 
cluding SGSPNs as well [4, 10, 14, 151. The structured 
description we propose is similar to the one in [lo] but 
less restrictive in that it only requires that synchro- 
nized transitions have to be timed and the tangible 
reachability graphs of isolated components (subnets) 
have to be strongly connected. Our description con- 
sists of N+TS tensor products, one for each compo- 
nent and for each synchronized transition. We decided 
to use a direct representation of diagonal values as 
a vector in the size of the tangible reachability set, 
which allows us to use other iteration methods than 
the power method, e.g. the Jacobi and Jacobi overre- 
laxation methods. 

The main advantage of a structured description of 
Q is that it is very memory efficient+, since only a set 
of relatively small matrices is stored instead of Q. The 
price for this efficient representation is that in case of 
SGSPNs the cross product PS of independent com- 
ponent state spaces is regarded as the relevant state 
space, which is due to synchronization usually a real 
superset of the tangible reachability set 7lzS of a 
SGSPN. In fact, the implicit aim of a synchroniza- 
tion is to restrict the behavior of the synchronized 
systems, e.g. as in mutual exclusion, so frequently 
IPSl >> IIRSI. 

This effect reduces efficiency and applicability of a 
structured approach, if not treated adequately. In this 
paper we propose two means to solve this problem: 

1. Constraints imposed by the SGSPN on its com- 
ponents are suitable to restrict the state spaces 
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of isolated components for the context they are 
embedded in. In particular a SGSPN can impose 
P-invariants, which give effective place capacities 
for the state space generation of components in 
isolation. This reduces the size of PS. 

2. Orthogonal to this, PS can be partitioned into 
the set of reachable states 7YZS and unreachable 
states by an appropriate permutation, such that 
an iterative numerical method can focus on IRS. 

Both ideas are employed in the analysis algorithm, 
such that SGSPNs can be analyzed on a standard work 
station where IRS contains several millions of states 
and PS is larger than ‘TRS by about one order of mag- 
nitude. Additionally the analysis algorithm allows to 
choose an initial distribution, e.g. one derived from 
an approximate technique, a uniform distribution or 
P[initial state]=l.O and 0.0 for all other states. The 
iteration can be performed according to Jacobi over- 
relaxation (JOR), J acobi method or Power method. 

The algorithm has been implemented and tested 
within a modified QPN-Tool [3]. Future work will be 
dedicated to a parallel implementation and an inte- 
gration into hierarchical concepts. 
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