

CSCI 454/554 Computer and Network Security

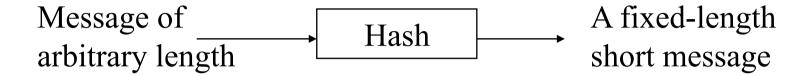
Topic 4. Cryptographic Hash Functions

Outline

- Hash function lengths
- Hash function applications
- MD5 standard
- SHA-1 standard
- Hashed Message Authentication Code (HMAC)

Hash Function Properties

Hash Function



- Also known as
 - Message digest
 - One-way transformation
 - One-way function
 - Hash
- Length of H(m) much shorter then length of m
- Usually fixed lengths: 128 or 160 bits

- Consider a hash function H
 - Performance: Easy to compute H(m)
 - One-way property (preimage resistant): Given H(m) but not m, it's computationally infeasible to find m
 - Weak collision resistant (2-nd preimage resistant): Given H(m), it's computationally infeasible to find m' such that H(m') = H(m).
 - Strong collision resistant (collision resistant): Computationally infeasible to find m_1 , m_2 such that $H(m_1) = H(m_2)$

Length of Hash Image

- Question
 - Why do we have 128 bits or 160 bits in the output of a hash function?
 - If it is too long
 - Unnecessary overhead
 - If it is too short
 - Birthday paradox
 - Loss of strong collision property

Birthday Paradox

• Question:

- What is the smallest group size *k* such that
 - The probability that at least two people in the group have the same birthday is greater than 0.5?
 - Assume 365 days a year, and all birthdays are equally likely
- P(k people having k different birthdays):

```
Q(365,k) = 365!/(365-k)!365^k
```

P(at least two people have the same birthday):

```
P(365,k) = 1-Q(365,k) \ge 0.5
```

k is about 23

Birthday Paradox (Cont'd)

- Generalization of birthday paradox
 - Given
 - a random integer with uniform distribution between 1 and n, and
 - a selection of k instances of the random variables,
 - What is the least value of k such that
 - There will be at least one duplicate
 - with probability P(n,k) > 0.5, ?

Birthday Paradox (Cont'd)

- Generalization of birthday paradox
 - $P(n,k) \approx 1 e^{-k*(k-1)/2n}$
 - For large n and k, to have P(n,k) > 0.5 with the smallest k, we have

$$k = \sqrt{2(\ln 2)n} = 1.18\sqrt{n} \approx \sqrt{n}$$

- Example
 - $1.18*(365)^{1/2} = 22.54$

Birthday Paradox (Cont'd)

- Implication for hash function H of length m
 - With probability at least 0.5
 - If we hash about 2^{m/2} random inputs,
 - Two messages will have the same hash image
 - Birthday attack
- Conclusion
 - Choose $m \ge 128$

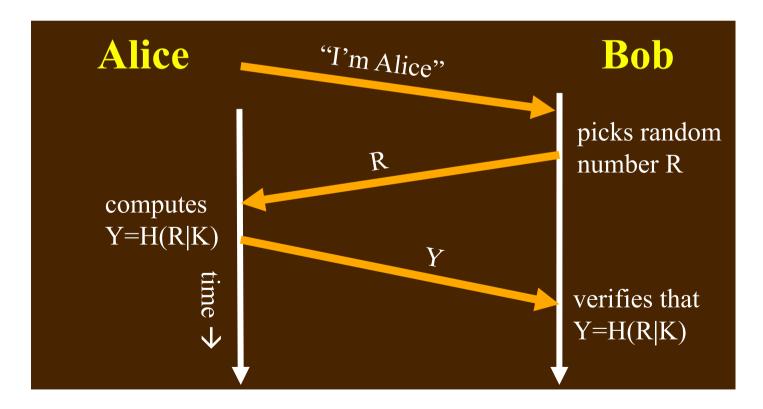
Hash Function Applications

Application: File Authentication

- Want to detect if a file has been changed by someone after it was stored
- Method
 - Compute a hash H(F) of file F
 - Store H(F) separately from F
 - Can tell at any later time if F has been changed by computing H(F') and comparing to stored H(F)
- Why not just store a duplicate copy of F???

Application: User Authentication WILLIAM GMARY

- Alice wants to authenticate herself to Bob
 - assuming they already share a secret key K
- Protocol:



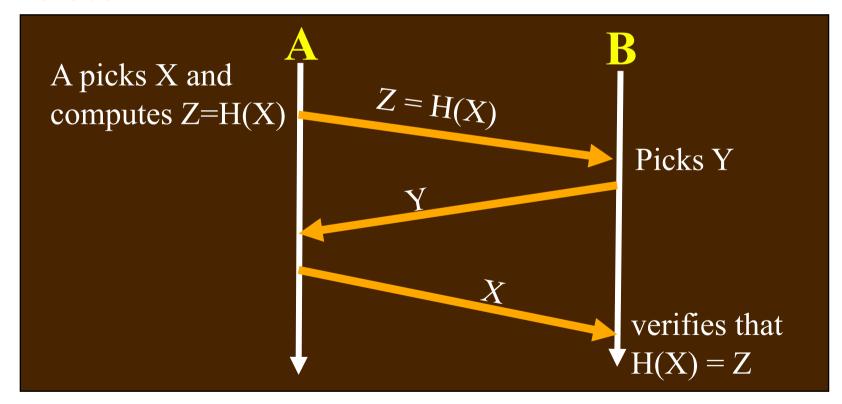
User Authentication... (cont'd) WILLIAM (cont'd) WILLIAM (cont'd)

- Why not just send...
 - ...K, in plaintext?
 - ...H(K)? , i.e., what's the purpose of R?

- Ex.: A and B wish to play the game of "odd or even" over the network
 - 1. A picks a number X
 - 2. B picks another number Y
 - 3. A and B "simultaneously" exchange X and Y
 - 4. A wins if X+Y is odd, otherwise B wins
- If A gets Y before deciding X, A can easily cheat (and vice versa for B)
 - How to prevent this?

Commitment... (Cont'd)

- Proposal: A must commit to X before B will send Y
- Protocol:



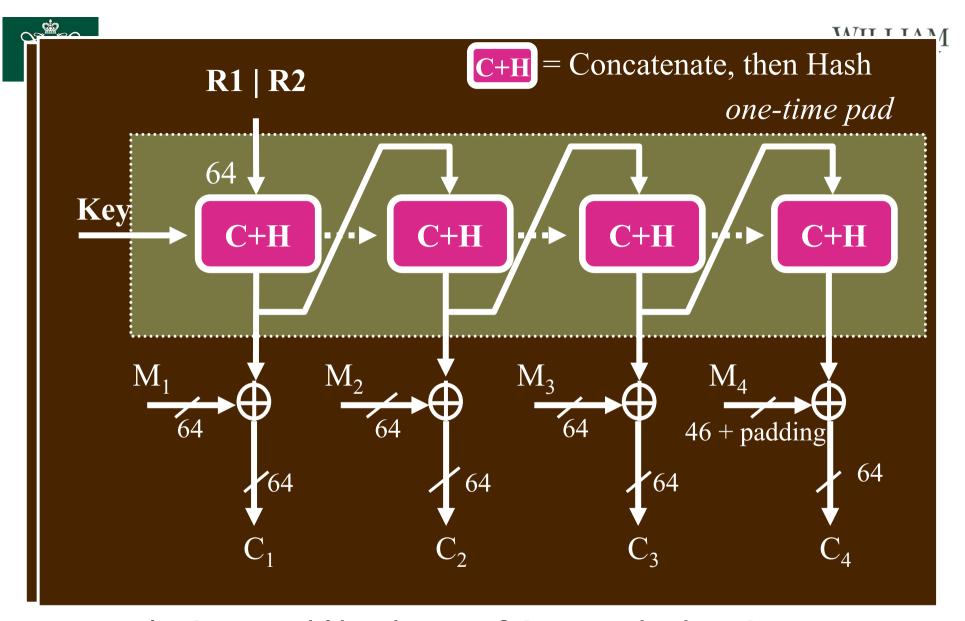
Can either A or B successfully cheat now?

Commitment... (Cont'd)

- Why is sending H(X) better than sending X?
- Why is sending H(X) good enough to prevent A from cheating?
- Why is it not necessary for B to send H(Y) (instead of Y)?
- What problems are there if:
 - 1. The set of possible values for X is small?
 - 2. B can predict the next value X that A will pick?

Application: Message Encryption

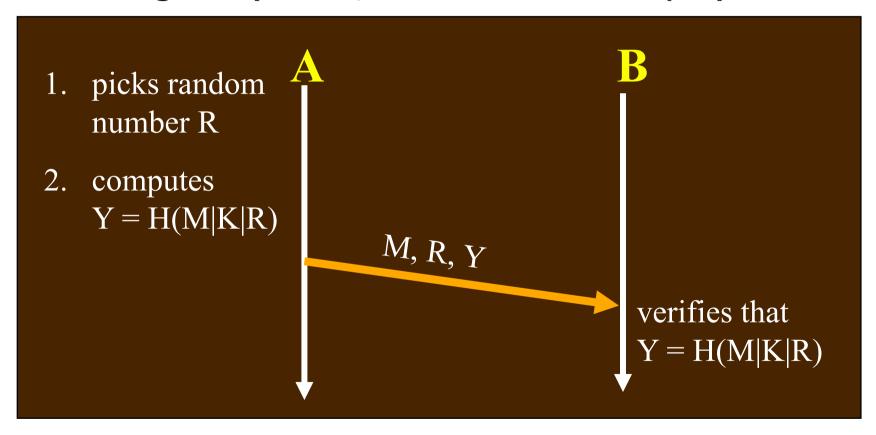
- Assume A and B share a secret key K
 - but don't want to just use encryption of the message with K
- A sends B the (encrypted) random number R1,
 B sends A the (encrypted) random number R2
- And then...



R1 | R2 is used like the IV of OFB mode, but C+H replaces encryption; as good as encryption?

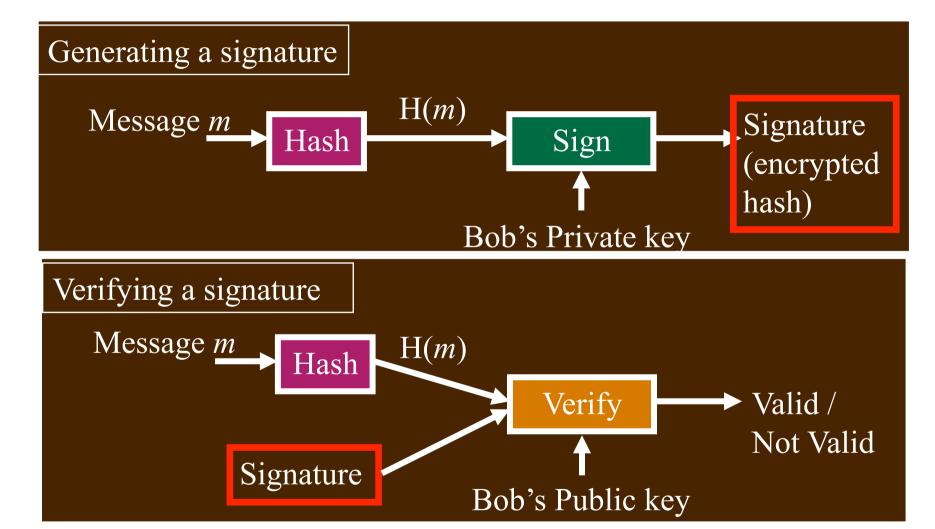
Application: Message Authentication

 A wishes to authenticate (but not encrypt) a message M (and A, B share secret key K)



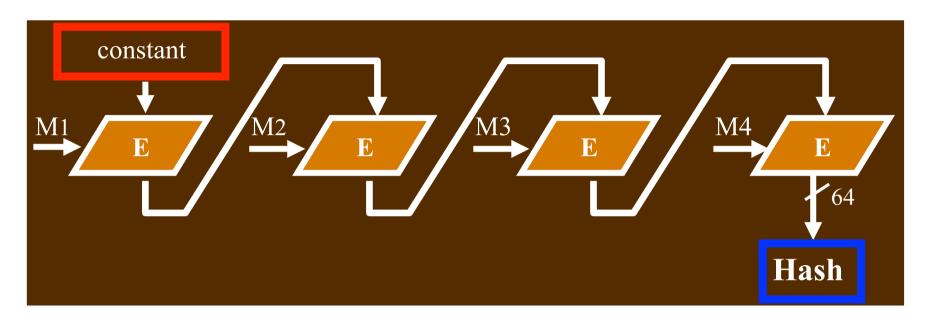
• Why is R needed? Why is K needed?

Application: Digital Signatures WILLIAM SIGNATURES



Only one party (Bob) knows the private key

Is Encryption a Good Hash Function? WILLIA GMARY



- Building hash using block chaining techniques
 - Encryption block size may be too short (DES=64)
 - Birthday attack
 - Can construct a message with a particular hash fairly easily
 - **Extension attacks**

Hash Using Block Chaining Techniques MARY

Meet-in-the-middle attack

- Get the correct hash value G
- Construct any message in the form Q₁, Q₂, ..., Q_{n-2}
- Compute $H_i = E_{Oi}(H_{i-1})$ for $1 \le i \le (n-2)$.
- Generate $2^{m/2}$ random blocks; for each block X, compute $E_X(H_{n-2})$.
- Generate $2^{m/2}$ random blocks; for each block Y, compute $D_Y(G)$.
- With high probability there will be an X and Y such that $E_X(H_{n-2}) = D_Y(G)$.
- Form the message Q_1 , Q_2 , ..., Q_{n-2} , X, Y. It has the hash value G.

Modern Hash Functions

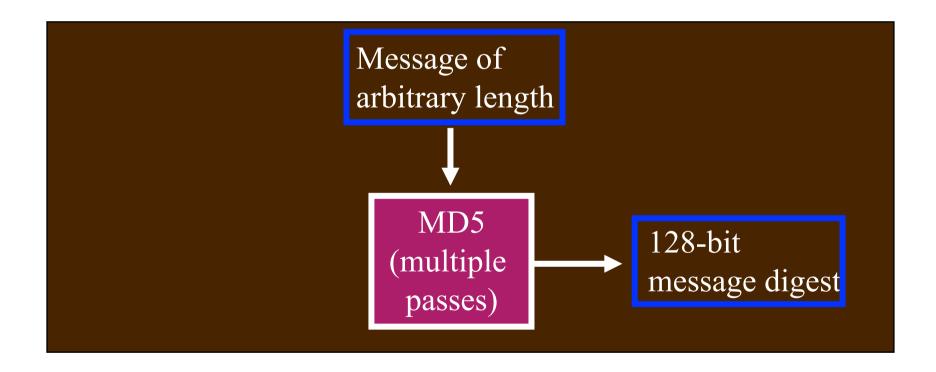
MD5

- Previous versions (i.e., MD2, MD4) have weaknesses.
- Broken; collisions published in August 2004
- Too weak to be used for serious applications
- SHA (Secure Hash Algorithm)
 - Weaknesses were found
- SHA-1
 - Broken, but not yet cracked
 - Collisions in 2⁶⁹ hash operations, much less than the brute-force attack of 2⁸⁰ operations
 - Results were circulated in February 2005, and published in CRYPTO '05 in August 2005
- SHA-2 (SHA-256, SHA-384, ...)

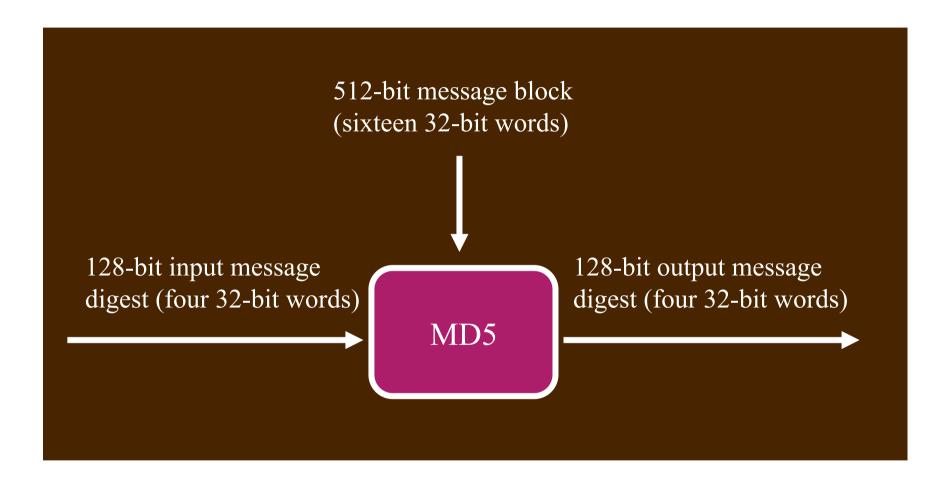
MD5 Hash Function

MD5: Message Digest Version 5 WILLIAM GMARY

MD5 at a glance

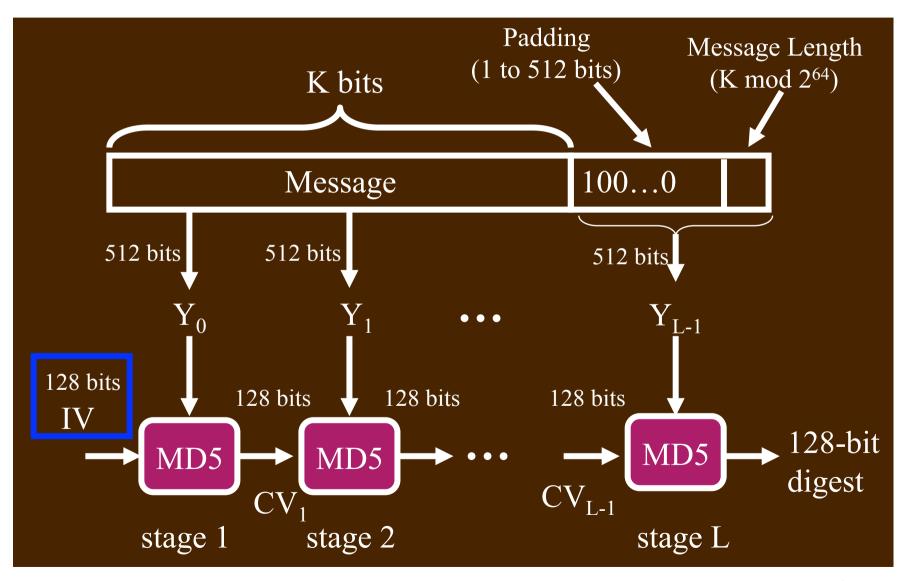


Processing of A Single Block MARY



Called a compression function

MD5: A High-Level View WILLIAM GMARY



Padding

- There is always padding for MD5, and padded messages must be multiples of 512 bits
- To original message M, add padding bits "10...
 0"
 - enough 0's so that resulting total length is 64 bits less than a multiple of 512 bits
- Append L (original length of M), represented in 64 bits, to the padded message
- Footnote: the bytes of each 32-bit word are stored in little-endian order (LSB to MSB)

Padding... (cont'd)

- How many 0's if length of M =
- n * 512?
- n * 512 64?
- n * 512 65?

Preliminaries

- The four 32-bit words of the output (the digest) are referred to as d0, d1, d2, d3
- Initial values (in little-endian order)
 - **d0** = 0x67452301
 - $\mathbf{d1} = 0 \times \text{EFCDAB89}$
 - $\mathbf{d2} = 0x98BADCFE$
 - **d3** = 0x10325476
- The sixteen 32-bit words of each message block are referred to as m0, ..., m15
 - (16*32 = 512 bits in each block)

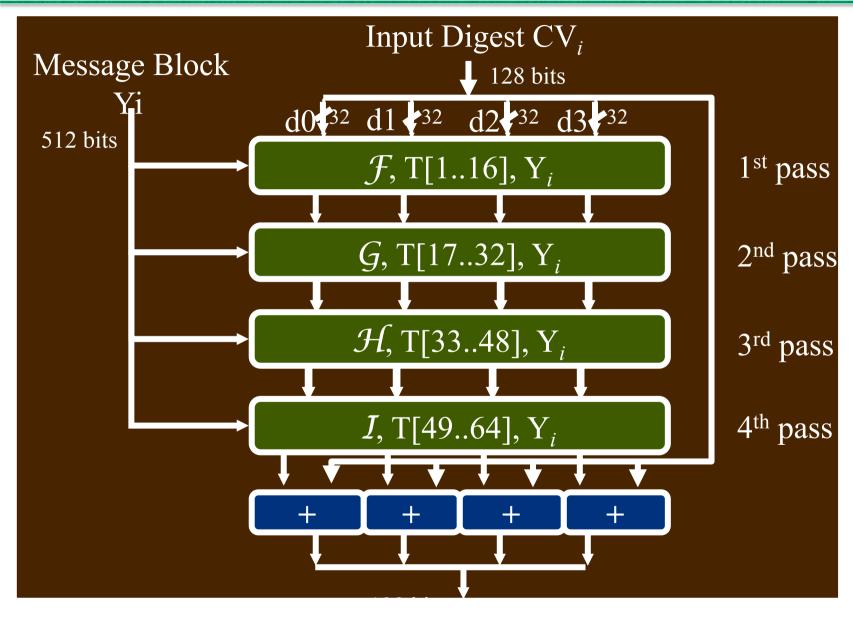
Notation

- $\sim x$ = bit-wise complement of x
- $x \land y$, $x \lor y$, $x \oplus y$ = bit-wise AND, OR, XOR of x and y
- x < y =left circular shift of x by y bits
- x+y = arithmetic sum of x and y (discarding carry-out from the msb)
- |x| = |x| = |x| = |x| = |x|

Processing a Block-Overview WILLIAM Processing a Block-Overview

- Every message block Yi contains 16 32-bit words:
 - m₀ m₁ m₂ ... m₁₅
- A block is processed in 4 consecutive passes, each modifying the MD5 buffer $d_0, ..., d_3$.
 - Called \mathcal{F} , \mathcal{G} , \mathcal{H} , \mathcal{I}
- Each pass uses one-fourth of a 64-element table of constants, T[1...64]
 - $T[i] = \lfloor 2^{32*}abs(sin(i)) \rfloor$, represented in 32 bits
- Output digest = input digest + output of 4th pass

Overview (Cont'd)



1st Pass of MD5

- $\mathcal{F}(x,y,z) \stackrel{\text{def}}{=} (x \wedge y) \vee (\sim x \wedge z)$
- 16 processing steps, producing d₀...d₃ output:

$$\mathbf{d}_{i} = \mathbf{d}_{j} + (\mathbf{d}_{k} + \mathcal{F}(\mathbf{d}_{l} \mathbf{d}_{m}, \mathbf{d}_{n}) + \mathbf{m}_{o} + \mathsf{T}_{p})$$

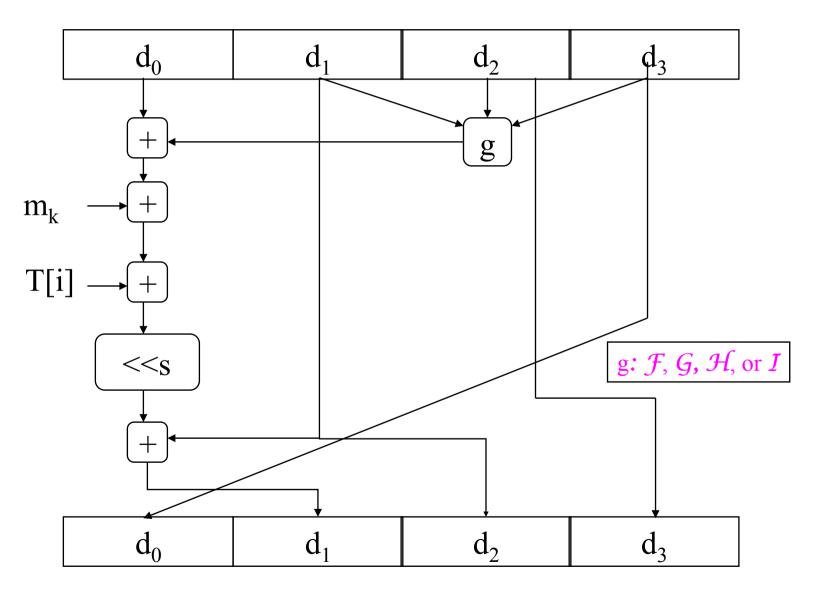
$$<< s$$

values of subscripts, in this order

i	j	k	l	m	n	0	p	S
0	1	0	1	2	3	0	1	7
3	0	3	0	1	2	1	2	12
2	3	2	3	0	1	2	3	17
1	2	1	2	3	0	3	4	22
0	1	0	1	2	3	4	5	7

35

Logic of Each Step



- Within each pass, each of the 16 words of m_i is used exactly once
 - Round 1, m_i are used in the order of i
 - Round 2, in the order of ρ 2(i), where ρ 2(i)=(1+5i) mod 16
 - Round 3, in the order or ρ 3(i), where ρ 3(i)=(5+3i) mod 16
 - Round 4, in the order or ρ 4(i), where ρ 4(i)=7i mod 16
- Each word of T[i] is used exactly once throughout all passes
- Number of bits s to rotate to get d_i
 - Round 1, $s(d_0)=7$, $s(d_1)=22$, $s(d_2)=17$, $s(d_3)=12$
 - Round 2, $s(d_0)=5$, $s(d_1)=20$, $s(d_2)=14$, $s(d_3)=9$
 - Round 3, $s(d_0)=4$, $s(d_1)=23$, $s(d_2)=16$, $s(d_3)=11$
 - Round 4, $s(d_0)=6$, $s(d_1)=21$, $s(d_2)=15$, $s(d_3)=10$

2nd Pass of MD5

- Form of processing (16 steps): $\mathbf{d}_{i} = \mathbf{d}_{j} + (\mathbf{d}_{k} + \mathcal{G}(\mathbf{d}_{l}, \mathbf{d}_{m}, \mathbf{d}_{n}) + \mathbf{m}_{o} + \mathsf{T}_{p})$ << S

i	j	k	l	m	n	0	p	S
0	1	0	1	2	3	1	17	5
3	0	3	0	1	2	6	18	9
2	3	2	3	0	1	11	19	14
1	2	1	2	3	0	0	20	20
0	1	0	1	2	3	5	21	5

•

3rd Pass of MD5

- $= \mathcal{H}(x,y,z) \stackrel{\text{def}}{=} (x \oplus y \oplus z)$
- Form of processing (16 steps): $\mathbf{d}_{i} = \mathbf{d}_{i} + (\mathbf{d}_{k} + \mathcal{H}(\mathbf{d}_{l}, \mathbf{d}_{m}, \mathbf{d}_{n}) + \mathbf{m}_{o} + \mathsf{T}_{p})$ << 5

i	j	k	l	m	n	0	p	S
0	1	0	1	2	3	5	33	4
3	0	3	0	1	2	8	34	11
2	3	2	3	0	1	11	35	16
1	2	1	2	3	0	14	36	23
0	1	0	1	2	3	1	37	4

4th Pass of MD5

- $I(x,y,z) \stackrel{\text{def}}{=} y \oplus (x \lor \sim z)$
- Form of processing (16 steps):

$$\mathbf{d}_{i} = \mathbf{d}_{j} + (\mathbf{d}_{k} + I(\mathbf{d}_{l},\mathbf{d}_{m},\mathbf{d}_{n}) + \mathbf{m}_{o} + T_{p}) < <$$
S

i	j	k	l	m	n	0	p	S
0	1	0	1	2	3	0	49	6
3	0	3	0	1	2	7	50	10
2	3	2	3	0	1	14	51	15
1	2	1	2	3	0	5	52	21
0	1	0	1	2	3	12	53	6

•

Output of this pass added to input MD

(In)security of MD5

- A few recently discovered methods can find collisions in a few hours
 - A few collisions were published in 2004
 - Can find many collisions for 1024-bit messages
 - More discoveries afterwards
 - In 2005, two X.509 certificates with different public keys and the same MD5 hash were constructed
 - This method is based on differential analysis
 - 8 hours on a 1.6GHz computer
 - Much faster than birthday attack

SHA-1 Hash Function

Secure Hash Algorithm (SHA) WILLIAM & MARY

- Developed by NIST, specified in the Secure Hash Standard, 1993
- SHA is specified as the hash algorithm in the Digital Signature Standard (DSS)
- SHA-1: revised (1995) version of SHA

SHA-1 Parameters

- Input message must be < 2⁶⁴ bits
- Input message is processed in 512-bit blocks, with the same padding as MD5
- Message digest output is 160 bits long
 - Referred to as five 32-bit words A, B, C, D, E
 - IV: $\mathbf{A} = 0x67452301$, $\mathbf{B} = 0xEFCDAB89$, $\mathbf{C} = 0x98BADCFE$, $\mathbf{D} = 0x10325476$, $\mathbf{E} = 0xC3D2E1F0$
- Footnote: bytes of words are stored in bigendian order

Big Endian vs. Little Endian WILLIA

- A 32-bit word can be saved in 4 bytes
 - For instance, 90AB12CD₁₆
- Big Endian

Address	Value		
1000	90		
1001	AB		
1002	12		
1003	CD		

Little Endian

Address	Value
1000	CD
1001	12
1002	AB
1003	90

Preprocessing of a Block

- Let 512-bit block be denoted as sixteen 32-bit words W₀...W₁₅
- Preprocess W₀...W₁₅ to derive an additional sixty-four 32-bit words W₁₆...W₇₉, as follows:

```
for 16 \le t \le 79
\mathbf{W}_{t} = (\mathbf{W}_{t-16} \oplus \mathbf{W}_{t-14} \oplus \mathbf{W}_{t-8} \oplus \mathbf{W}_{t-3})
<< 1
```


Block Processing

- Consists of 80 steps! (vs. 64 for MD5)
- Inputs for each step $0 \le t \le 79$:
 - W_t
 - K_t − a constant
 - A,B,C,D,E: current values to this point
- Outputs for each step:
 - A,B,C,D,E : new values
- Output of last step is added to input of first step to produce 160-bit Message Digest

Constants K_t

- Only 4 values (represented in 32 bits), derived from $2^{30} * i^{1/2}$, for i = 2, 3, 5, 10
 - for $0 \le t \le 19$: $K_t = 0x5A827999$ (i=2)
 - for $20 \le t \le 39$: $K_t = 0x6ED9EBA1 (i=3)$
 - for $40 \le t \le 59$: $K_t = 0x8F1BBCDC (i=5)$
 - for $60 \le t \le 79$: $K_t = 0xCA62C1D6 (i=10)$

Function f(t,B,C,D)

3 different functions are used in SHA-1 processing

Round	Function f(t,B,C,D)		
$0 \le t \le 19$	$(B \wedge C) \vee (\sim B \wedge D)$		
$20 \le t \le 39$	$B \oplus C \oplus D$		
$40 \le t \le 59$	$(B \wedge C) \vee (B \wedge D) \vee (C \wedge D)$		
$60 \le t \le 79$	$B \oplus C \oplus D$		

Compare with MD-5
$\mathcal{F} = (x \wedge y) \vee (\sim x \wedge z)$
$\mathcal{H} = x \oplus y \oplus z$
$\mathcal{H} = x \oplus y \oplus z$

• No use of MD5's $G((x \land z) \lor (y \land \sim z))$ or $I(y \oplus (x \lor \sim z))$

Processing Per Step

Everything to right of "=" is input value to this step

```
for t = 0 upto 79

A = E + (A << 5) + W<sub>t</sub> + K<sub>t</sub> + f(t,B,C,D)

B = A

C = B << 30

D = C

E = D

endfor</pre>
```


Comparison: SHA-1 vs. MD5

- SHA-1 is a stronger algorithm
 - brute-force attacks require on the order of 2⁸⁰ operations vs. 2⁶⁴ for MD5
- SHA-1 is about twice as expensive to compute
- Both MD-5 and SHA-1 are much faster to compute than DES

Security of SHA-1

- SHA-1
 - output 160 bits
 - "Broken", but not yet cracked
 - Collisions in 2⁶⁹ hash operations, much less than the brute-force attack of 2⁸⁰ operations
 - Results were circulated in February 2005, and published in CRYPTO '05 in August 2005
 - Considered insecure for collision resistance
 - One-way property still holds
- SHA-2(SHA-224, SHA-256, SHA-384, SHA-512...)

SHA-3 is coming

- NIST is having an ongoing competition for SHA-3, the next generation of standard hash algorithms
 - 2007: Request for submissions of new hash functions
 - 2008: Submissions deadline. Received 64 entries. Announced firstround selections of 51 candidates.
 - 2009: After First SHA-3 candidate conference in Feb, announced 14 Second Round Candidates in July.
 - 2010: After one year public review of the algorithms, hold second SHA-3 candidate conference in Aug. Announced 5 Third-round candidates in Dec.
 - 2011: Public comment for final round
 - 2012: Held Final hash candidate conference on March 22-23. Draft standard, wait for comments, and submit recommendation.
- The winning algorithm, Keccak, was created by Guido Bertoni, Joan Daemen and Gilles Van Assche of STMicroelectronics and Michaël Peeters of NXP Semiconductors.

Hashed Message Authentication Code (HMAC)

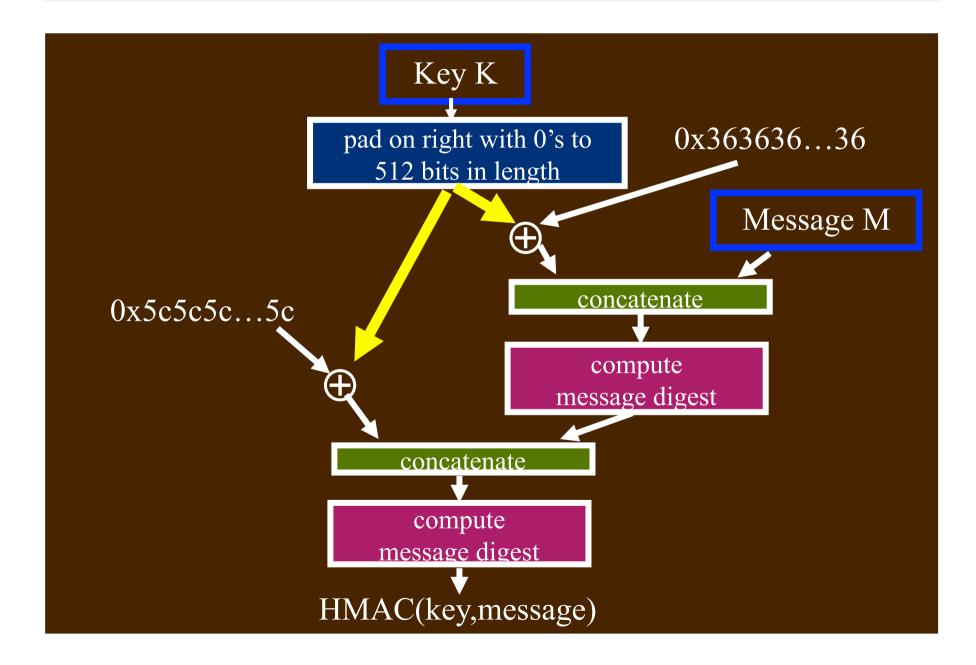
Extension Attacks

- Given M1, and secret key K, can easily concatenate and compute the hash: H(K|M1|padding)
- Given M1, M2, and H(K|M1|padding) easy to compute H(K|M1|padding|M2|newpadding) for some new message M2
- Simply use H(K|M1|padding) as the IV for computing the hash of M2|newpadding
 - does not require knowing the value of the secret key K

Extension Attacks (Cont'd) WILLIAM GMARY

- Many proposed solutions to the extension attack, but HMAC is the standard
- Essence: digest-inside-a-digest, with the secret used at both levels
- The particular hash function used determines the length of the message digest = length of HMAC output

HMAC Processing



Security of HMAC

At high level, $HMAC_K[M] = H(K || H(K || M))$

 If used with a secure hash functions (e.g., SHA-256) and according to the specification (key size, and use correct output), no known practical attacks against HMAC

Summary

- Hashing is fast to compute
- Has many applications (some making use of a secret key)
- Hash images must be at least 128 bits long
 - but longer is better
- Hash function details are tedious < </p>
- HMAC protects message digests from extension attacks