

CSCI 454/554 Computer and Network Security

Topic 3.2 Secret Key Cryptography – Modes of Operation

Processing with Block Ciphers WILLIAM Block Ciphers

- Most ciphers work on blocks of fixed (small) size
- How to encrypt long messages?
- Modes of operation
 - ECB (Electronic Code Book)
 - CBC (Cipher Block Chaining)
 - OFB (Output Feedback)
 - CFB (Cipher Feedback)
 - CTR (Counter)

Issues for Block Chaining Modes

- Information leakage
 - Does it reveal info about the plaintext blocks?
- Ciphertext manipulation
 - Can an attacker modify ciphertext block(s) in a way that will produce a predictable/desired change in the decrypted plaintext block(s)?
 - Note: assume the structure of the plaintext is known, e.g., first block is employee #1 salary, second block is employee #2 salary, etc.

Issues... (Cont'd)

Parallel/Sequential

 Can blocks of plaintext (ciphertext) be encrypted (decrypted) in parallel?

Error propagation

If there is an error in a plaintext (ciphertext) block, will there be an encryption (decryption) error in more than one ciphertext (plaintext) block?

Electronic Code Book (ECB) WILLIAM (ECB) WILLIAM (ECB)

 The easiest mode of operation; each block is independently encrypted

ECB Decryption

Each block is independently decrypted

ECB Properties

- Does information leak?
- Can ciphertext be manipulated profitably?
- Parallel processing possible?
- Do ciphertext errors propagate?

Cipher Block Chaining (CBC)

 Chaining dependency: each ciphertext block depends on all preceding plaintext blocks

Initialization Vectors

- Initialization Vector (IV)
 - Used along with the key; not secret
 - For a given plaintext, changing either the key, or the IV, will produce a different ciphertext
 - Why is that useful?
- IV generation and sharing
 - Random; may transmit with the ciphertext
 - Incremental; predictable by receivers

CBC Decryption

How many ciphertext blocks does each plaintext block depend on?

CBC Properties

- Does information leak?
 - Identical plaintext blocks will produce different ciphertext blocks
- Can ciphertext be manipulated profitably?
 - ???
- Parallel processing possible?
 - no (encryption), yes (decryption)
- Do ciphertext errors propagate?
 - yes (encryption), a little (decryption)

Output Feedback Mode (OFB) WILLIAM GMARY

OFB Decryption

No block decryption required!

OFB Properties

- Does information leak?
 - identical plaintext blocks produce different ciphertext blocks
- Can ciphertext be manipulated profitably?
 - ???
- Parallel processing possible?
 - no (generating pad), yes (XORing with blocks)
- Do ciphertext errors propagate?
 - ???

OFB ... (Cont'd)

- If you know one plaintext/ciphertext pair, can easily derive the one-time pad that was used
 - i.e., should not reuse a one-time pad!
- Conclusion: IV must be different every time

Cipher Feedback Mode (CFB) WILLIAM CIPHER Feedback Mode (CFB)

Ciphertext block C_j depends on all preceding plaintext blocks

CFB Decryption

No block decryption required!

CFB Properties

- Does information leak?
 - Identical plaintext blocks produce different ciphertext blocks
- Can ciphertext be manipulated profitably?
 - ???
- Parallel processing possible?
 - no (encryption), yes (decryption)
- Do ciphertext errors propagate?
 - . ???

Counter Mode (CTR)

CTR Mode Properties

- Does information leak?
 - Identical plaintext block produce different ciphertext blocks
- Can ciphertext be manipulated profitably
 - . ???
- Parallel processing possible
 - Yes (both generating pad and XORing)
- Do ciphertext errors propagate?
 - . ???
- Allow decryption the ciphertext at any location
 - Ideal for random access to ciphertext

CSCI 454/554 Computer and Network Security

Topic 3.3 Secret Key Cryptography – Triple DES

Stronger DES

- Major limitation of DES
 - Key length is too short
- Can we apply DES multiple times to increase the strength of encryption?

Double Encryption with DES

- Encrypt the plaintext twice, using two different DES keys
- Total key material increases to 112 bits
 - is that the same as key strength of 112 bits?

Concerns About Double DES

- Wasn't clear at the time if DES was a group (it's not)
 - If it were, then $E_{k2}(E_{k1}(P)) = E_{k3}(P)$, for all P
 - Not good?
- Possible attack (better than brute force): meet-in-the-middle
 - A known-plaintext attack

The Meet-in-the-Middle Attack WILLIAM CHARY

- Choose a plaintext P and generate ciphertext C, using double-DES with $\mathcal{K}1+\mathcal{K}2$
- Then...
 - encrypt P using single-DES for all possible 2⁵⁶ values K₁ to generate all possible single-DES ciphertexts for P: $X_1, X_2, ..., X_2$ 56; store these in a table indexed by ciphertex values
 - b. decrypt C using single-DES for all possible 2⁵⁶ values K₂ to generate all possible single-DES plaintexts for C: $Y_1, Y_2, ..., Y_2 = 56$; for each value, check the table

Steps ... (Cont'd)

- Meet-in-the-middle:
 - each match (X_i = Y_j) reveals a candidate keypair K_i+K_j
 - there should be approx. $(2^{112} / 2^{64}) = 2^{48}$ such pairs for one value of (P,C)
 - 2¹¹² possible keys, but there are only 2⁶⁴ X's
- 4. Repeat the above, for a second plaintext/ ciphertext pair (P',C'), and find those 2⁴⁸ candidate keypairs K_i'+K_i'

Why 248 (another view)?

- -The table contains only $2^{56}/2^{64} = 1/2^8$ of all possible 64-bit values
- -there are 2⁵⁶ entries X_i
- -for each X_i , there is only $1/2^8$ chance there is a matching Y_i

Steps ... (Cont'd)

- Look for an identical candidate keypair that produces collisions for both (P,C) and (P',C')
 - the probability the same candidate keypair occurs for both plaintexts, but is not the keypair used in the double-DES encryption: 2⁴⁸ / 2⁶⁴ = 2⁻¹⁶
- An expensive attack (computation + storage)
 - still, enough of a threat to discourage use of double-DES

```
Why 2-16?
```

- -there are about 2^{48} candidate keypairs $K_i + K_j$
- -at most one is $\mathcal{K}1+\mathcal{K}2$, the rest are imposters
- -if $K_i + K_j$ is an imposter, the probability using $K_i + K_j$ that E(P') = D(C') is $1/2^{64}$

Triple Encryption (Triple DES-EDE MARY

- Why not E-E-E?
 - again, wasn't clear if DES was a group
- Apply DES encryption/decryption three times
 - why not 3 different keys?
 - why not the same key 3 times?

Triple DES (Cont'd)

- Widely used
 - equivalent strength to using a 112 bit key
 - strength about 2¹¹⁰ against M-I-T-M attack
- However: inefficient / expensive to compute
 - one third as fast as DES on the same platform, and DES is already designed to be slow in software
- Next question: how is block chaining used with triple-DES?

3DES-EDE: Outside Chaining Mode MARY

What basic chaining mode is this?

3DES-EDE: OCM Decryption

OCM Properties

- Does information leak?
 - identical plaintext blocks produce different ciphertext blocks
- Can ciphertext be manipulated profitably?
 - ???
- Parallel processing possible?
 - no (encryption), yes (decryption)
- Do ciphertext errors propagate?
 - . ???

3DES-EDE: Inside Chaining Mode GMARY

3DES-EDE: ICM Decryption WILLIAM Decryption WILLIAM Decryption WILLIAM DECRYPTION DECRYP

3DES-EEE: Inside Chaining Mode WILLIAM & MARY

3-DES EEE: ICM Decryption

CSCI 454/554 Computer and Network Security

Topic 3.4 Secret Key Cryptography – MAC with Secret Key Ciphers

Message Authentication

- Encryption easily provides confidentiality of messages
 - only the party sharing the key (the "key partner") can decrypt the ciphertext
- How to use encryption to authenticate messages? That is,
 - prove the message was created by the key partner
 - prove the message wasn't modified by someone other than the key partner

Approach #1

- The quick and dirty approach
- If the decrypted plaintext "looks plausible", then conclude ciphertext was produced by the key partner
 - i.e., illegally modified ciphertext, or ciphertext encrypted with the wrong key, will probably decrypt to randomlooking data
- But, is it easy to verify data is "plausible-looking"? What if all data is plausible?

Approach #2: Plaintext+Ciphertext

- Send plaintext and ciphertext
 - receiver encrypts plaintext, and compares result with received ciphertext
 - forgeries / modifications easily detected
 - any problems / drawbacks?

Approach #3: Use Residue WILLIAM MARY

- Encrypt plaintext using DES CBC mode, with IV set to zero
 - the last (final) ciphertext output block is called the residue

Approach #3... (Cont'd)

- Transmit the plaintext and this residue
 - receiver computes same residue, compares to the received residue
 - forgeries / modifications highly likely to be detected

Message Authentication Codes WILLIAM CODES W

- MAC: a small fixed-size block (i.e., independent of message size) generated from a message using secret key cryptography
 - also known as cryptographic checksum

Requirements for MAC

- Given M and MAC(M), it should be computationally infeasible (expensive) to construct (or find) another message M' such that MAC(M') = MAC(M)
- MAC(M) should be uniformly distributed in terms of M
 - for randomly chosen messages M and M',
 P(MAC(M)=MAC(M')) = 2^{-k}, where k is the number of bits in the MAC

Requirements ... (cont'd)

Knowing MAC(M1), MAC(M2), . . . of some (known or chosen) messages M1, M2, . . ., it should be computationally infeasible for an attacker to find the MAC of some other message M'

Crypto for Confidentiality AND Authenticity? WILLIAM MARY

- So far we've got
 - confidentiality (encryption),

or...

- authenticity (MACs)
- Can we get both at the same time with one cryptographic operation?

Attempt #1

- Sender computes an error-correcting code or Frame-Check Sequence (FCS) F(P) of the plaintext P
- 2. Sender concatenates P and F(P) and encrypts
 - i.e., $C = E_K(P | F(P))$
- Receiver decrypts received ciphertext C' using K, to get P'|F'
- 4. Receiver computes F(P') and compares to F' to authenticate received message P' = P
- How does this authenticate P?

Attempt #1... (Cont'd)

- The order (1) FCS, then (2) encryption is critical
 - why not (2), then (1)?
- "Subtle weaknesses" known in this approach, so not preferred

Attempt #2

- Compute residue (MAC) using key K1
- Encrypt plaintext message M using key K2 to produce C
- 3. Transmit MAC | C to receiver
- 4. Receiver decrypts received C' with K2 to get P'
- 5. Receiver computes MAC(P') using K1, compares to received MAC'

Attempt #2... (cont'd)

- Good (cryptographic) quality, but...
- Expensive! Two separate, full encryptions with different keys are required

Summary

- ECB mode is not secure
 - CBC most commonly used mode of operation
- Triple-DES (with 2 keys) is much stronger than DES
 - usually uses EDE in Outer Chaining Mode
- MACs use crypto to authenticate messages at a small cost of additional storage / bandwidth
 - but at a high computational cost