
Performance and Dependability Modeling with M öbius

Shravan Gaonkar1, Ken Keefe1, Ruth Lamprecht2, Eric Rozier1,
Peter Kemper2, William H. Sanders1

1University of Illinois, Coordinated Science Laboratory, Urbana, IL 61801, USA
2College of William and Mary, Department of Computer Science, Williamsburg, VA 23187, USA

{gaonkar, kjkeefe, ewdr, whs}@crhc.uiuc.edu, {rlampy, kemper}@cs.wm.edu

ABSTRACT
Möbius is a multi-paradigm multi-solution framework to de-
scribe and analyze stochastic models of discrete-event dy-
namic systems. Möbius is widely used in academia and in-
dustry for the performance and dependability assessment of
technical systems. It comes with a design of experiments as
well as automated support for distributing a series of simula-
tion experiments over a network to support the exploration
of design spaces for real-world applications. In addition to
that, the Möbius simulator interfaces with Traviando, a sep-
arate trace analyzer and visualizer that helps to investigate
the details of a complex model for validation, verification,
and debugging purposes. In this paper, we outline the de-
velopment of a multi-formalism model of a Lustre-like file
system, the analysis of its detailed simulated behavior, and
the results obtained from a simulation study.

1. INTRODUCTION
In model-based system design, Möbius 1 focuses mainly on

discrete-event dynamic system models (in contrast to con-
tinuous simulation models based on differential equations)
and within that area, rather on event-driven stochastic au-
tomata than a process interaction approach. One advantage
of Möbius is the ability to integrate the evaluation of per-
formance and dependability of a system, emphasizing any
dependencies that exist between these two aspects of sys-
tem behavior. This is possible due to the ability to specify
dynamic behavior of models in Möbius using a collection of
state variables, actions, and rewards that can quantify the
measures of interest.

In Möbius, a model is a collection of state variables, ac-
tions, and reward variables expressed in some formalism.
Briefly, state variables hold the state information of the
model. Actions change the state of the model over time.
Reward variables are quantitative measures of interest de-
fined by the Möbius user to evaluate their models. A for-

malism, e.g. stochastic activity networks, is a language used
for expressing a model within the Möbius framework.

The Möbius tool is built on the observations that no for-
malism is best for building and solving all models, that no
single solution method is appropriate for solving all models,
and that new formalisms and solution techniques are often
hindered by the need to build a complete tool to handle
them. Möbius addresses these issues by providing a broad
framework in which new modeling formalisms and model so-

1Möbius : www.mobius.uiuc.edu Traviando: http://www.
cs.wm.edu/~kemper/traviando.html

lution methods can be easily integrated. Möbius currently
provides a variety of numerical and analytical techniques for
the analysis of specific Markovian models as well as discrete-
event simulation as a technique that applies to a very general
class of models.

Möbius has been licensed by over 100 academic insti-
tutions and 30 industrial partners and has been success-
fully applied to evaluate systems with respect to multiple
system properties including reliability, availability, security,
and performance, and in a multitude of areas including In-
formation Technology Systems and Networks, Wired and
Wireless Telecommunication Software and Hardware Sys-
tems, Aerospace and Aeronautical Systems, Commercial and
Government Secure Information Systems and Networks, and
Biological Systems.

Object

Code Code

Object

Code

Object

Code

Object

Solver

LibrariesLibraries

Formalism

Executable

Solver

Linker

Atomic
Model
Editor

Composed

Editor
Model

PV
Editor Editor

Study

Main Application

Figure 1: Möbius architecture from users perspec-

tive

Fig. 1 shows the Möbius tool architecture with its two
distinct logical layers: model specification and model execu-
tion. All model specification is done through Java graphical
user interfaces, and all model execution is done exclusively
in C++. Each model editor produces C++ code that is
compiled and linked with library classes to obtain an exe-
cutable, model-specific solver, which gives great flexibility
to support different domains and environments as well as
good performance. In this paper, we will walk through the
process of using Möbius as a modeling tool to effectively
design, develop, and refine models of interest. Section 1.1

Atomic Models Composed Model

Reward Model

Study

State Space
ExplorationSimulation

 Solver

Figure 2: Möbius workflow dependencies.

reviews additional reference materials regarding modeling
tools that readers might be interested in. In Section 2 we
outline the generic process of modeling with Möbius. Sec-
tion 3 provides a interaction between Möbius and Traviando
with a concrete example of a model to illustrate the efficacy
of multi-formalism tools and visualization tools.

1.1 Further Readings
A detailed description of the Möbius modeling tool is

given in [2, 9]. The details of the Möbius framework and
its implementation can be found in [3]. Several papers have
been written using the Möbius tool which can be found
at http://www.mobius.uiuc.edu/community.html. Möbius
was developed as a natural extension of UltraSAN for its
Stochastic Activity Networks formalism [10]. Several other
formalisms have been integrated into Möbius: Modest [1],
PEPAfault-trees [6], and buckets and balls [8]. Möbius sup-
ports several state representations and solution techniques.
[4] provides further details on how to integrate state-level
representation and solution techniques into Möbius. [11]
gives in-depth understanding of how some of the numerical
solvers work in Möbius. For information on Traviando, we
refer to [7] and http://www.cs.wm.edu/~kemper/traviando.

html

2. WORKFLOW IN M ÖBIUS
Möbius clearly separates different aspects of a model into

a set of components that depend on each other. Fig. 2 shows
the dependency graph of components that a user develops
while working with Möbius. Each individual node will be
addressed in the following sections.

In the Möbius GUI, the project manager gives access to
menus that allow the user to perform various tasks at the
project level, such as creating a new project, opening an
existing project, archiving/unarchiving a project, etc. From
the Project menu, the user can easily create a new project
by simply specifying a name for it.

The project window displays the skeleton of a Möbius
model in the form of a tree. The six child nodes of the
root (Atomic, Composed, Reward, Study, Transformer, and
Solver) hold all the corresponding elements of the model and
corresponds to the workflow model.

2.1 Atomic Models
The first branch of the tree in the project window holds all

of the atomic models that have been defined in the project.
At least one atomic model is required before the user can
move on to lower branches in the tree.

There are a variety of atomic model formalisms, includ-
ing stochastic activity networks (SANs), fault trees, and
stochastic process algebra (PEPA). For further details on
these formalisms or how it is possible to write a new one
and use it with Möbius, refer to [9].

A major feature of Möbius atomic models is that they
can be parameterized with the use of global variables. The
global variables are later used to define a study, which can
vary the values of global variables and generate a series of
experiments to evaluate the model for different parameter
values.

2.2 Composed Models
While it is not necessary to create composed models, they

provide tremendous flexibility and power for modeling in
Möbius. Composed models make it possible for the user
to model systems of great complexity. Often, a modeler
will create several atomic models that represent sub-systems
of the total system. The Möbius composition formalism
provides the flexibility and simplicity for the modeler to mix
and match the atomic and other composed models together
to build larger and more sophisticated models.

A Rep-Join composition formalism enables the modeler
to either replicate or join atomic models or other composed
models. Replication creates multiple instances of a single
atomic or composed model and provides a way to share cer-
tain state variables across all of the replications. Joining
simply joins two or more atomic or composed models. As
with replication, it is possible to define certain state vari-
ables to be shared across the join.

One of the great strengths of Möbius composed models
is that replicating and joining are agnostic of the underly-
ing formalisms of the atomic models. So, if one object in
a system is easier to express with a fault tree, it can be
joined with another object that is expressed with a SAN as
described by the example model in section 3.

2.3 Reward Models
Once the user has defined at least one atomic or composed

model, a reward model can be created for it. A reward model
is used to define measures of interest (performance variables)
that the user wants to obtain from the system model. As the
model is simulated or numerically solved, the reward model
defines what data from the system needs to be collected.

A reward model can define several performance variables
on an atomic or composed model. For each performance
variable, the user inputs a segment of C++ code that defines
the way the result is collected from the system. The user
has the option of defining a rate reward, which defines its
reward based on time in each state of the system, or an
impulse reward, which defines its reward based on the firing
of specific actions in the system.

The results can be collected in many ways in relation to
time: at a specific instant of time, over an interval of time,
over a time-averaged interval of time, or after the system
reaches steady-state. Also, it is possible to estimate the
mean, variance, likelihood of results in a range, and distri-
bution of results for each performance variable.

2.4 Studies
A study allows a user to specify a series of experiments

to be performed on a parameterized model in an automated
manner. It is a productivity enhancer for running large sets
of production runs of simulation models on a network of ma-
chines. A design of experiments feature is offered to reduce
the combinatorial explosion that takes place if multidimen-
sional design spaces need to be explored.

Note from Fig. 2 that a study is required in order to gen-
erate the state space of a Markovian model or to run a sim-
ulation. If the user does not wish to vary any part of the
system, a trivial empty study can be used to move on to the
next step.

2.5 State Space Generators and Solvers
A numerical analysis of a Markovian model is performed

in two steps, a state space exploration and the numerical
calculation of a transient or steady state distribution which
is in turn used to evaluate rewards of interest. For the task
of the state space exploration, Möbius provides two vari-
ants, one results in a sparse matrix representation of the
associated Markov chain, the other achieves a symbolic rep-
resentation based on matrix diagrams, which is very space
efficient for compositional models that yield extremely large
equation systems [4].

For a subsequent numerical analysis, Möbius provides a
large array of solvers, each with their own strengths and
weaknesses. Möbius has a direct steady-state solver, an it-
erative steady-state solver, a Takahashi steady-state solver,
a transient solver, an adaptive transient solver, an accumu-
lated reward solver, a deterministic iterative steady-state
solver, and an advanced deterministic iterative steady-state
solver [9].

2.6 Simulator
For a given model, reward, and study, Möbius can perform

a stochastic discrete event simulation to obtain results. The
simulator window allows the user to define the minimum
and maximum number of batches to constrain the extent of
a simulation. Within these bounds, the simulation proceeds
till its result converge to the confidence interval defined in
the reward model. The simulator window also has several
options for the types of trace files to generate and what level
of detailed information to output in a trace. These options
are of relevance when Möbius is used in conjunction with
Traviando, as described in section 2.7.

The Möbius simulator allows experiments to be run in a
parallel fashion. If the user’s machine is a multi-processor
machine, the Möbius simulator can make good use of each
processor. Within a network of machines, Möbius can dis-
tribute the workload across those machines by replicating
the experiments to run independently. The results from
those machines are combined by the Möbius Java client.
This has the potential to dramatically reduce the running
time of an extensive series of experiments.

2.7 Verification, Validation, and Debugging
A powerful framework like Möbius makes it easy to obtain

quantitative results from large and complex models. How-
ever, for certain steps in a simulation study there is a need
to check the dynamic behavior of a model at various lev-
els of detail; for instance, to verify if the dynamic behavior
of a model matches with a conceptual model (verification)

or a real system (validation), or simply to track down root
causes of observed phenomena if a modeler believes errors
are present in the model. For this purpose, Möbius is able
to export detailed trace data of a simulation run into a trace
file for subsequent analysis in Traviando, a trace visualizer
and analyzer. Traviando’s functionality include statistics
on state variables and actions, analysis of repetitive and
progressive fragments in a trace, reduction operations to il-
lustrate how a selected state is reached, LTL model check-
ing to identify locations where particular properties are vi-
olated and many more. Möbius traces are visualized with
message-sequence-chart-like graphics that resemble the com-
positional structure of Möbius models.

2.8 Refining The Model and Reporting Re-
sults

In practice, building a model is never a single-pass process.
From any point in the workflow, a user can go back to re-
trace previous steps to alter the existing models or add new
features to the model. However, it is important to resave
items at the same or lower levels in the dependency graph
so that any changes that have taken place will propagate
down to the solvers and/or simulator.

Once a model is in a stable state, a user often wants to
present the model definition along with the resulting data.
Möbius provides a documentation feature that allows users
to generate PNG, SVG, and PDF diagrams of the various
models in the system. The document feature will also gener-
ate an HTML file that details the inner workings of each of
the elements in a model (rates, case distributions, activation
predicates, etc.).

Möbius is also able to interface with a PostgreSQL database
for the purpose of storing results from simulation and solver
executions. Of course, the data is available for use with any
tool that can interact with a PostgreSQL database. In addi-
tion to that, the Möbius team is currently developing a data
visualization tool for researchers to manage and use their
database repository of Möbius results.

3. MÖBIUS WITH AN EXAMPLE
In order to demonstrate the use of the Möbius tool in

a realistic example with multiple formalisms, we present a
simplified model of a Lustre-like file system [5]. Our model
consists of a single metadata target (MDT) and five object
storage targets (OSTs), with failure models for each compo-
nent. In a Lustre-like file system, the MDT stores informa-
tion on directory compositions, and attributes for file data,
such as permissions, as well as file layout. OSTs are then
responsible for storage and retrieval of the file data itself. To
illustrate the concept of modeling with different formalisms,
the model is composed using Rep-Join from SAN, PEPA,
and Fault Tree models. In sections 3.1, 3.2, 3.3, and 3.4 we
will describe models for the subsystems of our Lustre-like file
system utilizing these different formalisms, combining these
atomic models in section 3.5 by sharing state-variables via
equivalence sharing.

3.1 MDT Model
The first part of our model is a simplified MDT (Fig. 3).

The primary purpose of this part is to model the processing
of Input/Output (I/O) requests as they enter the file system.
The action IORequest produces tokens in the RequestQueue.
The lack of incoming arcs represents that it draws its re-

Figure 3: Metadata Server Model using SAN

Figure 4: Metadata Failure Model using Fault-trees

quests from a theoretically infinite population, and thus
the rate of incoming requests is not changed by the state
of the model itself. Once a token is added to the place
RequestQueue, it is serviced provided the server is not in
a failed state (a condition checked for by the input gate
MetadataService). Once serviced, the cases of the Process-
MDSReq activity move the request to the appropriate OST
queue, via either the shared PEPAReq place for the PEPA
OST or one of the shared BackendRequesti places for the
SAN OSTs. The rates of the activities in this model are
provided by global variables, allowing the possibility of mod-
ifying the rates during analysis.

A portion of the MDT failure is also simulated in this
model. The fault tree model described in section 3.2 shares
the Failure place, allowing this SAN model to trigger fail-
ures with the instantaneous activity FailEvent, provided a
server is in the working state (checked for by the input gate
CheckFail). When this failure happens, both the failure to-
ken and a metadata server token are removed, and a token
is added to FailedServers. Repair is modeled by moving
tokens from FailedServers to MetadataServers.

3.2 MDT Failure Model
A fault tree is used to model the failure of metadata

servers at a greater detail than a simple failure rate. The
fault tree used here (Fig. 4) models a single MDS that can
have failures in two network cards, two CPUs, or a single
power supply. Network cards and CPUs are redundant so
they can suffer one failure without taking down the system,
but if both network cards, both CPUs, or the power supply
fail, the fault tree will record a failure event in the head node
MDSFailure, which is shared with the Failure place of the
model described in section 3.1.

pr := 0.003;
rr := 0.0003;
fr := 0.0000004;
ProcessRequest[a] = [a > 0] =>

(outa, pr).ProcessRequest[a-1];

Failure = (outa, T).Failure +
(fail, fr).(recover, rr).Failure;

System = ProcessRequest[0] <outa> Failure;

Figure 5: OST Model using PEPA

Figure 6: OST Model using SAN

3.3 OST PEPA Model
The process algebra PEPA is used to model one of the

OSTs (Fig. 5). Two processes, ProcessRequest and Failure,
are synchronized on the action outa to model the availabil-
ity/unavailability of the OST due to failure. Because the
Failure process can evolve into an unnamed process on the
fail action and then recover to Failure, it is not always
available to synchronize with ProcessRequest on outa, rep-
resenting a period where ProcessRequest cannot remove
tokens from the variable a, or a failure of the server. Oth-
erwise ProcessRequest can consume tokens from a, repre-
senting the server fulfilling I/O requests. The variable a

receives new jobs via state sharing with the MDT model’s
place PEPAReq.

3.4 OST SAN Model
The SAN model of an OST (Fig. 6) consists of two main

portions: the first is an initialization and the second is how
requests are processed. The initialization section uses the
instantaneous activity InitSANServer, along with the place
Initialize and shared place CurID, to set the place MyID to
a unique index for each instance of the model. Each of the
SANs in turn fire InitSANServer, automatically increment-
ing CurID while assigning the current value to MyID, which
is used to access the correct BackendRequesti.

The other section of the model is functionally equivalent
to the model in section 3.3. A server is in either a failed
state or not-failed state, and transitions to the failed state
eventually repairing. When not failed, it can consume I/O
requests using the activity Process.

3.5 Composed Model
The entire model is composed of the submodels described

in the preceding sections using the Rep-Join formalism (Fig. 7).
First a set of three MDT Failure models are replicated, shar-

Figure 7: Composed Model

Figure 9: Event browers

ing their head node, which is then joined with the MDT
model on the Failure place. Second,the OST PEPA model
DiskSever is joined to the MDT model by sharing the a

variable with the place PEPAReq. Finally, four OST SAN
models are replicated, sharing the places BackendRequesti

and CurID, with the places BackendRequesti being further
shared with the MDT model.

3.6 Simulating the MDT Model
For space limitations, we do not provide details on how

to specify measures of interest like mean time between fail-
ures. Möbius provides support for an ample variety of such
measures based on rate and impulse rewards, which can be
measured at any given point of time, in steady-state, ac-
cumulated over a period of time, or time-averaged over a
period of time. For any global variables declared in atomic
models, we can specify exact values or a set of values to
be exercised with a series of experiments. The evaluation
of a single experiment can be performed with discrete-event
simulation and, for certain types of models, also with a nu-
merical analysis of an associated continuous time Markov
chain. However, simulation is the evaluation method most
broadly applied in practice.

In this section, we focus on discrete-event simulation, par-
ticularly on support provided to investigate the details of a
simulation run, which can be deemed necessary if the behav-
ior of a complex model results in unexpected performance or
dependability values, and a modeler wants to examine the
detailed steps performed in a simulation run. The Möbius
simulator has options to output a simulation run as a se-

Figure 10: Mean availability of one or more Meta-

data Servers for varying repair rates, with 0.95 con-

fidence intervals.

quence of states and events in an XML-formatted trace file
that can be analyzed and visualized with Traviando. Tra-
viando is a stand alone tool to visualize simulation trace and
provide statistical as well as model-checking capabilities to
support verification and validation of simulation models.

Fig. 8 shows a fragment of a trace that results from the
simulation of the MDT model as a variant of a message
sequence chart (MSC) or sequence diagram. The compo-
sitional structure is preserved by the representation – each
process in the MSC corresponds to a node in the composed
model shown in Fig. 7. Note that the simulator sees an
n-times replicated atomic model like MetaDataFailure as n

individual submodels, which implies n corresponding pro-
cesses in the MSC. Traviando allows a user to group pro-
cesses together, which can result in a tree type hierarchical
organization of processes. This has been done in Fig. 8 to
achieve a visualization of manageable size. Scalability of vi-
sualizations is a major concern in Traviando, since traces
often result in large sets of variables (which constitute state
information visualized in separate windows), large sets of
actions (which are made accessible in a separate browser
window), large sets of processes (which can be grouped to
control the level of detail visualized in an MSC), and most
dominating, a large set of events (which implies that only
a trace fragment of configurable length is shown at a time).
The length of traces implies that a manual investigation is
tedious and tool support as given by Traviando is helpful.
Traviando provides statistical data on variables and actions.
Simulation models tend to reproduce sequences of events
with certain regularities, most notably that certain states
are reached in a repeated manner such that for debugging
purposes it is interesting to obtain a reduced trace that re-
sults from the removal of cycles. There is a measure of
progress that quantifies the length of a reduced trace. Plot-
ting the progress meausure for each prefix of a sequence of
events in a given trace shows distinctive patterns that are
helpful to identify certain errors in simulation models, e.g.,
a constraint violation for a constant customer population in
a queueing network model in [7]. Traviando also provides a
feature to perform LTL modelchecking on a given trace and

Figure 8: MSC

highlight those states in a trace that fulfill given properties.
A recently added feature in Traviando is a browser that

helps a user select sequences of events of interest. Fig. 9
shows an interactive window of actions seen in the trace
with corresponding cardinality and the possibility to expand
the node in the window to see choices for successor events
seen at various locations in the trace. In that figure, we se-
lected an event NetworkAnd which occurs only once and is
followed by events SystemOr and Repair. If the cardinality
of locations for that sequence is 1, additional information on
the particular location in the trace is given. A click on any
event in the window will show a corresponding trace frag-
ment in the MSC window, as it is the case for this example
in Fig. 8. With all this information, errors can be located
with Traviando and corrected in Möbius.

For a correct model, production runs to evaluate a large
design space can be conducted with Möbius in a distributed
manner. Results are collected in a database for further use.
The simulation of the MDT model yields numbers to evalu-
ate the dependability of the modeled file system.

Fig. 10 illustrates the use of a manual range study with
our model. The range study is used to vary the repair rate
of components in the system to illustrate the effect that
varying the repair rate over five orders of magnitude has on
the availability of one or more metadata servers. Steady-
state simulation was used to estimate mean availability of
one or more metadata servers, along with 0.95 confidence
intervals. In this example one might imagine a system design
team using Möbius to make a decision on the number of
repairmen to keep onsite, based on the marginal benefit a
reduction in repair time would yield.

4. CONCLUSION
The multi-paradigm multi-solution framework Möbius pro-

vides a comprehensive framework for a model-based depend-
ability and performance evaluation of systems. Traviando
is stand alone trace analyzer that provides complementary
functionality to the verification and debugging of simulation
models. Future work is dedicated to add more support for
distributed simulation in Möbius and for runtime verifica-

tion of distributed Möbius simulations by Traviando.

5. REFERENCES
[1] H. Bohnenkamp et al. On integrating the Möbius and

Modest modeling tools. In Proc. Dependable Systems

and Networks, 2003, pages 671–671, IEEE, 2003.

[2] G. Clark et al. The Möbius modeling tool. In Proc.

9th Int. Workshop Petri Nets and Performance

Models, pages 241–250, IEEE, 2001.

[3] D. D. Deavours et al. The Möbius framework and its
implementation. IEEE TSE, 28(10):956–969, Oct
2002.

[4] S. Derisavi et al. The Möbius state-level abstract
functional interface. Perform. Eval., 54(2):105–128,
2003.

[5] S. Gaonkar et al. Scaling file systems to support
petascale clusters: A dependability analysis to
support informed design choices. In Proc. Dependable

Systems and Networks, IEEE, 2008.

[6] R. Gulati and J. B. Dugan. A modular approach for
analyzing static and dynamic fault trees. In Proc.

Reliability and Maintainability Symposium. 1997,
pages 57–63, 1997.

[7] P. Kemper and C. Tepper. Automated trace analysis
of discrete event systems models. IEEE TSE, (in
print) 2008.

[8] R. L. Klevans and W. J. Stewart. XMARCA: User’s

Manual. Department of Computer Science, North
Carolina State University, Raleigh, N.C. 27695-8206,
USA, October 1992.

[9] Möbius Team. The Möbius Manual. University of
Illinois, Urbana Champaign, Urbana, IL – 61801, 2007.

[10] W. H. Sanders. Integrated frameworks for multi-level
and multi-formalism modeling. In Proc. 8th Int.

Workshop Petri Nets and Performance Models, pages
2–9, IEEE, 1999.

[11] W. J. Stewart. Introduction to the Numerical Solution

of Markov Chains. Princeton University Press,
Princeton, N.J., 1994.

