

- Communicating securely over an insecure channel
 - Alice encrypts using shared key
 - Bob decrypts result using same shared key
- Secure storage on insecure media
 - Bob encrypts data before storage
 - Bob decrypts data on retrieval using the same key

7

Applications... (Cont'd) WILLIAM GMARY

- Message integrity
 - Alice computes a message integrity code (MIC) from the message, then encrypts with shared key
 - Bob decrypts the MIC on receipt, and verifies that it agrees with message contents
- Authentication
 - Bob can verify Alice sent the message
 - how is that possible?

8

128 bits are adequate for now
 If computers increase in power by 40% per year, need roughly 5 more key bits per decade to stay "sufficiently" hard to break

10

Two Principles for Cipher Design WILLIAM
 Confusion:

 Make the relationship between the <plaintext, key> input and the <ciphertext> output as complex (nonlinear) as possible
 Diffusion:

Spread the influence of each input bit across many output bits

- "We don't know if
 - the particular details were well-chosen for strength,
 - whether someone flipped coins to construct the S-boxes,
 - or whether the details were chosen to have a weakness that could be exploited by the designers."

Principles for S-Box Design WILLIAM Principles for S-Box Design WI

- S-box is the only non-linear part of DES
- Each row in the S-Box table should be a permutation of the possible output values
- Output of one S-box should affect other Sboxes in the following round

Desirable Property: Avalanche Effect WILLIAM & MARY

- Roughly: a small change in either the plaintext or the key should produce a big change in the ciphertext
- Better: any output bit should be inverted (flipped) with probability 0.5 if any input bit is changed
- f function
 - must be difficult to un-scramble
 - should achieve avalanche effect
 - output bits should be uncorrelated

DES Avalanche Effect: Example WILLIAM WARY 2 plaintexts with 1 bit difference: 0x8000000000000000

0x016B24621C181C32 Resulting ciphertexts differ in 34 bits (out of 64)

encrypted using the same key:

Similar results when keys differ by 1 bit

Example (cont'd) WILLIAM An experiment: number of rounds vs. number of bits difference 21 35 39 34 32 31 29 Bits

DES: Keys to Avoid Using WILLIAM WARY

- "Weak keys": 4 keys with property $K\{K\{m\}\} = m$
- What's bad about that?
- These are keys which, after the first key permutation, are:
 - 28 0's followed by 28 0's
 - 28 0's followed by 28 1's
 - 28 1's followed by 28 0's
 - 28 1's followed by 28 1's

More Keys to Avoid!

"Semi-weak keys": pairs of keys with the property

 $K_1\{K_2\{m\}\}\} = m$

- What's bad about that?
- These are keys which, after the first key permutation, are:
 - 1. 28 0's followed by alternating 0's and 1's
 - 28 0's followed by alternating 1's and 0's

12. alternating 1's and 0's followed by alternating 1's and

Ŵ

DES Key Size

- 56 bits is currently too small to resist brute force attacks using readily-available hardware
- Ten years ago it took \$250,000 to build a machine that could crack DES in a few hours
- Now?

Cryptanalysis of DES

- Differential cryptanalysis exploits differences between encryptions of two different plaintext blocks
 - provides insight into possible key values
 - DES well designed to defeat differential analysis
- Linear cryptanalysis requires known plaintext / ciphertext pairs, analyzes relationships to discover key value
 - for DES, requires analyzing O(2⁴⁷) pairs
- No attacks on DES so far are significantly better than brute force attacks, for comparable cost

WILLIAM & MARY

Overview

- Selected from an open competition, organized by NSA
 - winner: Rijndael algorithm, standardized as AES
 - A short history: http://www.moserware.com/2009/09/stick-figureguide-to-advanced.html
- Some similarities to DES (rounds, round keys, alternate permutation+substitution)
 - but not a Feistel cipher
- Block size = 128 bits
- Key sizes = 128, 192, or 256
- · Main criteria: secure, well justified, fast

AES (Advanced Encryption Standard)

- column is used to look up four 4-byte intermediate columns $t_{i}...t_{i+3}$ from a table (next slide)
- The intermediate columns t_i...t_{i+3} are then combined (next slide + 1):
 - rotate vertically so top octet of t_i is in the same row as input octet (a_i)
 - XOR the four rotated columns together

Key Expansion Rationale WILLIAM

- Designed to resist known attacks
- Design criteria include
 - knowing part of the key doesn't make it easy to find entire key
 - key expansion must be invertible, but enough non-linearity to hinder analysis
 - should be fast to compute, simple to describe and analyze
 - key bits should be diffused into the round keys

Mathematics

Mathematics

Milliam

AES Operates on the binary field $GF(2^8)$ this can be represented as a polynomial b(x) with binary coefficients $b \in \{0,1\}$: $b_7x^7 + b_6x^6 + b_5x^5 + b_4x^4 + b_3x^3 + b_2x^2 + b_1x + b_0$ Multiplication in $GF(2^8)$ consists of multiplying two polynomials modulo an irreducible polynomial of degree 8

AES uses the following irreducible polynomial $m(x) = x^8 + x^4 + x^3 + x + 1$

AES-128 Decryption (Conceptual) WILLIAM OF MARY

- Run cipher in reverse, with inverse of each operation replacing the encryption operations
- Inverse operations:
 - XOR is its own inverse
 - inverse of S-box is just the inverse table (next slide)
 - inverse of rotation in one direction is rotation in other direction
 - inverse of MixColumn is just the inverse table (next slide + 1)

- Run cipher in forward direction, except...
 - use inverse operations
 - apply round keys in reverse order
 - apply InvMixColumn to round keys K1..K9
- Decryption takes more memory and cycles encryption
 - can only partially reuse hardware for encryption

74

W.C

AES Assessment

- Speed: about 16 clock cycles/byte on modern 32-bit CPUs
 - 200 MByte/s on a PC, no special hardware!
- No known successful attacks on full AES
 - best attacks work on 7-9 rounds (out of 10-14 rounds)
- Clean design
- For brute force attacks, AES-128 will take $4*10^{21}$ X (= 2^{72}) more effort than DES

75

Ŵ

Attacks on AES

Differential Cryptanalysis: based on how differences in inputs correlate with differences in outputs

- greatly reduced due to high number of rounds

Linear Cryptanalysis: based on correlations between input and output

 S-Box & MixColumns are designed to frustrate Linear Analysis

Side Channel Attacks: based on peculiarities of the implementation of the cipher

76

Side Channel Attacks

Timing Attacks: measure the time it takes to do operations

- some operations, with some operands, are much faster than other operations, with other operand values
- provides clues about what internal operations are being performed, and what internal data values are being produced

Power Attacks: measures power to do operations

 changing one bit requires considerably less power than changing many bits in a byte

77

Summary

- Secret key crypto is (a) good quality, (b) faster to compute than public key crypto, and (c) the most widely used crypto
- DES strong enough for non-critical applications, but triple-DES is better
- AES even better (stronger and much faster), has versions with 128-, 192-, and 256-bit keys
- Secret key crypto requires "out-of-band", bilateral key negotiation/agreement