

CSCI 454/554 Computer and Network Security

Topic 2. Introduction to Cryptography

- Basic Crypto Concepts and Definitions
- Some Early (Breakable) Cryptosystems
- · "Key" Issues

2

- Cryptography: the art of secret writing
- Converts data into unintelligible (randomlooking) form
 - Must be reversible (can recover original data without loss or modification)
- Not the same as compression
 - *n* bits in, *n* bits out
 - Can be combined with compression
 - What's the right order?

Cryptanalysis

- "code breaking", "attacking the cipher"
- Difficulty depends on
 - sophistication of the cipher
 - amount of information available to the code breaker
- Any cipher can be broken by exhaustive trials, but rarely practical
 - When can you recognize if you have succeeded?

7

WILLIAM & MARY

×.

Ciphertext Only Attacks

WILLIAM & MARY

- Ex.: attacker can intercept encrypted communications, nothing else
 - when is this realistic?
- Breaking the cipher: analyze patterns in the ciphertext
 - provides clues about the encryption method/key

8

Known Plaintext Attacks

Chosen Plaintext Attacks WII

- Ex.: attacker intercepts encrypted text, but also has access to some of the corresponding plaintext (definite advantage)
 - When is this realistic?
- Requires plaintext-ciphertext pairs to recover the key, but the attacker cannot choose which particular pairs to access.
 - Makes some codes (e.g., monoalphabetic ciphers) very easy to break

9

- Ex.: attacker can choose any plaintext desired, and intercept the corresponding ciphertext
 - When is this realistic?
- Choose exactly the messages that will reveal the most about the cipher

10

3000 P

Chosen Ciphertext Attacks WILLIAM & MARY

- Ex.: attacker can present any ciphertext desired to the cipher, and get the corresponding plaintext
 - When is this realistic?
- Isn't this the goal of cryptanalysis???

30000 P

The "Weakest Link" in Security

WILLIAM / どMARY

- Cryptography is rarely the weakest link
- Weaker links
 - Implementation of cipher
 - Distribution or protection of keys

12

- Ciphertext does not reveal any information about which plaintexts are more likely to have produced it
 - i.e., the cipher is robust against chosen ciphertext attacks

and

- Plaintext does not reveal any information about which ciphertexts are more likely to be produced
 - i.e, the cipher is robust against chosen plaintext attacks

13

 The cost of breaking the cipher quickly exceeds the value of the encrypted information

and/or

- 2. The time required to break the cipher exceeds the useful lifetime of the information
- Under the assumption there is not a faster / cheaper way to break the cipher, waiting to be discovered

14

Secret Keys vs. Secret Algorithms

WILLIAM GMARY

- Security by obscurity
 - We can achieve better security if we keep the algorithms secret
 - Hard to keep secret if used widely
 - · Reverse engineering, social engineering
- Publish the algorithms
 - Security of the algorithms depends on the secrecy of the keys
 - Less unknown vulnerability if all the smart (good) people in the world are examine the algorithms

15

Secret Keys vs. Secret Algorithms

WILLIAN & MARY

- Commercial world
 - Published
 - · Wide review, trust
- Military
 - Keep algorithms secret
 - Avoid giving enemy good ideas
 - Military has access to the public domain knowledge anyway.

WILLIAM &MARY

- Number of keys
 - · Hash functions: no key
 - Secret key cryptography: one key
 - <u>Public key cryptography</u>: two keys public, private
- The way in which the plaintext is processed
 - <u>Stream cipher</u>: encrypt input message one symbol at a time
 - <u>Block cipher</u>: divide input message into <u>blocks</u> of symbols, and processes the blocks in sequence
 - May require padding

37

Secret Key Cryptography (Cont'd) MARY

- Basic technique
 - Product cipher:
 - Multiple applications of interleaved substitutions and permutations

3

Secret Key Cryptography (Cont'd) MARY

- Ciphertext approximately the same length as plaintext
- Examples

Stream Cipher: RC4

Block Cipher: DES, IDEA, AES

40

Applications of Secret Key Cryptography

- · Transmitting over an insecure channel
 - Challenge: How to share the key?
- · Secure Storage on insecure media
- Authentication
 - · Challenge-response
 - To prove the other party knows the secret key
 - Must be secure against chosen plaintext attack
- Integrity check
 - Message Integrity Code (MIC)
 - . a.k.a. Message Authentication Code (MAC)

Public Key Cryptography (PKC)

plaintext
encryption
Public key
Private key

Invented/published in 1975

A public/private key pair is used
Public key can be publicly known
Private key is kept secret by the owner of the key

- Much slower than secret key cryptography
- Also known as

Asymmetric cryptography

- - Only the party with the private key can create a digital
 - The digital signature is verifiable by anyone who knows the public key.
 - The signer cannot deny that he/she has done so.
 - The signature is created on a hash value of the message.

- · Data transmission:
 - Alice encrypts m_a using Bob's public key $e_{B'}$ Bob decrypts m_a using his private key d_B .
- Storage:
 - Can create a safety copy: using public key of trusted person.
- Authentication:
 - · No need to store secrets, only need public keys.
 - Secret key cryptography: need to share secret key for every person to communicate with.

- Digital signatures
 - Sign hash H(m) with the private key
 - Authorship
 - Integrity
 - Non-repudiation: can't do with secret key cryptography
- Key exchange
 - Establish a common session key between two parties
 - Particularly for encrypting long messages

45

- Message digests
- One-way transformations
- One-way functions
- Hash functions
- Length of H(m) much shorter then length of m
- Usually fixed lengths: 128 or 160 bits

Hash Algorithms (Cont'd)

- Desirable properties of hash functions
 - Performance: Easy to compute H(m)
 - One-way property (Preimage resistance): Given H(m) but not m, it's difficult to find m.
 - Weak collision free (Second preimage resistance): Given m_1 , it's difficult to find m_2 such that $H(m_1) = H(m_2)$.
 - Strong collision free (Collision Resistance): Computationally infeasible to find m_1 , m_2 such that $H(m_1) = H(m_2)$

Applications of Hash Functions MARY Primary application Generate/verify digital signatures Message Signature Sign Sig(H(m))Private key Message Н Verify Yes/No Signature Sig(H(m))Public key

- Password hashing
 - Doesn't need to know password to verify it
 - Store *H*(*password+salt*) and salt, and compare it with the user-entered password
 - Salt makes dictionary attack more difficult
- Message integrity
 - Agree on a secrete key k
 - Compute H(m|k) and send with m
 - Doesn't require encryption algorithm, so the technology is exportable

49

- Message fingerprinting
 - Verify whether some large data structures (e.g., a program) has been modified
 - Keep a copy of the hash
 - At verification time, recompute the hash and compare
 - Hashing program and the hash values must be protected separately from the large data structures

50

Summary

- Cryptography is a fundamental, and most carefully studied, component of security
 - not usually the "weak link"
- "Perfectly secure" ciphers are possible, but too expensive in practice
- Early ciphers aren't nearly strong enough
- Key distribution and management is a challenge for any cipher