
Numerical Analysis of Superposed GSPNs

Peter Kemper
Informatik IV

Universitgt Dortmund
D-44221 Dortmund, Germany

Abstract
The numerical analysis of various modeling for-

malisms (4, 10, 141 profits from a structured repre-
sentation for the generator matrix Q of the underlying
continuous time Markov chain, where Q is described by
a sum of tensor (kronecker) products of much smaller
matrices. In this paper we describe such a representa-
tion for the class of superposed generalized stochastic
Petri nets (SGSPNS), which is less restrictive than de-
scriptions given before [lo]. Furthermore a new itera-
tive analysis algorithm is proposed which pays special
attention to a memory efficient representation of iter-
ation vectors as well as to a memory efficient, struc-
tured representation of Q. In consequence the new al-
gorithm is able to solve models which have state spaces
with several millions of states and where other exact
numerical methods become impracticable on a common
workstation.

1 Introduction
Generalized stochastic Petri nets (GSPNs) [l] pro-

vide a concise and powerful method for the speci-
fication and analysis of complex, dynamic systems.
Their mapping to a continuous time Markov chain
(CTMC) and b q su se uent analysis for transient and
steady state distributions to derive performance mea-
sures has been known for long, and a rich variety of
software tools exists which employ this (conventional)
numerical analysis, among others [3, 5, 6, 111. Due to
the well known state space explosion problem numeri-
cal analysis is cumbersome for large models where the
underlying CTMC contains more than lo6 states. In
these cases the conventional method, which typically
includes three main steps namely state space genera-
tion, elimination of vanishing markings, and applica-
tion of a numerical iteration scheme, frequently col-
lapses for a given computer configuration due to lack
of primary memory even if sparse matrix structures
are employed for the representation of the stochastic
generator matrix Q of the CTMC.

If the CTMC shows certain regularities which are
usually imposed by the modeling formalism it is de-
rived from, then Q can be described by a set of much
smaller matrices which are combined via tensor oper-
ations [8]. This memory efficient representation of Q
usually increases the size of solvable models by one
order of magnitude. Such structured representations

are known for stochastic automata networks (SANs)
[I4, I5 ,

1
certain hierarchical colored stochastic Petri

nets [4 , and superposed generalized stochastic Petri
nets (SGSPNs) [lo] as an extension of superposed
stochastic automata [9]. The idea in SGSPNs is to
combine a set of originally independent GSPNs into a
single, superposed GSPN by synchronization of timed
transitions. This concept is closely related to the con-
cept of SANs and Markovian process algebras which
also consider synchronized actions.

In SGSPNs the superposition of component GSPNs
can be used for a structured representation of Q under
the following restrictions [lo]: 1. all synchronized tran-
sitions are timed, 2. the tangible reachability graphs
(TRGs) of the isolated components are strongly con-
nected, and 3. firing of a synchronized transition leads
to a tangible state. In this case Q is described by a
sum of tensor products considering matrices derived
from the TRGs of the isolated components. The 3rd
restriction is rather awkward from a modeler’s point of
view. In this paper we give a similar structured repre-
sentation of Q which allows to drop the 3rd restriction,
i.e. in our description of Q the firing of synchronized
transitions may lead to vanishing or tangible states.
This extends the set of SGSPNs for which a concise1
structured description of Q is known, hence improving
efficiency of numerical analysis methods based on it.

The main advantage of a structured representation
is that it is a very memory efficient matrix represen-
tation, which is essential for the applicability of any
numerical analysis. In case of SGSPNs the price paid
for this advantage is that the cross product of state
spaces of isolated components - in the following de-
noted by PS for product space - is considered to be
the tangible reachability set (77&S) of the SGSPN, al-
though often [PSI >>]lRS] due to the restrictions
imposed by synchronization. In the context of struc-
tured descriptions the fact that introducing additional
restrictions might exclude reachability of certain states
in PS has been mentioned before in [7].

The following simple example demonstrates the im-
pact of synchronization on the relation between IRS
and PS. Consider the net in Fig. 1, which consists of
two independent GSPNs A and B, where places ul,as,

‘in terms of the number of terms in the sum of tensor prod-
ucts of a structured description

52
1063-6714195 $4.00 0 1995 IEEE

Proceedings of the Sixth International Workshop on Petri Nets and Performance Models (PNPM '95)
1063-6714/95 $10.00 © 1995 IEEE

and as belong to A and all other places belong to B. If
the transitions in a shaded box are merged into a sin-
gle transition, the resulting GSPN is a SGSPN with 3
synchronized transitions and components A and B. We
assume an initial marking MO = (ai = a2 = O,a3 =
p, bl = b2 = p + m, b3 = 0), where p and m are non-
negative parameters. By combinatorial arguments it
is easily obtained that

IPS(= qp + m) + 2 (“:“)(Q+m))
2 P+2 (> P

= p-asl

since for the given MO in the SGSPN only tokens on
al, ~2, us distribute freely over places al, az, a3 and
places bl , ba, b3 are redundant. Due to the addi-
tional degree of freedom gained from parameter m,
initial markings can be chosen to increase PS arbi-
trarily compared to 772s. Obviously synchronization
of transitions drastically reduces the independence of
components in this example. The example is surely
a worst case example, but it clearly indicates that
a numerical analysis method based on a structured
representation of Q, where Q is a ([PSI x IPS]) ma-
trix, must take care of this problem or otherwise the
method becomes hopelessly inefficient for SGSPNs of
this type.

Figure 1: SGSPN superposed from GSPNs A and B
by merging shaded transitions

This problem is attacked and solved in this paper in
that we give a numerical analysis method which em-
ploys a structured representation of Q, restricts the
size of iteration vectors to the size of IRS and con-
siders only states of IRS in its iteration scheme. For
example, the new analysis algorithm is able to analyze
a SGSPN with [PSI M 201. lo6 and]lRS] M 4. lo6
on a spare station with 48 MB primary memory, as
described in Sec. 6.

The paper is organized as follows. In Sec. 2 we give
some basic definitions and describe the structured rep-
resentation of Q for SGSPNs. The superposition of
GSPNs into a SGSPN can impose certain constraints
on the state spaces of components, which in turn are
useful to reduce the size of ‘PS. These constraints are

considered in Sec. 3. Section 4 focuses on an iteration
scheme which1 is able to distinguish states in 7’ES and
states in PS\7RS by means of an appropriate permu-
tation. The new analysis algorithm is given in Sec. 5,
and its usefulness and applicability is demonstrated
by an example in Sec. 6.

2 Definitions and theoretical basis
The notation for SGSPNs follows mainly [lo], thus

we only briefly introduce some basic notations and
assume that the reader is familiar with GSPNs and
their dynamic behavior.

Definition 31 A GSPN is un eight-tuple

where
P is the set of places,
T is the set of transitions such that T n P = 0,
r : T -+ (0,l) is the priority function,
I,O, H : T -+ Hag(P), are the input, output, and
inhibition functions, respectively, where Bag(P) is the
multiset on P,
W : T --+ iR is a function that assigns a weight to each
transition,
MO : P + PI is the initial marking: a function that
assigns a nonnegative integer value to each place.

Based on this definition the reachability set (RS), the
reachability graph (RG), the tangible reachability set
(TRS) and the tangible reachability graph (TRG) can
be defined as usual.

For GSPNs well-known-techniques apply to derive
a state transition matrix & from the TRG, such that
the stochastic generator-matrix & of the underlying
CTMC is given by & = & - D with diagonal matrix D

D(i, j) := Fk &(i, k) if i = j
otherwise

Superposed GSPNs are GSPNs, where additionally
a partition of the set of places is defined such that
SGSPNs can be seen as a set of GSPNs which are
synchronized by certain transitions.

Definition 2 A SGSPN is a ten-tuple

where
(P, T, ?T, I, O:, H, W, MO) is a GSPN,
II = {PO,. . .) Plv-l} is a partition of P,
TS c {t E TIT(t) = 0) is the set of synchronized tran-
sitions, that are timed by definition.
Moreover II induces on T\TS a partition of transi-
tions. Such an SGSPN contains N components

(P”, T”, ?ri, I”, O”, H”, W ’, M;)

for i E (0, 1, . . . , N - l}, where
Ti := *Pi U Rio and
rrd,Ii,Oi,Hi,Wd,M; are the functions
r, I, 0, H, W, Mb restricted to Pi, resp. T”.

53

Proceedings of the Sixth International Workshop on Petri Nets and Performance Models (PNPM '95)
1063-6714/95 $10.00 © 1995 IEEE

Figure 1 shows two component GSPNs A and B
in isolation. A SGSPN can be obtained by merg-
ing the transitions which are contained in the same
shaded box. In the following we assume a partition
of a SGSPN into N components with an arbitrary but
fixed index and refer to a single component by its in-
dex.

Note that synchronized transitions of a SGSPN
are timed by definition. This ensures that within an
SGSPN components have “borderlines” just built from
timed transitions. Consequently the firing of immedi-
ate transitions in different components is rather inde-
pendent in that the firing of an immediate transition
in component i cannot enable or disable the firing of
an immediate transition in component j within the
SGSPN. This is a nice special case of [2]: immediate
transitions in different components cannot be in the
same equal conflict set (ECS)? i.e. they cannot enable
or disable each other. This simplifies the elimination
of vanishing markings considerably. According to [2]
the state transition matrix Q of the whole (S)GSPN
can be calculated from

N-l

Q W) = c w(t) n Prob[F”(t, Mi) + Mjn]
t:Mi-t+Mj n=O

(2)
w(t) denotes the firing rate of t imed transition t. M,?
is the restriction of tangible marking Mj to com-
ponent n. F”(t, Mi) denotes the successor marking
after firing transition t in marking Mi with restric-
tion to component n. F”(t, Mi) can be the start of
a firing sequence u of immediate transitions which
is local in n and leads to the tangible state Mj, so
Prob[F”(tk, M;) + Mjp] gives the probability to reach
MT over all such sequences 6, which can be empty,
under the condition that t is fired in MS?. Informally
the idea is that the probability of firing sequences of
immediate transitions enabled by firing of a timed
transition t is given by a product of subsequences,
where each subsequence consists of transitions of a
single ECS. Since transitions in different ECS do not
interfere, their firing probabilities only require a nor-
malization which is local to the ECS. A partition into
ECSs is naturally given in SGSPNs by the partition
into components, such that the product in (2) consid-
ers all N components in an arbitrary, but fixed order,
which is equivalent to the introduction of additional
priorities on different ECS in [2]. For example the
net in Fig. 2 has components A, B, and C and fir-
ing of synchronized transition tsl enables immediate
transitions til, tiz, and ti3. Let Mj be a marking
reached from F(tsl, Mi) by firing of til and ti3 in
an arbitrary order, then (2) states that for o(i, j) it
is sufficient to consider probabilities of isolated com-
ponents, i.e. Prob[FA(tsi, Mi) + Mf] = 1, because
FA(tsl, Mi) = MjA, Prob[FE(tsi, Mi) + MjB] =
w(til)/(w(til) $ w(&)) for transition til, and
Prob[FC(tsl, Mi) + Mjc] = w(ti3)/w(ti3) = 1 for

transition ti3.
We will make use of this property in proving that

a representation of Q for the CTMC underlying an
SGSPN is correct, which represents Q by a sum of
tensor products and allows that firing of a synchro
nized transition enables immediate transitions. The
definition of tensor (kronecker) product is based on a
mapping function using mixed radix number represen-
tation [8].

Definition 3 Mapping function mix
Let TRS’ := {O,l,... , k’ - 1) be some finite sets
with arbitrary but jxed constants k” for all i E
{O,l,...,N - 1) and k = fl:i’ k’. A mapping
mix : x~TRS’ - {O,l, . . . , k - 1) is defined by

N-l

mix(xN- l) . * ,) xl, x0) := c x’gi

i=O

with weights go := 1, gi := k”-lgd-l.

A vector (xN-‘, . . . , z”) E XiTRS” is the mixed radix
number representation of x = mix(xNml,. . . , x0) with
respect to basis (kN-‘, . . . , k”). In the following defi-
nition of tensor product we follow the notation in [S]
but regard only the restricted case of square matri-
ces to keep a concise notation, because only square
matrices occur in the context of SGSPNs.

Definition 4 Tensor product and sum for square ma-
trices
Let A’,.. , AN-l be square matrices of dimension
(k’ x k’) then their tensor product A = @:=;I A’
is dejned by a(x,y) := n:i’ a’(~?, yi) where z =
miz(xNsl, . .,x0) and y = mix(f-‘, . . . , y’).

The tensor sum B = @:;‘A” is then given by
@;‘A’ := CEi’ Ip @ A” @I,.; where I,;, I,.; are
matrices of dimension 1” x l’,resp. ri x ri where ri =
r-g’, kj , I” = nj”,;l kj and I(a,b) = 1 iff a = b and
0 otherwise.

A tensor product formalizes the operation of multiply-
ing every matrix element of one matrix with all matrix
elements of the other matrices and these products of
matrix elements are arranged in lexicographical order
in the resulting matrix, for more details see e.g. [16].

The components of a SGSPN are GSPNs them-
selves such that they can be analyzed in isolation to
obtain corresponding tangible reachability sets TRS
as for any GSPN. In the following we will regard
only SGSPNs such that the TRS of their compo
nents are strongly connected. This restriction is men-
tioned also in [lo]. Due to our assumption that all
states in TRS’ are consecutively numbered from 0
to kd, mix induces such a numbering on x~~~TRS’
as well. Since such a numbering allows to iden-
tify states, we will not distinguish between a state

54

Proceedings of the Sixth International Workshop on Petri Nets and Performance Models (PNPM '95)
1063-6714/95 $10.00 © 1995 IEEE

M, = (My, *. . , @?) and its number, resp. compo-
nent numbers 2 = miz(zN-l, . . . , zO) in order to pre-
serve readability. Furthermore let PS = x~~~TTRS
denote the product space obtained from the TRS’ of
isolated components of an SGSPN. The set of reach-
able tangible states of an SGSPN is denoted by 7XS.

Proposition 1 All x E 7’JZS are also element of PS.

Proof Since in the cross product of TRS” obtained
from isolated components, enabling conditions of syn-
chronized transitions are less restrictive than in the
SGSPN and all TRS’ are strongly connected, any
x E TRS is reachable in PS as well. 0

Together with TRS’, state transitions matrices Q”
can be derived for every isolated component i such
that a &” does not contain vanishing markings any
more, i.e. the elimination of vani&ing markings has
been applied beforehand. Matrix Q.can be seen as a
sum of matrices Q’ = CteTi w(t)Qi, such that non-
zero entries are separated according to the timed tran-
sition t which contributes to that entry. The. elim-
ination of vanishing markings implies that &;(x, y)
gives the conditional probability to reach marking
iVi if transition t is fired in Ml, or more formally
Prob[F”(t, Mi) ---) M$ like in (2).

The terms of the sum which correspond to unsyn-
chronized (local) timed transitions shall be denoted by
Of := CteTi\Ts W(t)&:-

Theorem 1 The state-transition matrix Q for PS =
xy=<lTRS’ of an SGSPN with strongly connected
TRS’ equals

N-l N-l

i=O tcTS i=O

where 9: = I’ if t @ T’.

The main ideas underlying the following proof are that
firings of local transitions are well described .by a ten-
sor sum of local state transition matrices Q; - this is
well known, for a detailed discussion see e.g. [16] -
and that firing of a synchronized transition followed
by a firing sequence of immediate transitions in vari-
ous components profits from the fact that immediate
transitions in different components belong to different
ECSs, i.e. they cannot disable each other. The latter
observation allows to exploit (2) for the calculation of
a matrix entry, which happens to coincide with the
matrix entries that result from CtETS w(t) @Li” 0:
as shown below.
Proof. Regard two markings M,, MY E PS, with 2 =
miz(xN-l, . . . , z”) and y = miz(~-_‘, . . . , y’).
Since the value on matrix position &(x, y) can be a
sum of values caused by the possible firing of several
timed transitions performing the same transformation

of marking FM, into marking MY, let Q = CteTS Qt +
Cr&’ Qr= b’e a representation of Q, such that Qt is
a (PS X PS) matrix containing all non-zero entries
caused by firing a synchronized transition t and &r=
contains all non-zero entries caused by firing a timed
transition of Te\TS of a component e.
The proposed matrix representation can be trans-
formed according to Def. 4
g-c;’ Qf + &y w(t) tg&’ Qf =
czil 4; @of @ ITi + CtETS w(t) 8:;’ of.

In order to prove the theorem we show that
1. for any component e : Qle = Ip @$a;! QD I,.=
By definition the enabling condition and the firing rate
of any local timed transition in e is independent of
the marking in other components. Furthermore all
synchronized transitions are timed, hence immediate
transitions enabled by the firing of a local timed tran-
sition in e must be local in e as well, and no im-
mediate transitions in other components can be en-
abled. In consequence the value of any non-zero entry
QP(x, Y) = @(xe, Y”).

4
S ince only local transitions of

e are involve the marking in other components re-
mains obviously unchanged, such that in summary we
have

(&f(xe, ye)
&14x, Y> = <I o

if Mj = Mi for all i # e
otherwise

Since mat&es I are IL for all I(ij) where i=j
and 0 otherwise, and a product 4 non-zero
iff all of its factors are non-zero, Ql=(x, y) =
[flz.kl Ii(xi, y’)] &r(xe, ye) nri,’ Ii(xi, y”) so due to
Def. 4 follows Qr= = II= @ 0; @ Ire

It remains to show that
2. for any t E TS : Qt = w(t) @Es’ of
A synchronized transition t is ena ii led in state M, E
‘PS iff t is enabled in all components e with t E T”.
(Note that the initial marking with k=l in Fig. 2 can
serve as an example for M, and t = tsl to illustrate
the argumentation.) Firing of t can only change the
marking of places in components e with t E T”, and
the marking of places in other components remains
unchanged. Since M, is a tangible state, no imme-
diate transition can be enabled at M,, and all im-
mediate transitions enabled after firing t can again
only be transitions in components e with t E Te.
Since the borderline between components is formed
by timed transitions, the immediate transitions en-
abled by firing t which belong to different compo-
nents belong to different EC%. So according to (2):
t&(x, y) = w(t):flzi’ P[F”(t, M,) + Mi]. By defi-
nition of @%$’ Q:, each non-zero element Qi (zi , yi)
gives I’[F”(f, Mj!) -+ M;] = P[F’(t, M,) -+ M;.]
iff t is enabled in Mz and t E T’ according to the
independenc,y of local immediate transitions. Once
again the product w(t) n &;(z’, y’) ensures that the
resulting value is non-zero iff all factors are non-zero,

55

Proceedings of the Sixth International Workshop on Petri Nets and Performance Models (PNPM '95)
1063-6714/95 $10.00 © 1995 IEEE

i.e. all components i with t E r’ fulfill &i(z’, y’) =
P[Fi(t, Mj) + M$ # 0 and all components i with
t $ T” Qf((xi, yi) = 1 which in turn is only the case
if Mi = Mi since for t 4’ p : Qf = I” is 1 for all
I”(x”, y’) where xi = y’ and 0 otherwise. q

Starting from a structured description of state tran-
sition matrix Q, it is straightforward to derive the di-
agonal matrix D such that the stochastic generator
matrix is given by Q = Q-D. In the following we will
not attempt to obtain a structured description of D
and rather use a standard representation, i.e. a vector
enumerating the diagonal values of D. So far we have
given a reprefentation of Q based on a structured de-
scription of Q which can directly be employed within
numerical analysis methods, e.g. a Jacobi iteration
can be performed by x(“‘+‘) = x(“)QD-l. The main
idea is that the vector-matrix multiplication z(“)&
can be performed by multiplying appropriate projec-
tions of xcn) with matrix elements of Qf, resp. Qf, cf.
[16, 171. In the following we come back to the problem
stated in Sec. 1, namely that often]PS] >> ITRSl,
and describe how to reduce [PSI and how to avoid
overhead imposed by]PS] >> ITRSI.

3 Upper lim its derived from SGSPN
In this section we consider the relationship be-

tween P-invariants of an SGSPN and P-invariants of
its components. Since the components of an SGSPN
are superposed by synchronization of transitions, su-
perposition of GSPNs into a SGSPN preserves the
P-invariants of involved GSPNs. More formally let
xi E l+lci be a P-invariant of an isolated component a,
then the corresponding vector z E Rlr in the SGSPN
is given by

Lemma 1 Let x be the corresponding vector in a
SGSPN for a P-invariant xi of a component i, then
XC = 0, i.e. x is a P-invariant of the SGSPN.

Proof. Since the incidence functions concerning places
of i remain unchanged by synchronization of transi-
tions and the corresponding vector x is padded with
zeros for all places not contained in i, XC = 0 is satis-
fied, hence x is a P-invariant [13]. 0

On the other hand not all semi-positive P-invariants
of the SGSPN can be derived from the semi-positive
P-invariants of its components as the example net in
Fig. 1 shows. A generating set of P-invariants in A is
given by a unit vector; the same holds for B. Their
corresponding vectors x and y are given in the ta-
ble below. Nevertheless the SGSPN has additional
semi-positive P-invariants zi , zs, zs which cannot be
obtained as a linear combination of x and y. The ad-
ditional P-invariants can be seen as global constraints
imposed by superposition.

al a2 a3 bl b2 b3
xl1 1 1 0 0 0
Y 0 0 0 1 1 1

Zl 1 0 0 1 0 0
z-2 0 1 0 0 1 0
z3 0 0 1 0 0 1

It is well-known that semi-positive P-invariants are
useful to calculate upper limits for the number of to-
kens on places which belong to their support. Con-
sequently we suggest to obtain upper limits in this
manner and to obey them during the generation of
state spaces for the isolated components. These up-
per limits can be very effective, e.g. for the net in
Fig.1 places (b 1, 2, 3 are limited to (p+nz,p+m,p) b b)
for the initial marking MOB = (p + m,p + m, 0) and
due to P-invariants zi , zs, zs. Again by combinatorial
arguments we have:

[PSI = (3+,-1)il(“‘i-‘>
= (P;y2,(p;2)=,7-Rs,

This way]PS] is significantly reduced compared to (1)
but it is still much larger than ‘TRS.

4 A Permutation to distinguish 7%
from PS\77&5

The P-invariant based approach of the previous sec-
tion attempts to reduce the number of unreachable
states in the representation of Q. In this section we ac-
cept that the representation of Q contains such states
for the price of a memory efficient matrix represen-
tation. Instead we attack the negative consequences
of unreachable states for numerical analysis, which
are twofold. Firstly, they increase the size of itera-
tion vectors, which is crucial for the applicability of
the method. Secondly, they cause useless multiplica-
tions of matrix and vector elements, since unreachable
states permanently stay at zero probability. Whenever
vector-entries corresponding to unreachable states are
considered in the iteration it is a waste of time.

The main problem in recognizing unreachable
states during iteration is that their vector positions
are mixed with positions of reachable states and the
set of reachable states is not known. Since the latter
can be solved by performing a state space exploration
based on the tensor representation of & as described
in the following, let us assume for now the set IRS
is known. Separating 7lU from unreachable states
can be formally described by defining an appropriate
permutation, which reorders states according to their
reachability.

Definition 5 For a SGSPN with IPSl = k, a bijective
function perm : (0, 1, . . . , k - 1) --+ (0, 1, . . ., k - 1)
is a TRS-permutation if

56

Proceedings of the Sixth International Workshop on Petri Nets and Performance Models (PNPM '95)
1063-6714/95 $10.00 © 1995 IEEE

. VM, E PS : perm(x) < lir7ZSI e M, E
7RS

e VM,, My E 77U : perm(z) < perm(y) a
X<Y

Note that several TRS-permutations exist for the PS
of a given SGSPN, since the definition requires only
reachable states to be mapped in an order preserving
way into the set (0, 1, . . . , l’7’RSl- l}, the mapping of
unreachable states into the set { IIRSI, . . . , k - 1) is
bijective but not necessarily order preserving. Such a
TRS-permutation can be described by a (Ic x /z) matrix
P with

p(i,j) := 1 if j = perm(i)
0 otherwise

Let xp = XP denote the permuted vector of an iter-
ation vector z, then the following transformation can
be applied to an arbitrary iteration method with iter-
ation matrix H:

Note that perm is bijective, which ensures existence
of P-i and that in the special case of permutation
matrices Pm1 =-PT holds. In Jacobi iteration HJ =
&D-l for Q = Q-D, where Q is the transition matrix
and D the matrix with diagonal values of Q.

+zz+. ;cg+l) = @)pT&(p pT)D-+

e xptl) = x$)(pT&p) D;’

where D;’ := PTDTIP is again a diagonal ma-
trix and diagonal values are permuted according to
perm. The practical implications of employing a TRS-
permutation are that iteration vectors xc’, ~p+i)
can be represented by arrays of size 1712SI, where
perm(x) = i gives the appropriate position i for a
state M, E IRS, as the probability of unreachable
states is known to be zero. Furthermore D;’ can be
represented by an array of size l7RSl in a similar way,
and the same holds for P,PT. In fact at the end of
this section we show that it is sufficient to use a single
integer array of size lir%Sl to represent both P and
PT.

In this way no component of the modified itera-
tion scheme is of size [PSI any more and we cured
the problem of oversized iteration vectors. The sec-
ond negative implication of IPSl >> IIRSI, namely
the useless computations for unreachable states dur-
ing iteration, can be easily avoided by consecutively
performing computations only for states in the first
part of xp’ , where reachable states are located.

Of course if l7RSl is almost of size IPSl the sug-
gested approach does not pay off, but in this case the
algorithm can easily fall back to the standard iteration
scheme without permutation, thus avoiding overhead
caused by a permutation.

Exploration of IRS and generation of P The
definition of a P presupposes that the 7’RS is known.
The 774s can be explored effi-ently by employing the
structured representation of Q. The basic idea is to
make use of the fact that the tensor operations map
combinations of component states into the states of
the PS according to function miz (cf. Def. 3). mix is
bijective and hence it gives a perfect hash function, i.e.
no collisions are possible. A simple search procedure
follows:

1. push(initia1 state)

2. while stack not empty

(a) pop(state) and calculate successors of this
state from Q

(b) for every successor s
i. if s has not been reached before then

PUS@)

Data structures for such a procedure can be a stack
for still-to-search states and a hash table to answer
the question whether a state has been reached before.
Obviously it is sufficient to use a bit-vector as a hash
table and function mix can serve as a hash function.

Since a state M, is represented on the stack by
its corresponding integer value x and the size of the
stack can not exceed /lRSl it is not critical in terms
of memory requirements. Furthermore access to the
stack shows a high degree of locality by nature, so
even a large stack can be handled very well by virtual
memory.

The dimension of the hash table is IPSl and thus
more critical, but since a single entry requires only 1
bit of memory, reasonably large state spaces can be
explored. In fact if w 2 & = 0.015625, i.e. if
at least 1.5 % of PS is reachable, then the hash ta-
ble requires less(!) memory than one double-precision
iteration vector of dimension ‘ll%?S I.

Surely different data structures can be employed at
this stage but experimental results show that this kind
of state space exploration is not critical in terms of
computation time and memory requirements. It takes
an amount of time which is less than the time for a
single iteration step.

In order to obtain P, the hash table is transformed
into an integer-vector of length ITRSl which contains
the indices of all reachable states. A single vector is
sufficient to represent P and PT, since the entry x at
vector position i gives perm-l(i) and for perm(x) a
binary search with logarithmic time complexity yields
position i if x E IRS or denotes that x # IRS, where
the latter tells an iteration method that x is not reach-
able and thus irrelevant.

57

Proceedings of the Sixth International Workshop on Petri Nets and Performance Models (PNPM '95)
1063-6714/95 $10.00 © 1995 IEEE

5 A numerical analysis method
In this section we compose the results of the previ-

ous section to a new numerical analysis method, which
computes the steady state distribution of the CTMC
underlying a SGSPN. SGSPNs are restricted in that
the tangible reachability sets of their components have
to be strongly connected. The algorithm is new in that
it uses a memory efficient representation of the itera-
tion matrix and(!) a memory efficient representation
of the iteration vector, which in combination allows to
analyze SGSPN models with tangible reachability sets
of several million states.

Input: SGSPN
Output: steady state distribution if convergence is ob-
tained
1. Calculate minimal P-invariants of the SGSPN and
derive upper limits for the number of tokens on places
in P.
2. Generate TRSi and matrices Qf , Qf for all com-
ponents i in isolation which includes elimination of
vanishing markings. Place capacities in the isolated
components are set according to the upper limits de-
rived from P-invariants.
3. Explore the 7$!S of the SGSPN on state transition
matrix Q of PS and generate permutation matrix P
from IRS as described in Sec. 4, last paragraph.
4. Choose initial distribution on TRS, e.g. uniform
distribution.
5. if IlRS] << IPS] perform an iterative method
employing the permutation matrix P
In case of Jacobi or JOR generate D;’ from Q for
all elements of ‘TRS, for power method generate Dp
respectively.
Jacobi

N-l

x(n+l) = [xF’PT(@ &f)P +
P

i=O

N-l

c x~‘PT(w(t) @ &“1)P]D,-’
tETS i=o

Jacobi overrelaxation (JOR)
choose relaxation factor w ~]0,2[

N-l

xp+l) = (1 -w)cp + w[LzpPT(@ Qf)P +
i=o

N-l

c x$+~(w(~) @) Qf)P]D;l
tET.S i=o

Power method
let b := 0.99/maxjIDp(j, j)l and D’ := PT(I-bDp)P

N-l
xg+l) = 6[xpPT(@I &f)P +

i=O

N-l

c x$‘P’(w(t) @ &f)P] + xp)D’
tcTS i=o

with normalization of xptl) until convergence is ob-
served.
6. otherwise perform an ordinary iterative method
In case of Jacobi or JOR generate D-’ from Q for all
elements of PS, for powervmethod generate D respec-
tively.
Jacobi

N-l N-l

x(n+l) - -

Jacobi overrelaxation (JOR)
choose relaxation factor w l]0,2[

N-l
x(“+l) = (1 -w)&) + W[&) @ Qf

i=o
t

N-l

c x”+(t) @ &$)]D-’
tcTS i=O

Power met hod
let 6 := O.SS/maxjID(j,j)l and D’ := PT(I - 6D)P

xC(n+l) - -
N-l N-l

S[x@) @ Of + c x’“‘(w(t) @ a;)] + xp)D’
i=o tETS i=O

with normalization of xptl) until convergence is ob-
served.

The algorithm is implemented and tested in a vari-
ant of QPN-Tool [3]. For step 1 an algorithm to cal-
culate minimal P-invariants can be found in [la]. The
generation of TRSi for an isolated component i in step
2 follows the conventional algorithms for state space
exploration, elimination of vanishing markings and
matrix generation, but it additionally obeys place ca-
pacities imposed by P-invariants of the SGSPN. These
additional restrictions can have a major influence on
the size of TRSi as the example in Sec. 1 shows and
can speed up this step significantly.

For step 3 the exploration of IRS based on Q is
briefly described in Sec. 4. The implemented search
algorithm follows Depth-First-Search and is based on
hashing as a search data structure for 7YLS and a
stack for states which require further investigation.
Hashing profits from mapping function mix, which
gives a perfect hash function, and uses a bit-vector
as a hash table for IRS The hash table requires
less memory than an iteration vector of length IIRSI
if at least 1.5% of PS is reachable (cf. Sec. 4). The
exploration of IRS based on Q turns out to be very

58

Proceedings of the Sixth International Workshop on Petri Nets and Performance Models (PNPM '95)
1063-6714/95 $10.00 © 1995 IEEE

efficient in terms of memory requirements and calcula-
tion time, i.e. exploration of PS with about 200 mil-
lion states and 7TRS with about 4 million states takes
less than 15 min elapsed time on a spare work station
with 50 MHz CPU and 48MB primary memory. The
resulting representation of P and PT is a single vector
containing integer values and has length 7TRS. The P
vector contains all states of 7’RS in increasing order,
hence it is a TRS-permutation (cf. Sec. 4). The fact
that states in P are ordered allows to employ binary
search on P in order to get the position i = perm(z)
for a state x of 77zS in O(log(7ZS)) or to recog-
nize that x $ 772s. In the context of an iteration
method in step 5, requests for finding i = perm(z) oc-
cur with certain regularities such that a sophisticated
implementation reduces the average search effort sig-
nificantly. Obviously P provides 1: = perm-l(i) in
O(1) by accessing P at position i.

Diagonal values for vector D;’ can be calculated
as a by-product of IRS exploration or in a simplified
iteration step which sums up all non-zero row-entries
in Q considering all states of IRS. Note that D;’ is a
vector of length (7%S] an since its entries are already d
permuted according to P, the multiplication with the
resulting vector of xc)PTaP does not consider P any
more. If the power method is applied, Dp instead of
D;’ has to be generated analogously.

For step 4 the knowledge of IRS allows to choose
an arbitrary initial distribution on IRS with respect
to the applied iteration method, since some iteration
methods are sensitive to zero initial probabilities for
states in IRS [16]. An initial distribution should be
chosen carefully due to its impact on convergence. Se-
lection of a “good” initial distribution is surely model
dependent, such that the degree of freedom obtained
by the knowledge of TRS is valuablehere.

The structured representation of Q and the know-
ledge of diagonal values allows to perform the power
method as well as Jacobi iteration or Jacobi overre-
laxation (JOR).

Furthermore different implementations are possible
to perform the basic vector-matrix multiplication if
the matrix is represented by a tensor sum or prod-
uct. For step 6 we suggest to follow the method used
in [14, 15, 161, which enumerates the non-zero ma-
trix entries in a specific order. This method makes
excellent use of the regular matrix structure imposed
by the tensor operation and is efficient if PS is not
much larger than IRS. In this case it is advisable
to use iteration vectors of size PS and perform an
ordinary iteration method without permutation. The
initial distribution chosen in step 4 on IRS is then
projected on the corresponding subset of PS.

If IPSl >>]lRS], which frequently happens due
to synchronizations, efficiency requires that an algo-
rithm considers just non-zero matrix entries Q(x, y)
where 2, y E TRS in step 5. Hence in this case
the algorithm for the vector matrix multiplications
in xg’PT(@ Qi)P and ~p’p~(~(t) 8:;’ Qf)P runs

through all el.ements x in P (= 77&S) and per-
forms multiplications only for the corresponding rows
in &!!i’ 9f and Li’ Qf. Since Q is a state tran-
sition matrix, for any non-zero &(x, y) holds that
x E I%$ + y E 772S. In this way the search ef-
fort to calculate i = perm(x) can be minimized.

6 Arnalysis of an example SG
In this section we consider a simple example, which,

however, is suIficient to demonstrate the benefits of the
new approach. Fig. 2 shows a SGSPN with compo-
nents A, B, and C. The initial marking is given in the
graphical representation. Places without inscription
are initially empty; k is an integer parameter which
is modified to obtain state spaces of different sizes.
Synchronized transitions are tsl, ts2, and tsg. Com-
ponent l3 contains t>wo immediate transitions til and
tia whiclh describe an non-deterministic choice for to-
kens on place bs. All arc weights are assumed to be 1.
Firing off synchronized transition tsl enables immedi-
ate transitions til and tiz in B and tig in C.

c

-I----_ -- ------.------r ----- -

6

Figure 2: Example SGSPN with components A, B,
and C

Note that this example cannot be analyzed as it is
by the a,pproach given in [lo], since it breaks the re-
striction “firing of synchronized transitions leads to
tangible states”. Surely the SGSPN can be trans-
formed into a net which fulfills the restriction, but this
transformation enlarges the structured description of
Q, as tsl would be replaced by a set of synchronized
transitions. Due to Theorem 1 this restriction does
not apply for our approach, such that the example
can be directly analyzed.

59

Proceedings of the Sixth International Workshop on Petri Nets and Performance Models (PNPM '95)
1063-6714/95 $10.00 © 1995 IEEE

405 1848 1287 1 963242280 / 16974198 1 393 1848 1269 921629016 1

Table 1: State spaces of example system for different values of k

The SGSPN contains several P-invariants which are
not P-invariants of components in isolation. Two P-
invariants which are useful to derive upper limits for
the number of tokens on places are

inv&) := 1 ifpE {as,a6,a7,62,b6,b9,c5,Cs,C7)
0 otherwise

invz(p) ‘=
1 ifpE {a5,a6,a7,b3,b4,b7,bs,bg,cs,cs,c7)
0 otherwise

Limits obtained from invl and invz in turn prove to
be effective place capacities limiting the size of TRSA
and TRSC of components A and C in isolation. An
upper limit for places p in the support of a P-invariant
inv are given by lim(p) = CzEP inv(x)M~(x)/inv(p),
e.g lim(as) = k/l for invl. In this example the rel-
ative impact of these limits decreases for increasing
values of k, since a limit of k relates to a maximum
token number of k+2 without considering limits in
components A and C, but this effect is highly model
dependent. Table 1 shows the sizes of TRSA, TRSB
and TRSC for increasing values of k together with
their IPSI once with and once without consideration
of limits derived from the P-invariants of the SGSPN.
Note that e.g. consideration of these limits reduces
PS by about 12.8 million states for k=5, which is only
about 6.3 % but saves about 1.6 MB memory for the
hash table. Naturally the IRS remains the same if
these limits are ignored or taken into consideration.

Although exploiting P-invariants is useful to reduce
PS, the results clearly indicate that considering these
limits alone is not sufficient. It is quite obvious that an
iteration scheme is not applicable if a single iteration
vector exceeds the size of available primary memory.
This happens for an iteration scheme without using
a TRS-permutation on our test configuration with 48
MB primary memory for k=4, where one double pre-
cision iteration vector requires about 274 MB.

With our new algorithm, which employs a TRS-
permutation if l7RSl << IPSI, we are able to analyze
the example SGSPN for k=5 on the same configura-
tion. For k=6 it is possible to perform the state space
exploration (cf. Sec. 4) but during the numerical iter-
ation the algorithm relies massively on virtual mem-
ory since one iteration vector of size IRS require8
about 136 MB, which slows down the computation to
an unacceptable degree. This clearly indicates that

the bottleneck of the algorithm is the size of I’&5
for iteration vectors, which on the other hand states
that the employed data structures in state space ex-
ploration, in particular the bit-vector as a hash table
for PS, is perfectly suitable from a practical point of
view. For the sake of completeness it should be noted
that the conventional method fails if k 2 4.

7 Conclusions
In this paper we describe a numerical analysis tech-

nique for CTMCs derived from SGSPNs. The tech-
nique is based on a structured description of the gen-
erator matrix Q, which describes Q by a sum of tensor
products. Structured description8 based on tensor op-
erations for Q matrices have been developed and suc-
cessfully employed for various modeling formalisms in-
cluding SGSPNs as well [4, 10, 14, 151. The structured
description we propose is similar to the one in [lo] but
less restrictive in that it only requires that synchro-
nized transitions have to be timed and the tangible
reachability graphs of isolated components (subnets)
have to be strongly connected. Our description con-
sists of N+TS tensor products, one for each compo-
nent and for each synchronized transition. We decided
to use a direct representation of diagonal values as
a vector in the size of the tangible reachability set,
which allows us to use other iteration methods than
the power method, e.g. the Jacobi and Jacobi overre-
laxation methods.

The main advantage of a structured description of
Q is that it is very memory efficient+, since only a set
of relatively small matrices is stored instead of Q. The
price for this efficient representation is that in case of
SGSPNs the cross product PS of independent com-
ponent state spaces is regarded as the relevant state
space, which is due to synchronization usually a real
superset of the tangible reachability set 7lzS of a
SGSPN. In fact, the implicit aim of a synchroniza-
tion is to restrict the behavior of the synchronized
systems, e.g. as in mutual exclusion, so frequently
IPSl >> IIRSI.

This effect reduces efficiency and applicability of a
structured approach, if not treated adequately. In this
paper we propose two means to solve this problem:

1. Constraints imposed by the SGSPN on its com-
ponents are suitable to restrict the state spaces

60

Proceedings of the Sixth International Workshop on Petri Nets and Performance Models (PNPM '95)
1063-6714/95 $10.00 © 1995 IEEE

of isolated components for the context they are
embedded in. In particular a SGSPN can impose
P-invariants, which give effective place capacities
for the state space generation of components in
isolation. This reduces the size of PS.

2. Orthogonal to this, PS can be partitioned into
the set of reachable states 7YZS and unreachable
states by an appropriate permutation, such that
an iterative numerical method can focus on IRS.

Both ideas are employed in the analysis algorithm,
such that SGSPNs can be analyzed on a standard work
station where IRS contains several millions of states
and PS is larger than ‘TRS by about one order of mag-
nitude. Additionally the analysis algorithm allows to
choose an initial distribution, e.g. one derived from
an approximate technique, a uniform distribution or
P[initial state]=l.O and 0.0 for all other states. The
iteration can be performed according to Jacobi over-
relaxation (JOR), J acobi method or Power method.

The algorithm has been implemented and tested
within a modified QPN-Tool [3]. Future work will be
dedicated to a parallel implementation and an inte-
gration into hierarchical concepts.

References
P I

P I

[31

141

[51

P I

M. Ajmone Marsan, G. Balbo, and G. Conte. A
class of generalized stochastic Petri nets for the
performance analysis of multiprocessor systems.
ACM Transactions on Computer Systems, 2(l),
May 1984.

G. Balbo, G. Chiola, G. Franceschinis, and
G. Molinar-Roet. On the efficient construction
of the tangible reachability graph of generalized
stochastic Petri nets. In Int. Workshop on Petri
Nets and Performance Models, pages 136-145.
IEEE Computer Society, 1987.

F. Bause and P. Kemper. QPN-Tool for qualita-
tive and quantitative analysis of queueing Petri
nets. In G. Haring and K. Kotsis, editors, Com-
puter Performance Evaluation, Modelling Tech-
niques and Tools, Proc. 7th int. Conf., Vienna,
Austria, LNCS 794, pages 321-334. Springer,
1994.

P. Buchholz. A hierarchical view of GCSPNs and
its impact on qualitative and quantitative analy-
sis. Journal of Parallel and Distributed Comput-
ing, (15):207-224, 1992.

G. Chiola. GreatSPN 1.5 software architecture.
In G. Balbo and G. Serazzi, editors, Computer
Performance Evaluation, pages 121-136. North-
Holland, 1992.

G. Ciardo, J. Muppala, and K. Trivedi. SPNP:
Stochastic Petri net package. In Proc. of the 3rd
Int. Workshop on Petri Nets and Performance
Models, pages 142-151. IEEE Computer Society,
1989.

PI

PI

PI

[101

Pll

W I

P I

P41

1151

P-31

[I71

G. Ciardo and K.S. Trivedi. A decomposition
approach for stochastic Petri net models. In
Proc. 4th Int. Workshop on Petri Nets and Per-
formance Models, 1991.

M. Davis. Kronecker products and shuffle al-
gebra. IEEE Transactions on Computers, C-
30(2):116-125, February 1981.

S. Donatelli. Superposed stochastic automata: a
class of stochastic Petri nets with parallel solu-
tion and distributed state space. Performance
Evaluation, 18:21-26, 1993.

S. Donatelli. Superposed generalized stochas-
tic Petri nets: definition and efficient solution.
In Application and Theory of Petri nets 1994,
Berlin, 1994. Springer.

C. Lindemann. DSPNexpress: a software pack-
age for the efficient solution deterministic and
stochastic Petri nets. Performance Evaluation,
(22), 1995.

J. Martinez and M. Silva. A simple and fast al-
gorithm to obtain all invariants of a generalized
Petri net. In C. Girault and W. Reisig, editors,
Application and Theory of Petri Nets, Informatik
Fachberichte 52, 1982.

T. Murata. Petri nets: properties, analysis and
application. Proc. of the IEEE, (77):541-580,
1989.

B. Plateau and K. Atif. Stochastic automata
network for modelling parallel systems. IEEE
Trans. on Software Engineering, 17(10):1093-
1108, 1991.

B. Plateau and J.M. Fourneau. A methodology
for solving Markov models of parallel systems.
Journal of Parallel and Distributed Computing,
12, 1991.

W.J. Stewart. Introduction to the numerical so-
lution of Markov chains. Princeton University
Press, 1994.

W.J. Stewart, K. Atif, and B. Plateau. The nu-
merical solution of stochastic automata networks.
to appear in European Journ. of Oper. Res.

61

Proceedings of the Sixth International Workshop on Petri Nets and Performance Models (PNPM '95)
1063-6714/95 $10.00 © 1995 IEEE

