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Abstract 
The paper considers transient analysis using ran- 

domization for superposed generalized stochastic Petri 
nets (GSPNs). Since state space explosion implies that 
space is the bottleneck for numerical analysis, super-’ 
posed GSPNs profit f rom the structured representation 
known for its associated Markov chain. This moves 
the bottleneck for analysis from space for generator 
matrices to space for iteration vectors. Hence a vari- 
ation of randomization is presented which allows to 
reduce space requirements for iteration vectors. An 
additional and welcome side eflect is that during an 
initial phase, this algorithm avoids useless multiplica- 
tions involving states with zero probability. Further- 
more it accommodates to adaptive randomization in a 
natural way. 

1 Introduction 
Generalized stochastic Petri nets (GSPNs) are a 

modeling formalism for concurrent systems, whose 
mapping to its associated continuous time Markov 
chain (CTMC) is known for long [l]. If performance 
analysis aims at the transient behavior of a given 
GSPN, an ordinary differential equation (ODE) needs 
to be solved. Apart from ODE solvers, randomiza- 
tion is an established alternative [9, 10, 15, 18, 191. 
Different variations exist to care for known limits and 
weaknesses, e.g. concerning stiff hlarkov chains [7] and 
adaptive randomization [5, 211 to reduce the number 
of iteration steps. However, for many models random- 
ization is considered rather robust and efficient [18]. 
Randomization goes back to the work of Jensen [ll], 
it is also called Jensen’s method or uniformization. 

As any state based numerical method for CTMCs, 
randomization suffers from the state space explosion 
problem which is frequently observed when the gener- 
ator matrix & of the associated CTMC is derived from 
a GSPN. If GSPNs are composed via fused transitions, 
the resulting GSPN is a so-called superposed GSPN 
(SGSPN) and th e associated CTMC has a structured 
representation closely resembling the compositional 
structure at net level. SGSPNs and their structured 
representation originate from the work of Donatelli 
[S], who transferred results of Plateau and coworkers 
[16, 171 to stochastic Petri nets. A structured repre- 
sentation reliefs the impact of the state space explosion 
for numerical analysis as far as the space for matrix 
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Q is concerned. However, it moves the bottleneck in 
terms of space from Q to {the iteration vectors. 

In this paper, we describe how randomization is 
combined with the structured representation known 
for SGSPNs [12]. Clearly, basic concepts directly carry 
over, however memory requirements are higher for ran- 
domization than for steady state analysis due to an ad- 
ditional vector. We present a new algorithm for a ma- 
trix vector multiplication, which focuses at a reduction 
of space requirements for iteration vectors. The algo- 
rithm is not restricted to transient analysis of SGSPNs 
by nature, but for this context it focuses on some cru- 
cial points: due to the structured representation of 
Q, iteration vectors dominate the space complexity; 
furthermore a degenerated initial distribution causes 
many states to retain a zero probability for a certain 
amount of iteration steps. The algorithm considers 
only states which are reachable within n steps for the 
computation of the n-th iteration vector. Therefore 
the algorithm is time-efficient in an initial phase of 
randomization. Neverthe.less, its main focus point is 
to reduce space requireinents by an alternative vec- 
tor representation employing a stack. Grassmann [lo] 
distinguishes between static and dynamic methods for 
randomization. A static method is based on a static 
representation of the generator matrix, which is com- 
puted before the iterative solution starts. In the dy- 
namic method, the required parts of the generator ma- 
trix are generated on the By in each iteration step and 
only for those states, which have a nonzero probability. 
The new algorithm compromises between these meth- 
ods, since it uses a static, structured representation 
of the generator matrix, but enumerates dynamically 
those states which can have a nonzero probability in 
the n-th iteration step. 

Furthermore we discuss randomization for un- 
bounded SGSPNs in the context of structured rep- 
resentations. This is po:ssible in principle, since the 
number of necessary iteration steps for randomization 
can be precalculated, which in turn limits the set of 
reachable states and results in a finite structured rep- 
resentation. 

The paper is organized as follows: Section 2 defines 
superposed GSPNs and the structured representation 
for the associated Markov chain. Section 3 recalls the 
well known randomization method in the context of 
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SGSPNs. In Section 4 we discuss transient analysis 
of unbounded SGSPNs using a structured representa- 
tion. Section 5 contains a new variation of randomiza- 
tion following the reachability relation. Section 6 ex- 
ercises a non-trivial example to demonstrate the ben- 
efits of the new algorithm and Section 8 summarizes 
the given results. 

2 Superposed GSPNs and structured 
representations 

We briefly introduce some basic notations and recall 
known results. The notation is taken from [12], we 
assume that the reader is familiar with GSPNs and 
their dynamic behavior [l, 31. 

Definition 1 A GSPN is an eight-tupde 

where P is the set of places, T is the set of transitions 
such that T II P = 8, cy : T --+ (0, l} is the prior- 
ity function, I, 0, H : T + Bag(P), are th,e input, 
output, and inhibition functions, respectively, where 
Bug(P) is the multiset on P, W : T + EX+ assigns a 
weight to each transition t with cr(t) = 1 and a rate to 
each transition t with a(t) = 0, MO : P -+ W,J is the 
initial marking: a function that assigns a nonnegative 
integer value to each place. 

TE = {t E T/a(t) = 0) is the set of timed transi- 
tions, TI = T\TE is the set of immediate transitions. 
In a graphical representation, circles represent places, 
boxes (bars) represent timed (immediate) transitions. 
Arcs, leading from places to transitions, describe the 
input function. The set of input places for a transi- 
tion t is ‘t = {p E Pll(t)(p) # 0). Function 0 is rep- 
resented by arcs, leading from transitions to places, 
and t’ = {p E PlO(t)(p) # 0) is the set of output 
places for t E T. Arcs, denoting the inhibition func- 
tion, are circle-headed, and Ot = {p E PIH(t)(p) # 0). 
An inhibitor arc (p, t) is labeled with the multiplic- 
ity of H(t)(p), a value of 1 is usually omitted for 
readability. Arcs for functions I and 0 are labeled 
in the same manner. l p = {t E T/O(t)(p) # O} is 
the set of transitions whose output bag contains place 
p. Analogously, we define p* = {t E TlI(t)(p) # O}, 
p” = {t E T(H(t)(p) # 0). The notion can directly be 
extended to sets. 

The dynamic behavior of a GSPN results from 
the firing of transitions yielding other markings A4 : 
P -+ RI0 than AJc. Immediate transitions have prior- 
ity over timed transitions. An immediate transition 
t is enabled in a marking M (denoted by M[t >) iff 
M > I(t) and Vp E ‘t : M(p) < H(t)(p). A timed 
transition t is enabled in a marking M iff no im- 
mediate tra.nsition is enabled in M, M & I(t), and 
Vp E ‘t : M(p) < H(t)(p). Any transition t E T 
with M[t > can fire, producing a new marking M’ = 
A4 - I(t) + O(t), denoted as M[t> M’. A sequence 
M[tl> Ml[tz> Mz.. Mn-l[t,> M’ is abbreviated as 
M[a> Af’ for a firing sequence u = tlt2.. .t, E T”. 

An enabled timed transition t fires with a delay which 
is exponentially distributed with rate W(t). In case 
of conflicts between immediate transitions in a mark- 
ing M, an enabled immediate transition t^ fires with 
probability W(i)/ CteMl;> W(t). Based on these def- 
initions, the set of reachable markings/states (ES), 
the reachability graph (RG), the tangible reachability 
set (TRS), and the tangible reachability graph (TRG) 
can be defined as usual [3, 61. 

For GSPNs, well-known- techniques apply to derive 
a stat,e transition matrix Q from the TRG, such that 
the generator matrix Q of the underlying CTMC is 
given by Q = _Q - D with diagonal matrix D, where 
D(i, j) = Ck Q(i, Ic) if i = j and 0 otherwise. 

Superposed GSPNs are GSPNs where, additionally, 
a partition of the set of places is defined, such that 
SGSPNs can be seen as a set of GSPNs which are 
synchronized by certain transitions. 

Definition 2 A SGSPN is a ten-tuple 

(P, T, a, I, 0, f-f, W, MO, IL W 

where (P,T,a,I,O,H,W,Mo) is a GSPN, II = 
{PO, . . , PNml} is a partition of P with index set 
IS = (0,. . ., N - l}, TS C TE is the set of syn- 
chronized transitions. Moreover, II induces a par- 
tition of transitions on T\TS. A SGSPN con- 
tains N components (Pi, Ti, cvi, Ii, Oi, Hi, Wi, Mi) 
for i E IS, with Ti = ‘(Pi) U (Pi)’ U (Pi)’ and 
a?, Ii, Oi, Hi, Wi, Mi are functions a, I, 0, H, W, MO 
restricted to Pi, resp. Ti. IC(t) = {i E ISlt E Ti} is 
the set of involved components fort E T. 

This property is used to represent generator ma- 
trix Q for the CTMC underlying a SGSPN by a sum 
of tensor products defined on matrices which result 
from isolated components. We define tensor products 
according to [4], but only for square matrices, since 
only square matrices are relevant in our context. 

Definition 3 Tensor product, tensor sum 
Let A”, . . , AN-l be square matrices of dimension 

(ki x ki) then their tensor product A = 8:;’ Ai 
is defined by a(z,y) = fl:i’ ai(zi,y”) where 1: = 

CL;’ eigi and y = CE-,’ yigi with weights go = 
1, gi = ki-lgi-l. 

The tensor sum B = @Eil Ai is then given by 
@E;’ Ai = CL;’ Ilz @Ai (ID&, where 4%) I,, are 
matrices of dimension di x li,resp. ri x ri where 
ri = nli’, kj, li = ny=\:, kj an.d I(a, b) = 1 i;9c a = b 
and 0 otherwise. 

A tensor product formalizes the operation of multiply- 
ing every matrix element of one matrix with all matrix 
elements of the other matrices; these products of ma- 
trix elements are arranged in lexicographical order in 
the resulting matrix, for more details see, e.g., [20]. 
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Any component ,i of a SGSPN is a GSPN. It can be 
analyzed in isolation yielding TRSi and a generator 
matrix Qi = Q” - Di as for any GSPN. A matrix Qi 
does not contain vanishing markings any more, i.e., 
the elimination of yanishing markings was applied be- 
forehand. Matrix QJ ,can be seen as a sum of matrices 
Q” = CtEp w(t)Q:, such that nonzero entries are 
separated according to the timed transition t which 
contributes to that entry. The elimination of van- 
ishing markings implies that Q~(z, y) gives the con- 
ditional probability to reach marking A4; if transition 
t is fired in ,442. The terms of the sum which corre- 
spond to unsynchronized (local) timed transitions is 
denoted by Qf = xtcTt,TS W(t)Qq. We will regard 
only SGSPNs where the TRSi of every component i is 
finite. A way to ensure this restriction by P-invariants 
is discussed in [12]. 

Theorem 1 [12] The state-transition matrix Q for 
PS = xzjlTRSi of a SGSPN with finite TR.!? 
equals 

N-l N-l 

@ a + c w(t) @I a 
i=o tETS i=O 

where 0: = 4, if t 4 T’. 

Ik, is a (TRSi x TRSi) matrix with I(a,b) = 1 iff 
a = b and 0 otherwise. The corresponding diagonal 
matrix 0, such that the generator matrix is contained 
in Q = Q - D, has a structured representation as well: 

N-l N-l 

D = @ D; f c W(t) @) 0; 
i=o tETS i=o 

where Df , resp. Dz provide diagonal matrices with row 
sums of matrices Qf, resp. Qf. PS = x&,‘TRSi 
denotes the product space obtained from the TRSi of 
the components. The set of reachable tangible states 
TRS of a SGSPN is a subset of PS. A structured 
representation needs to be accomplished by additional 
permutation matrices [12] if ITRSl << IPSI, which 
frequently happens due to synchronized transitions. 

Definition 4 For a SGSPN with IPSl = k, a bijective 
functionperm:{O,l,..., k-1)-(0,1 ,..., k-l} is 
a TRS-permutation if 

‘dMz E PS : perm(x) < JTRSI u M, E TRS 
and 
VM,, MY E TRS : perm(x) < perm(y) _ x < y 

A TRS-permutation reorders states according to 
their reachability. It can be represented by a (k: x k) 
matrix ‘P with P(i, j) = 1 if j = perm(i) and 0 other- 
wise. perm is bijective, so P-l exists, and additionally 
P-i = PT. Let xp = XP denote the permuted vector 

of a vector x, then the following transformation is ap- 
plied to simplify the restriction of an arbitrary matrix 
vector multiplication to a submatrix given by TRS. 

The practical implications of employing a TRS- 
permutation are that iteration vectors x?‘, 2pf1) 
can be represented by arrays of size ITRSI, where 
perm(x) = i gives the appropriate position i for a 
state n/r, E TRS, as the probability of unreachable 
states is known to be zero. Furthermore, Dpl can be 
represented by an array of size (TRS] in a similar way, 
and the same holds for P,PT. As shown in [12], it is 
sufficient to use a single integer array of size ITRSJ to 
represent both, P and pT, for numerical analysis. 

In this way, data structures for a matrix vector mul- 
tiplication involving a structured representation can 
be limited in the size of ITRSI instead of IPSI. If a 
matrix vector multiplicati’on is performed by rows, it 
can be restricted to states in XRS, which are all lo- 
cated in the first part of xp (n). So a TRS-permutation 
is an optional mean to acc.ount for ITRSJ << ]PS] in 
the context of structured representations. 

3 Randomization ,for structured repre- 
sent at ions 

The goal of transient analysis is to compute the 
probability distribution r(r) for a certain point of time 
r for a given CTMC with initial distribution r(O). 
The transient behavior of a CTMC is described by the 
Chapman/Kolmogorov ordinary differential equation 
(ODE) system 

i-(T) = 7r(T)Q, K(0) = ao, 

whose solution is described by 

(1) 

7r(~) = 7r(0)eQ7. (2) 

Apart from general methods to solve ODES, ran- 
domization is a special method for transient analysis 
of CTMCs. It is also called uniformization [5] and 
Jensen’s method [ll]. It solves T(T) by 

f(~) = n(O) jff emA’- (XT)" pn 
n! n=O 

(3) 

with a stochastic matrix P = I + l/XQ where X 2 
max{Q(i, i)}, i E TRS. J . L is called the uniformization 
rate. 

(3) is usually truncated to the first k terms. k can 
be selected such that the resulting truncation error re- 
mains less than a given e > 0. Fox and Glynn [g] de- 
scribe a method to compute a left and right truncation 
for given values of X, r, and 6. Since the left trunca- 
tion just saves summatio’n operations, but it does not 
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reduce the number of necessary matrix-vector multi- 
plications, we therefore consider only right truncation 
in the following. 

In principle, the method is simple, but as Grass- 
mann already stated in [lo], difficulties arise for an 
efficient and numerically stable implementation. Ran- 
domization is usually implemented by 

$1 - m ifi=O - 
(P(~-~)P otherwise (4) 

f(i) = { ;g l)+T 
ifi= 0 
otherwise (5) 

.(;I = 
1 

ifi=O 
f(i)(pci) otherwise (6) 

where ~(~1 M r(r). 

f(,i) = e-xy f orms a Poisson distribution with 
parameter AT; it is often referred to as a jump proba- 
bility. 

In terms of computational complexity, the crucial 
operation is the matrix vector multiplication to com- 
pute ~(~1. Calculation of ~(~1 = r(0)Rn is equivalent 
to the Power method for a CTMC with generator ma- 
trix Q, such that P = I-t- *Q for an appropriate value 
X. p(i) can be interpreted as the state probability of 
the CTMC after i state transitions. 

So ~(‘1 can be understood as the discrete probabil- 
ity vector after k jumps multiplied by the probability 
of having fired k timed transitions, summed over all 
possible number of jumps up to k. Since probabilities 
for very large numbers of jumps become very small, 
truncation of the summation to the first k terms re- 
sults in a good approximation for sufficiently large I%. 

Randomization has often been considered the best 
method [lo, 181 f or computing transient state proba- 
bilities of CTMCs, but it suffers from a severe degra- 
dation in performance for increasing values of Xr. This 
is the case, whenever a highly dynamic model (X gives 
the highest state departure rate) is analyzed for a rel- 
atively far time horizon 7. The problem appears in so- 
called (‘stiff)) models, which can cause a large number 
of iteration steps and numerical instability. This prob- 
lem is model dependent and beyond the scope of this 
paper; the interested reader is referred to e.g. [5, 7’1. 

For large state spaces, (4) reveals similar prob- 
lems as numerical methods for steady state analysis: 
namely the size of the matrix representation and the 
time used to perform a vector matrix multiplication 
are crucial for the applicability and performance of an 
iterative solution method. In consequence, considera- 
tions for steady state analysis of SGSPNs [12] are also 
valid for the context of randomization. For an imple- 
mentation a conventional approach [lo] uses a sparse 
matrix representation for P and three vectors of length 
ITRS], namely ~(~1, cpcnB1), and ~(~1. The structured 
representation of Q given in Theorem 1 can be used 

in this context as well, since P = If ;Q, we obtain 

where D’ = I - ;D. A vector representation for diag- 
onal entries D’ is advisable compared to a structured 
representation in order to save re 

P 
eated computations 

of diagonal values. The fa,ctor 5; can be easily inte- 
grated into tensor sum and product such that a com- 
putation of PC”) = p(“-r)P can be performed by the 
same algorithms for a matrix-vector multiplication as 
in steady state analysis [20, 121. This yields the fol- 
lowing equations for the computation of P(~+‘) : 

and in case of a TRS-permutation: 

N-l 

+ g v$‘~‘Pw @I &b)P (8) 
i=o 1 

The main difference to steady state analysis is that 
an additional vector for ~(~1 is required, which stores 
the weighted sum of vectors cp(‘), ‘pi’), , ~(~1. 

4 Analysis of unbounded SGSPNs 
Grassmann [lo] already discussed randomization 

for infinite Markov chains, which is possible since trun- 
cation of (3) to LZ terms implies that one considers 
only the first iE events, resp. firing of k timed transi- 
tions in Petri net terminology. Since a finite number 
of transitions firings only allows to reach a finite num- 
ber of states, the computation of a probability distri- 
bution at a given time r by randomization based on 
finite matrices is possible in principle. In [lo], Grass- 
mann describes a dynamic method, which consecu- 
tively generates sets of active states interpreting the 
model description; hashing techniques are used to de- 
cide whether a state is new or whether it has been 
reached before. In the following we describe an algo- 
rithm following a static approach and exploit the com- 
positional structure of SGSPNs to handle unbounded- 
ness. The approach for SGSPNs heavily relies on an 
efficient TRS-exploration [13]. 

The essential idea is to consider the finite set of 
tangible states TRSk which is reachable within tE fir- 
ings of timed transitions. The choice of an appropriate 
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value of Ic for randomization depends ,on the trunca- 
tion error 6 

for the truncation of the infinite sum in (3). For given 
values E and T, a corresponding lr can be computed if X 
is known. In GSPNs, uniformizatlion rate X is limited 
according to X 2 Xc = CiETE W(t). Since k increases 
with increasing values of XT, this inequality is suitable 
to find an upper limit Ice for the number of steps. We 
are interested in small values of Ic, so a minimal value 
of X is desired. 

Once Ice is known, we can explore TRS”,, for 
each component i in isolation, where firing sequences 
are bound by Ice (with respect to timed transitions). 
Finiteness is ensured by Ice, such that once the finite 
component state spaces have been computed, a finite, 
structured representation QO is obtained. 

N-l N-l 

i=o tETS i=O 

N-l N-l 

i=O tETS i=o 

Definition 2 implies, that synchronized transitions of 
an isolated component i are assumed to be enabled 
permanently as far as other components j # i are 
concerned. So the firing sequences considered in the 
component state spaces are shortened projections of 
firing sequences in the complete model (if possible at 
all), such that the structured representation guaran- 
tees to contain TRSk, for the complete net. 

The uniformization rate can be limited by X < Xr = 
cgi’ mazj Df (j) + CteTS IV(t) at this point. Obvi- 
ously X1 < Xc since mazjDf(j) 5 ‘&T,,TS W(t). 
Since typically not all local timed transitions are en- 
abled simultaneously, usually Xr < X0 and the cor- 
responding Ici is suitable to reduce component state 
spaces. A reduction of TRS& to TRS;, is simplified, 
if states are indexed with respect t,o n-step reachabil- 
ity. A reduction of component state spaces reduces 
PS in the structured representation, which is helpful 
for the following TRS-exploration. 

Based on component spaces TRS~, and a re- 
duced structured representation Qi, we start a TRS- 
exploration using bitstate hashing with a perfect hash 
function [13]. The basic algorithm in [13] is easily 
tuned to limit reachability to Ici transition firings. 
This yields TRSk,. A vector p(j), 0 5 j 5 Ici, which 
gives the maximal departure rate Qi(i, i) observed 
within j steps, can be computed as a byproduct. Note 
that values in p are non-decreasing. If ~(ler) < X1, we 
take ~(lci) as a better estimate for X in (9) and ob- 
tain a reduced value k2. This leads to an iteration 

process if p(k2) < ,u(kl). ‘We iterate until a fixpoint 
v(ki+l) = p(k.) . z is reached, which gives the desired ap- 
propriate minimal values J, and k of (9) for random- 
ization. Component state spaces and corresponding 
matrices are reduced appropriately. 

T,he resulting finite, stru’ctured representation of Q, 
resp. P = I + ‘Q, can be used to proceed with ran- 
domization as a. iscussed in the previous section. If 
space permits, diagonal values can be computed and 
stored once, ot#herwise they need to be recomputed 
according to (2) in each iteration step. 

The described technique should not be overesti- 
mated in its ability to handle unbounded SGSPNs. 
Since unbounded places aggravate the state space ex- 
plosion problem even within a limited number of steps, 
we expect that the above method is only useful for cer- 
tain kinds of nets, where e.g. most components have 
finite TRS” and relatively few components cause un- 
boundedness. 

5 The RS, algorithm for randomiza- 
tion 

In large CTMCs, the number of multiplications per- 
formed per iteration step clearly dominates the time 
complexity of randomizati.on. Transient analysis of 
SGSPNs typically starts from an initial distribution 
n(O), where only a few initial states - in fact in most 
cases just state MO - have a nonzero probability. In 
consequence, a certain number, n, of matrix vector 
multiplications is necessary, before a majority of states 
has a positive value in vector ~(“1, resp. ~(“1. Obvi- 
ously for cp(“)(i) = 0 all multiplications $“‘(i)P(i, .) 
can safely be omitted to increase efficiency. 

We describe a variation of randomization which 
considers only those vector entries for the computa- 
tion of ~(“1 which are reachable within n jumps. Let 
A, = {i E TRS(p(“)(i) # 0) be the set of active states 
at iteration step n. If an iteration algorithm is able to 
consider just elements of A4, and lArzl < ITRSI, this 
algorithm is more efficient than a conventional matrix- 
vector multiplication ~(~1 = P(~-‘)R. If the matrix- 
vector multiplication is performed by rows, a simple 
way to handle zero entries in p(“-l) is to extend the 
conventional method by a.n appropriate test, i.e., to 
skip row i in the calculation of p(“) if &“-l)(i) = 0. 

Sets of active states A, develop over steps n in an 
irregular, model-dependent manner. Even A, & An+1 
is not true in general; for a counterexample consider 
a CTMC with A0 = {MO> and Q(Mo,Mc) = A, then 
P(Mo,Mo) = 0 and hence MO is not element of AI. 
Note that this case is possible but not typical for ap- 
plications. Since nonzero probabilities distribute from 
w(O) following the reachability relation, the possibility 
of nonzero entries in ~(“1 is closely related to reach- 
ability. Let RS, = {M~llM~[o> Mi A (UITE 2 n} be 
the set of markings which are reachable from MO with 
firing at most n timed transitions, i.e. ]CT]T~ counts 
the number of timed transitions in firing sequence u. 
Trivially, RSo = {MO}. S’ets RS, show a number of 
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attractive properties, clearly Vn E I3 : RS, C R&+1 
and TRS = RS, , For any finite TRS, a fixed point 
n > 0 exists such that RS, = RS,+l. The follow- 
ing proposition clarifies the relation between nonzero 
entries in ~(“1 and elements of RS,. 

Proposition 1 Let ~(~1 be defined as in (6), then 
z(“)(i) # 0 w Mi E RS,. 

Proof. Note that f(i) > 0 by definition. The propo- 
sition follows directly from z(n) = CF=, f(i)n(O)P” 
and the fact that P gives the probabilities for one- 
step reachability between states in TRS, i.e., for i # j 
it holds that P(i, j) # 0 w 3 E TE, 6’ E TT : 
ni$ [t a’> Mj . 

Considering active states, at least A, C_ RS, is 
true, or in terms of nonzero entries in p(“), cp(“)(i) # 
0 3 Mi E RS,. RS, gives a set of states which 
can have a nonzero probability in (o(%), while states in 
TRS\RS, must have zero entries in ~(~1. In conse- 
quence, RS, can be considered instead of A, to ob- 
tain similar results, such that we aim for an algorithm 
which performs a vector-matrix multiplication only on 
rows corresponding to elements in RS,. 

In the context of large CTMCs, space is the main 
bottleneck for applications, hence we look for a mem- 
ory efficient representation of RS,. Obviously, ~(~1 
implicitly represents RS,, in the sense that it sup- 
ports an efficient member operation for RS,, but it 
does not support an efficient enumeration of RS,. 

A natural way to enumerate RS,, is to start 
from RSo and to successively enumerate states of 
RSi\RSi-1 for 0 < i 5 n by considering states which 
are directly reachable from states in RSi- 1. This pro- 
cedure neatly agrees with the multiplications neces- 
sary to perform a vector-matrix multiplication with 
respect to RS,. This leads to a calculation of ~(~1 
from pen-r) with the help of one additional stack: 

Algorithm 1 
Compute ~4~) for given qJn-l), zJn-l), P, MO 

init: push(stack, MO) ; Vi E TRS : p(“)(i) = init 
while stack not empty 

Mi = pop(stack) 
for each P(i, j) # 0 

if z&“-l)(j) # 0 A cp(“j(j) = init 
then push(stack,Mj) 
ifp(“)(j) = init then cp(“)(j) = 0 
+qj) = p(qj) + ‘p(n-l)(i)~(i, j) 

(*) p(“-l)(i) = 0 

init $! [0, l] is a unique initial value for entries in cp(“), 
in order to distinguish it from any value obtained dur- 
ing iteration. The algorithm enumerates RS,-1 start- 
ing from RSo = {MO}, since P provides information 
about the one step reachability and z(“-‘l(j) # 0 

states that Mj E RS,-1. The additional condition 
cp(“)(j) = init ensures that each state of RS,-1 is 
pushed on the stack at most once. 

The idea to multiply ‘p (n-l)P by rows is recom- 
mended in [lo] in order to skip zero entries. It is also 
used for steady state analysis of SGSPNs with a struc- 
tured representation and a TRS-permutation in order 
to restrict the iteration to reachable states [12]. Hence 
such a multiplication accommodates to randomization 
as well as to a structured representation. 

Observe that the nonzero values of (p(n-l) are con- 
sidered exactly once, such that 'p("-l)(i) can be reset 
in line (*) for reusing the space of (p(+l) for vector 
~(~+r) in the next iteration step. Additionally this 
allows to consider nonzero entries in (p(“-r) as the 
amount of work that has to be done in this iteration 
step. ,Note that a state Mj can be pushed on the 
stack only if a multiplication ‘p(n-l)(i)P(i, j) is added 
to an initial/zero entry in cp(nj(j), i.e. if (p(“)(j) re- 
ceives a value for the first time. Therefore one can vary 
this procedure to get along with one iteration vector 
if the stack contains tuples (Mi, cp(“-‘j(i)). The idea 
is to overwrite cp(“-r)(j) with values contributing to 
cp(“)(j) and to evacuate an entry cp(“-l)(j) to the stack 
if necessary. 

Mixing entries of ~(“1 and (p(n-l) on the space of 
a single iteration vector ‘p is possible provided the al- 
gorithm is able to distinguish them. One way to do 
this is to use the sign bit of each entry. According to 
IEEE standard 754, a floating point has a special sign 
bit, which is unused by randomization, since entries 
in iteration vectors are nonnegative by definition. In- 
verting the sign bit does not influence the precision of 
an addition operation as long as the sign bits of both 
operands are equal. 

No computation of ~(~1 takes place in Algorithm 1. 
Computation of 3Jn) requires +Jn). Since in a vector- 
matrix multiplication by rows it is difficult to decide 
when a value cp(“)(j) is complete, so computation of 
~(~1 can only start after computation of ~(~1 has ter- 
minated. Nevertheless, one can interleave computa- 
tion of ~(~1 and ~(~f’), especially when (LW~, cp(“)(j)) 
is pushed on the stack, one can safely use it to com- 
pute Z(“)(J). In th e o f 11 owing algorithm, computation 
of p(“+r) is always one step ahead of the computation 
of ~(~1. Hence, two sign bits are used since computa- 
tion of ~(~+l) requires RS,, but the appropriate z(n) 
to characterize it is not available yet. So we use RS, = 
RS,-l U A,, with dnwl)(i) # 0 e &!i E R&-l 
and y(")(i) # 0 e Mi E A,. 

The following algorithm uses two vectors 2 and cp 
and an additional stack containing tuples (i, cp(i)) to 
perform one step from x(~-‘) to z(n) according to (6). 
Vectors z and ‘p are double precision vectors of lengths 
ITRS(. z contains initially IC(~-‘) and at termina- 
tion -33”). Computation of p(“+r) is always one step 
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ahead of the computation of ~(~1, such that initially 
cp = ~(“1 and at termination ‘p = --~(~+i). In each 
step the signs of 2 and p are inverted, but their ab- 
solute values coincide with values obtained in conven- 
tional randomization. 

The sign bits of entries in ‘p and 2 are used as flags 
to denote whether the corresponding state has been 
pushed on the stack or not. The coding is as follows: 
if v(y) > OVz(y) > 0 then p(y) contains value (p(“)(y); 
if p(y) < 0 A z(y) 5 0 then p(y) contains value (or at 
least an intermediate result for) ‘p(“+l)(y). 

For simplicity of notation, we consider just matrix 
P and not a structured representation of it. However, 
integration of a structured representation accommo- 
dates to a multiplication by rows and is straightfor- 
ward. Let AQ = {Mu} and f(n - 1) > 0 be given. 

Algorithm 2 n-th 
2 = &-11, p = p(“) 

step in randomization, 

GOT each i E A0 : 
Pyw~c~! (4 $44)) 
$4 =;“(4 - f(n - l)cp(i) 

z 

while not empty stack 
(i, u) = pop(stack) 
for each j : P(i, j) # 0 

ifp(j) > 0 Vz(j) > 0 
then psh(stack, (.i, 4.d)) 

$]I ;a - f(n - lM.73 

P(j) = P(.?l - Q(4.i) 

Correctness follows from several observations: 
1) No push(stack, (j, p(j))) with q(j) < 0 occurs: As- 
sume j is the first element pushed on the stack, due 
to x(j) > 0, but p(j) < 0. Since initially p(j) 2 0, 
it must have been considered in line p(j) = p(j) - 
vP(i, j) before, in order to obtain a negative value. 
However, to reach this line, the test p(j) > OVx(j) > 0 
must have been true beforehand, such that j would 
have been pushed on the stack already, which is a con- 
tradiction. 
2) Each element j becomes at most once element of the 
stack: Since values ‘u popped from the stack are non- 
negative and P(i, j) > 0, for values p(j) holds: once 
p(j) 5 0 then always p(j) _< 0. Since only p(j) 2 0 
are pushed on the stack, f(n - 1) > 0, and initially 
x(j) 2 0, we obtain for x(j): after pushing j on the 
stack holds x(j) 5 0 (and furthermore v(j) 5 0). 
Since p(j) 5 0 remains valid and z(j) is changed only 
if [p(j) > 0 V z(j) > 01, z(j) 5 0 remains valid also. 
Hence p(j) > 0 V x(j) > 0 can only be initially true, 
and once j is pushed on the stack this condition re- 
mains invalid. 
3) For each element i on the stack, all successor states 
j are considered and pushed on the stack, if j has not 
been pushed on the stack already, and if j was reached 
in the i steps before, which is obviously indicated by 

a positive probability p(j) (step n) or a positive value 
x(j) (steps 0, . . ,n - 1). 

Let nz(X) denote the number of nonzero entries 
in a subset X of rows in matrix P. For the com- 
putation of (pen+‘) the algorithm performs nz(RS,) 
multiplications and additions, ]RS,+lJ tests for zero 
and IRS,] push, pop operations. The computation of 
~(~1 requires IRS,] additions and multiplications. In 
summary, calculation of z(~),P(~) is in O(nz(&!!&) + 
IRSnl). 

Clearly for a complete randomization algorithm ei- 
ther sign bits of 2 and cp can be reset after each step 
or the coding can be inverted, which is not described 
here. However, we refer to the complete algorithm as 
RS, algorithm. Note that a transient set of states 
with zero probability can be recognized and handled 
by modifying set Ao, i.e.., in each step, each i E A0 
with cp(;) = 0 can be replaced by the set of its succes- 
sor states. If such an i is then rereached again this is 
handled automatically in the same way as for all other 
states reached in this step. 

For memory. considerations, let d be the space for 
a double precision value, s the space for a state index, 
which is s = [log2((PS])] bits due to the mixed radix 
number representation. Let sm(X) be the space for 
a sparse matrix X, then the space for the structured 
representation of Q, resp. P and the TRS-permutation 
is m = CEi’ sm(&f)+E&S CiEIc(t) sm(QE>+(s+ 
d)(TRSI; alternatively a sparse matrix representation 
would use m = sm(P). Let 0 < h.5 ITRS( be the 
maximal stack height observed during computation. 
The RS, algorithmuses space m+2 d ITRSI+h (s+d) 
due to vectors ‘p and x, and the stack, containing tu- 
ples (i, p(i)). The stack need not increase towards 
lTR.91 for increasing values of n; it depends on the 
connectivity of the reachability graph and the order 
it is considered. The height of the stack also depends 
on the st,rategy, by which elements are taken from it; 
LIFO (Last in first out) implies that RS,, is explored 
Depth-First-Search (DFS). The stack contains all suc- 
cessor states of states in the current search path, which 
have not been explored yet. A recursive description 
of Algorithm 2 formally reduces the stack size to the 
current path but this does not pay off for practical 
purposes, since the recursion itself “stores” an equiva- 
lent amount of information and needs space for this as 
well. Alternatively to DFS also Breadth-First-Search 
can be considered by using a FIFO-queue instead of a 
stack. However, lower stack sizes are experienced for 
LIFO. 

Ordinary randomization uses space m -t 3 d jTRS( 
due to vectors z(~-~),z?, ‘p. The RS,, algorithm is 
space efficient if h (s + d) < d ITRSI. If d = 2s (a 
valid assumption for an implementation if ]PSJ 5 232, 
4 bytes per integer, 8 bytes per double precision value), 
it is efficient if h < 2/3]TRS]. The RSn algorithm can 
exceed ordinary randomization at most by s JTRSI as 
h < ITRSI. In [14] several examples are exercised 
revealing stack heights O.l5(TRS] 5 h 5 0.65(TRSj. 

107 



Figure 1: The example system 

The RS,-algorithm offers the chance to keep space 
requirements below the ordinary algorithm. Depend- 
ing on Ao, this is at least fulfilled up to a certain step 
n. If this n is reached by randomization (n 5 k) the 
algorithm can fall back to the conventional algorithm. 
In this case, (RS,[ 2 2/3]TRS] which means that the 
advantage in efficiency of the RS, algorithm is not 
very large anyway. In this sense we observe a ‘grace- 
ful degradation’ towards the conventional algorithm. 

6 Analysis of an example SGSPN 
Figure 1 shows a net similar to the benchprod 

model in [a]. It describes two production lines syn- 
chronized via transitions tl and t2. The resulting 
product is fed back into the system via t5 and t6. De- 
lays in production lines are often rather deterministic 
than exponentially distributed. Approximation of de- 
terministic distributions by phase type distributions 
requires many phases, which is one cause of the state 
space explosion problem. Here, we model a deter- 
ministic delay in each production line by an Erlangis- 
distribution, i.e. transitions t3 and t4 have to fire 13 
times before the resource modeled by the token on 
place ~2, resp. p3 is released. Since transitions tl and 
t2 are timed, a partition as denoted by the dashed line 
in Fig. 1 is straightforward. Place p4 is redundant and 
represents an additional variable. p4 follows from a P- 
invariant; it is introduced to reduce PS for the given 
partition into components, for details of this technique 
see [12, 141. 

The following results are obtained for parameter 
c = 5, which gives the initial marking for places pl 
and p4. ITRSl = 1,815,636 and [PSI = 8,351,136, 
which means that about 21.7% of PS are reachable. 
Hence a structured representation needs to be sup- 
plemented by a TRS-permutation for an efficient so- 
lution. The structured representation consists of 3 
matrices for each component, which altogether con- 
tain 22,290 nonzero entries, jTRS*I = 5,136 and 
jTRSB( = 1,626. G enerating the structured represen- 
tation and exploring TRS takes less than 40 s CPU- 
time/elapsed time by the improved algorithm given in 
[13]. This is negligible compared to the time used for 
matrix-vector multiplications. The generator matrix 
contains 8,918,528 nonzero entries. The fixed point 
RS, = RS, is reached at n = 256. Figure 2 shows 
how the size of the stack, (A, 1, and IRS, 1 develop for 
an increasing number of steps n as observed by the 
RS,-algorithm; all values are given relative to JTRSJ. 

m A, and both converge towards TRS. The size 
?f’rhe stack is h < 0.22 JTRSJ such that its space 
uses only about 33% of the space for an iteration vec- 
tor z(~). The results are obtained on a Spare 4 with 
110 MHz CPU, 55 MB available primary memory (890 
MB virtual). Clearly on this configuration, a conven- 
tional implementation with a sparse matrix collapses 
due to the well known memory thrashing effect. Fig- 
ure 3 gives computation times (CPU and elapsed time) 
in seconds for the RS, algorithm, indicated by RS,, 
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Figure 2: Height of stack, A,, and RS, relative to Figure 3: Computation times of RS,, and RZN algo- 
TRS during iteration rithms in set during iteration 

and randomization using a structured representation 
with TRS-permutation and a test for nonzero vector 

value X which can be interpreted as a very fine dis- 

entries, indicated by RNZ. Elapsed time and CPU- 
cretization of the dynamic behavior. Due to the de- 

time for RN2 differ after about 60 iteration steps. 
generated initial distribution, the departure rate cor- 
responding to X need not be experienced for a certain 

This is due to the fact that probability mass in ‘p 
needs a number of iteration steps to distribute over 

number of steps/jumps, such that a smaller rate would 

TRS. This gives a certain locality in the beginning, 
be appropriate as well. So the main idea in adaptive 
randomization is to adapt the uniformization rate X, 

which is lost once a sufficiently large set A, has been 
obtained. Approaching towards memory limitations, 

at step n according to the maximum departure rate 
observed at states RS,. This means that jump prob- 

elapsed time and CPU time differ due to time consum- abilities do not follow a F’oisson distribution anymore 
ing paging operations. The RS,, algorithm is less de- but describe a general birth process, which has to be 
manding in terms of space, so a divergence of elapsed 
and CPU time is observed after about 140 iteration 

analyzed to calculate f(li). Diener and Sanders dis- 
cuss different variations of adaptive randomization in 

steps and the difference is rather mild compared to 
the RN2 algorithm. Results of Figure 3 indicate a 

[5]. From a practical point of view and compared to 
standard randomization, adaptive randomization re- 

clear advantage for the RS, algorithm. However, this 
need not be the case in general. In [14], further exam- 

sults in a different compu.tation of function f(i) and a 
variable uniformization rate X,. Since the latter can 

ple nets with other ]TRS(/memory relations are ex- 
ercised, where RS, performs only initially faster, but 

be trivially integrated into (7), resp. (8), and compu- 

takes more time per iteration step in the long run. 
tation of function f(i) is independent of the compu- 

In summary, RS, is advisable in case of tight mem- 
tation of ~(~1, the new (algorithm for randomization 

ory limitations and small stack heights. Since one can 
can be directly used with adaptive randomization. In 

switch between both algorithms at each iteration step, 
fact, since our new algorithm follows reachability and 

it is presumedly best to have an implementation which 
the maximal diagonal value can be computed as a by- 

selects an algorithm with respect to the observed stack 
product during enumeraltion of RS,, the new algo- 

height and available primary memory. 
rithm accommodates to adaptive randomization in a 
natural way. 

7 Integration of adaptive uniformiza- 
tion 

8 Conclusions 

The example above indicates that for large Markov 
chains the number of necessary iterations can be quite 
high and costly in terms of computation time. Adap- 
tive randomization [al] aims at a reduction of the 
number of necessary iteration steps to compute ~(7). 
A large number of iterations can be caused be a large 

In this paper, randomization is combined with the 
structured representation of CTMCs associated to 
SGSPNs. From steady state analysis of SGSPNs [la], 
it is already known that structured representations 
consider PS, the cross product of component state 
spaces instead of TRS, the tangible reachability set. 
We used the concept of TRS-permutation [12] to re- 
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strict randomization based on structured representa- 
tions to TRS instead of PS. 

A structured representation relies on a decomposi- 
tion into components with finite state spaces. Nev- 
ertheless, we describe how unbounded SGSPNs can 
be analyzed by randomization in combination with a 
structured representation as well. The key observa- 
tion is that for randomization, the number of itera- 
tion steps Ic to accomplish a required accuracy E can 
be precalculated. In consequence, a structured rep- 
resentation can be restricted to the finite number of 
states, which are reachable within k steps. However, 
the applicability for this method is considered rather 
limited, due to the expectsed size of state spaces even 
for modest values of le in non-trivial, unbounded nets. 

For bounded SGSPNs, a structured representation 
typically extends the size of solvable CTMCs by about 
one order of magnitude compared to conventional 
(sparse) matrix representations. Since space is the 
bottleneck for transient analysis of CTMCs and in the 
context of structured representations this bottleneck 
is caused by space for iteration vectors, the main con- 
tribution of this paper is the RS,-algorithm. This 
algorithm aims at a reduction of space for iteration 
vectors. It performs randomization based on a struc- 
tured representation but restricts itself to states which 
are reachable within n steps during computation of 
the n-th iteration vector. It accounts for the typically 
degenerated initial distribution ~(0) in transient anal- 
ysis, where most states have zero probability. The 
algorithm is based on a new matrix vector multipli- 
cation which replaces one iteration vector of conven- 
tional randomization by a stack. It is space efficient if 
the stack height remains less than 2/3 of TRS. Since 
space is crucial in transient analysis, advantages of 
the RS, algorithm for models whose solution reaches 
memory limitations are clear. A corresponding exam- 
ple is presented to demonstrate this effect. Finally 
it should be noted that the RS, algorithm accom- 
modates to adaptive randomization in a natural and 
straightforward way, since the RS, algorithm enumer- 
ates all states reachable within n steps during compu- 
tation of the n-th iteration step. 
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