
CSCI 454/554 Computer and Network 
Security 

Topic 5.1 Basic Number Theory -- Foundation of 
Public Key Cryptography 

Outline 
■  GCD and Euclid’s Algorithm 

■  Modulo Arithmetic 

■  Modular Exponentiation 

■  Discrete Logarithms 
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GCD and Euclid’s Algorithm 



Some Review: Divisors 

■  Set of all integers is Z = {…,-2, -1,0,1,2,
…} 

■  b divides a (or b is a divisor of a) if a = 
mb for some m 
■  denoted b|a 
■  any b ≠ 0 divides 0 

■  For any a, 1 and a are trivial divisors of a 
■  all other divisors of a are called factors 

of a 
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Primes and Factors 

■  a is prime if it has no non-trivial factors 
■  examples: 2, 3, 5, 7, 11, 13, 17, 19, 31,…  

■  Theorem: there are infinitely many primes 
■  Any integer a > 1 can be factored in a unique 

way as p1
a1 • p2

a2 • … pt
at 

■  where all p1>p2>…>pt are prime numbers 
and where each ai > 0 
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Examples:   
          91 = 131×71 
        11011 = 131 ×112 ×71 

Common Divisors 
■  A number d that is a divisor of both a and 

b is a common divisor of a and b 

■  If d|a and d|b, then d|(a+b) and d|(a-b) 

■  If d|a and d|b, then d|(ax+by) for any 
integers x and y 
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Example: common divisors of 30 and 24 are 1, 2, 3, 6 

Example:  Since 3 | 30 and 3 | 24 ,  3 | (30+24) and  3 | (30-24) 

Example:  3 | 30 and 3 | 24 !   3 | (2*30 + 6*24) 



Greatest Common Divisor (GCD) 

■  gcd(a,b) = max{k | k|a and k|b} 

■  Observations 
■  gcd(a,b) = gcd(|a|, |b|) 
■  gcd(a,b) ≤ min(|a|, |b|) 
■  if 0 ≤ n, then gcd(an, bn) = n*gcd(a,b) 

■  For all positive integers d, a, and b… 
…if d | ab  
…and gcd(a,d) = 1 
…then d|b 
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Example: gcd(60,24) = 12,    gcd(a,0) = a 

GCD (Cont’d) 

■  Computing GCD by hand: 
if a = p1

a1 p2
a2 … pr

ar and  
b = p1

b1 p2
b2 … pr

br ,  
…where p1 < p2 < … < pr are prime,  
…and ai and bi are nonnegative,  
…then gcd(a, b) =  
        p1 

min(a1, b1) p2 
min(a2, b2) … pr 

min(ar, br) 

⇒  Slow way to find the GCD 
-  requires factoring a and b first (which 

can be slow) 
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Euclid’s Algorithm for GCD 

■  Insight: 
gcd(x, y) = gcd(y, x mod y) 

■  Procedure euclid(x, y): 
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r[0] = x, r[1] = y, n = 1; 

while (r[n] != 0) { 

   n = n+1; 

   r[n] = r[n-2] % r[n-1]; 

} 

return r[n-1]; 



Example 
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n rn 

0 595 

1 408 

2 595 mod 408 = 187 

3 408 mod 187 = 34 

4 187 mod 34 = 17 

5 34 mod 17 = 0 

gcd(595,408) = 17 

Running Time 

■  Running time is logarithmic in size of x and y 
■  Worst case occurs when ??? 
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Enter x and y: 102334155 63245986 
Step   1: r[i] = 39088169 
Step   2: r[i] = 24157817 
Step   3: r[i] = 14930352 
Step   4: r[i] =  9227465 
… 
Step  34: r[i] =        5 
Step  35: r[i] =        3 
Step  36: r[i] =        2 
Step  37: r[i] =        1 
Step  38: r[i] =        0 
gcd of 102334155 and 63245986 is        1 

Extended Euclid’s Algorithm 
■  Let LC(x,y) = {ux+vy : x,y ∈ Z} be the 

set of linear combinations of x and y  
■  Theorem: if x and y are any integers > 0, 

then gcd(x,y) is the smallest positive 
element of LC(x,y) 

■  Euclid’s algorithm can be extended to  
compute u and v, as well as gcd(x,y) 

■  Procedure exteuclid(x, y): 
 (next page…) 
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Extended Euclid’s Algorithm 
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r[0] = x, r[1] = y, n = 1; 

u[0] = 1, u[1] = 0; 

v[0] = 0, v[1] = 1; 

while (r[n] != 0) { 

  n = n+1; 

  r[n] = r[n-2] % r[n-1];  

  q[n] = (int) (r[n-2] / r[n-1]); 

  u[n] = u[n-2] – q[n]*u[n-1]; 

  v[n] = v[n-2] – q[n]*v[n-1]; 

} 

return r[n-1], u[n-1], v[n-1]; 

floor  
function 

Exercise: Show  
r[n]=u[n]x+v[n]y 

Extended Euclid’s Example 
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n qn rn un vn 

0 - 595 1 0 

1 - 408 0 1 

2 1 187 1 -1 

3 2 34 -2 3 

4 5 17 11 -16 

5 2 0 -24 35 

gcd(595,408) = 17 =       11*595 +  -16*408 

Extended Euclid’s Example 
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n qn rn un vn 

0 - 99 1 0 

1 - 78 0 1 

2 

3 

4 

5 

6 

gcd(99,78) = 3 =      -11*99 +     14*78 



Extended Euclid’s Example 
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n qn rn un vn 

0 - 99 1 0 

1 - 78 0 1 

2 1 21 1 -1 

3 3 15 -3 4 

4 1 6 4 -5 

5 2 3 -11 14 

6 2 0 26 -33 

gcd(99,78) = 3 =      -11*99 +     14*78 

Relatively Prime 

■  Integers a and b are relatively prime iff  
gcd(a,b) = 1 
■  example: 8 and 15 are relatively prime 

■  Integers n1,n2,…nk are pairwise relatively 
prime if gcd(ni,nj) = 1 for all i ≠ j 
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Review of Modular Arithmetic 



Remainders and Congruency 

■  For any integer a and any positive integer 
n, there are two unique integers q and r, 
such that 0 ≤ r < n and a = qn + r 
■  r is the remainder of division by n,  

written r = a mod n 

■  a and b are congruent modulo n, written  
a ≡ b mod n, if a mod n = b mod n 
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Example:  12 = 2*5 + 2   !   2 = 12 mod 5 

Example:  7 mod 5 = 12 mod 5  !  7 ≡ 12 mod 5 

Negative Numbers 
■  In modular arithmetic,  

…a negative number a is usually replaced 
by the congruent number b mod n,  
…where b is the smallest non-negative 
number  
…such that b = a + m*n 
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Example:  -3 ≡ 4 mod 7 

Remainders (Cont’d) 

■  For any positive integer n, the integers 
can be divided into n equivalence classes 
according to their remainders modulo n 
■  denote the set as Zn 

■  i.e., the (mod n) operator maps all 
integers into the set of integers Zn={0, 1, 
2, …, (n-1)} 
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Modular Arithmetic 

■  Modular addition 
■  [(a mod n) + (b mod n)] mod n = (a+b) mod n 

■  Modular subtraction 
■  [(a mod n) – (b mod n)] mod n = (a – b) mod n 

■  Modular multiplication 
■  [(a mod n) × (b mod n)] mod n = (a × b) mod n 
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Example: [16 mod 12 + 8 mod 12] mod 12 = (16 + 8) mod 12 = 0 

Example: [22 mod 12 - 8 mod 12] mod 12 = (22 - 8) mod 12 = 2 

Example: [22 mod 12 × 8 mod 12] mod 12 = (22 × 8) mod 12 = 8 

An Exercise (n=5) 

■  Addition ■  Multiplication 
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+ 1 2 5 7 
2 
3 
5 
9 

2 3 4 5 
1 
3 
5 
6 

An Exercise (n=5) 

■  Addition ■  Multiplication 
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+ 1 2 5 7 
2 3 4 2 4 
3 4 0 3 0 
5 1 2 0 2 
9 0 1 4 1 

2 3 4 5 
1 2 3 4 0 
3 1 4 2 0 
5 0 0 0 0 
6 2 3 4 0 



Properties of Modular Arithmetic 

■  Commutative laws 
■  (w + x) mod n = (x + w) mod n 
■  (w × x) mod n = (x × w) mod n 

■  Associative laws 
■  [(w + x) + y] mod n = [w + (x + y)] mod n 
■  [(w × x) × y] mod n = [w × (x × y)] mod n 

■  Distributive law 
■  [w × (x + y)] mod n = [(w × x)+(w × y)] mod 

n 
25 

Properties (Cont’d) 

■  Idempotent elements 
■  (0 + m) mod n = m mod n 
■  (1 × m) mod n = m mod n 

■  Additive inverse (–w) 
■  for each m ∈ Zn, there exists z such that  

(m + z) mod n = 0 
■  alternatively, z = (n – m) mod n 

■  Multiplicative inverse 
■  for each positive m ∈ Zn, is there a z s.t.  

m * z = 1 mod n? 
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Example: 3 are 4 are additive inverses mod 7, since (3 + 4) mod 7 = 0 

Multiplicative Inverses 

■  Don’t always exist! 
■  Ex.: there is no z such that 6 × z = 1 mod 8 

■  An positive integer m ∈Zn  has a multiplicative 
inverse m-1 mod n iff gcd(m, n) = 1, i.e., m and 
n are relatively prime 
⇒   If n is a prime number, then all positive elements in 
Zn  have multiplicative inverses 
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z 0 1 2 3 4 5 6 7 
6×z 0 6 12 18 24 30 36 42 
6×z mod 8 0 6 4 2 0 6 4 2 

… 



Inverses (Cont’d) 
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z 0 1 2 3 4 5 6 7 
5×z 
5×z mod 8 

Inverses (Cont’d) 
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z 0 1 2 3 4 5 6 7 
5×z 0  5  10  15  20 25   30  35 
5×z mod 8 0  5  2  7  4  1  6  3 

Finding the Multiplicative Inverse 

■  Given m and n, how do you find m-1 mod 
n?  

–  Extended Euclid’s Algorithm 
exteuclid(m,n): 
m-1 mod n = vn-1 
■  if gcd(m,n) ≠ 1 there is no 

multiplicative inverse m-1 mod n  
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Example 
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n qn rn un vn 

0 - 35 1 0 
1 - 12 0 1 
2 2 11 1 -2 
3 1 1 -1 3 
4 11 0 12 -35 

gcd(35,12) =   1 =         -1*35 +    3*12 

12-1 mod 35 = 3 (i.e., 12*3 mod 35 = 1) 

Modular Division 
■  If the inverse of b mod n exists, then  

(a mod n) / (b mod n) = (a * b-1) mod n 
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Example: (13 mod 11) / (4 mod 11) = (13*4-1 mod 11) =  
                 (13 * 3) mod 11 = 6 

Example: (8 mod 10) / (4 mod 10) not defined since  
                 4 does not have a multiplicative inverse mod 10 

Modular Exponentiation (Power) 



Modular Powers 
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Example: show the powers of 3 mod 7 

Example: powers of 2 mod 7 

0 1 2 3 4 5 6 7 8 
1 3 9 27 81 243 729 2187 6561 
1 3 2 6 4 5 1 3 2 

0 1 2 3 4 5 6 7 8 9 
1 2 4 8 16 32 64 128 256 512 
1 2 4 1 2 4 1 2 4 1 

i 
3i 

3i mod 7 

i 
2i 

2i mod 7 

And the powers of 2 mod 7 

Fermat’s “Little” Theorem 

■  If p is prime  
…and a is a positive integer not divisible by p,  
…then ap-1 ≡ 1 (mod p) 
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Example: 11 is prime, 3 not divisible by 11, 
                    so 311-1 = 59049 ≡ 1 (mod 11) 

Example: 37 is prime, 51 not divisible by 37, 
                    so 5137-1 ≡ 1 (mod 37) 

Useful? 

Multiplicative Group Zn
* 

■  Let Zn
* be the set of numbers between 1 and n-1 

that are relatively prime to n 
■  Zn

* is closed under multiplication mod n 
■  Ex.: Z8

* = {1,3,5,7} 
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* 1 3 5 7 
1 1 3 5 7 
3 3 1 7 5 
5 5 7 1 3 
7 7 5 3 1 

* 1 3 5  7 
1 
3 
5 
7 



The Totient Function 
■  φ(n) = |Zn

*| = the number of integers less than 
n and relatively prime to n  

a)  if n is prime, then φ(n) = n-1 

b)  if n = pα, where p is prime and α > 0, then  
φ(n) = (p-1)*pα-1 

c)  if n=p*q, and p, q are relatively prime, then  
φ(n) = φ(p)*φ(q) 
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Example: φ(7) = 6 

Example: φ(15) = φ(5*3) = φ(5) * φ(3) = 4 * 2 = 8 

Example: φ(25) = φ(52) = 4*51 = 20 

Euler’s Theorem 

■  For every a and n that are relatively prime,  
aø(n) ≡ 1 mod n 
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Example: For a = 3, n = 10, which relatively prime: 
                φ(10) =  4 
                3 φ(10) = 34 = 81 ≡  1 mod 10  

Example: For a = 2, n = 11, which are relatively prime: 
                φ(11) = 10 
                2 φ(11) = 210 = 1024 ≡ 1 mod 11 

More Euler… 

■  Variant: 
for all n, a kφ(n)+1 ≡ a mod n for all a in Zn*, and all non-
negative k  

■  Generalized Euler’s Theorem: 
for n = pq (p and q distinct primes), 
a kφ(n)+1 ≡ a mod n for all a in Zn, and all non-negative k 
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Example: for n = 20, a = 7, φ(n) = 8, and k = 3: 

                7 3*8+1 ≡ 7 mod 20  

Example: for n = 15, a = 6, φ(n) = 8, and  k = 3: 

                6 3*8+1 ≡ 6 mod 15  



Modular Exponentiation 

■  xy mod n ≡ xy mod φ(n) mod n  

■  by this, if y ≡ 1 mod φ(n), then xy mod n ≡ x mod 
n 
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Example: x = 5, y = 7, n = 6, φ(6) = 2 

                57 mod 6 = 57 mod 2 mod 6 = 5 mod 6 

Example:  
x = 2, y = 101, n = 33, φ(33) = 20, 101 mod 20 = 1 

                2101 mod 33 = 2 mod 33 

The Powers of An Integer, Modulo n 

■  Consider the expression am ≡ 1 mod n  
■  If a and n are relatively prime, then there 

is at least one integer m that satisfies the 
above equation 

■  Ex: for a = 3 and n = 7, what is m? 
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1 2 3 4 5 6 7 8 9 
3 2 6 4 5 1 3 2 6 

i 
3i mod 7 

The Power  (Cont’d) 
■  The least positive exponent m for which 

the above equation holds is referred to 
as… 
■  the order of a (mod n), or 
■  the length of the period generated by a 

42 



Understanding Order of a (mod n) 

■  Powers of some integers a modulo 19 
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a a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15 a16 a17 a18 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

2 4 8 16 13 7 14 9 18 17 15 11 3 6 12 5 10 1 

4 16 7 9 17 11 6 5 1 4 16 7 9 17 11 6 5 1 

7 11 1 7 11 1 7 11 1 7 11 1 7 11 1 7 11 1 

8 7 18 11 12 1 8 7 18 11 12 1 8 7 18 11 12 1 

9 5 7 6 16 11 4 17 1 9 5 7 6 16 11 4 17 1 

18 1 18 1 18 1 18 1 18 1 18 1 18 1 18 1 18 1 

1 

18 

9 

3 

6 

9 

2 

"
 o

rd
er

 

Observations on The Previous Table 

■  The length of each period divides 18= 
φ(19)  
■  i.e., the lengths are 1, 2, 3, 6, 9, 18 

■  Some of the sequences are of length 18  
■  e.g., the base 2 generates (via powers) 

all members of Zn
* 

■  The base is called the primitive root 
■  The base is also called the generator 

when n is prime 
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Reminder of Results 
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Totient function: 
if n is prime, then φ(n) = n-1 
if n = pα, where p is prime and α > 0, then φ(n) = (p-1)*pα-1 
if n=p*q, and p, q are relatively prime, then φ(n) = φ(p)*φ(q) 

Example: φ(7) = 6 

Example: φ(15) = φ(5*3) = φ(5) * φ(3) = 4 * 2 = 8 

Example: φ(25) = φ(52) = 4*51 = 20 



Reminder (Cont’d) 

■  Fermat: If p is prime and a is positive integer not divisible by p, then  
ap-1 ≡ 1 (mod p) 
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Example: 11 is prime, 3 not divisible by 11, so 311-1 = 59049 ≡ 1 (mod 11) 

Euler: For every a and n that are relatively prime, then aø(n) ≡ 1 mod n 

Example: For a = 3, n = 10, which relatively prime: φ(10) =  4, 3 φ(10) = 34 = 81 ≡  1 mod 10  

Generalized Euler’s Theorem: for n = pq (p and q are distinct primes), all a in Zn , 
and all non-negative k, a kφ(n)+1 ≡ a mod n 

Example: for n = 20, a = 7, φ(n) = 8, and k = 3: 7 3*8+1 ≡ 7 mod 20  

Example: for n = 15, a = 6, φ(n) = 8, and  k = 3: 6 3*8+1 ≡ 6 mod 15  

Variant: for all a in Zn*, and all non-negative k, a kφ(n)+1 ≡ a mod n 

Example: x = 5, y = 7, n = 6, φ(6) = 2, 57 mod 6 = 57 mod 2 mod 6 = 5 mod 6 

xy mod n ≡ xy mod φ(n) mod n  

Computing Modular Powers Efficiently 

■  The repeated squaring algorithm for 
computing ab (mod n) 

■  Let bi represent the ith bit of b (total of k 
bits) 

47 

Computing (Cont’d) 
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d = 1; 

for i = k downto 1 do 

     d = (d * d) % n;         /* square */ 

 if (bi == 1)  

          d = (d * a) % n;    /* step 2 */ 

     endif 

enddo 

return d; 

Requires time ∝ k = logarithmic in b 

Algorithm modexp(a,b,n) 

at each iteration, not just at end 



Example 

■  Compute ab (mod n) = 7560 mod 561 = 1 
mod 561 
■  56010 = 10001100002 
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i 10 9 8 7 6 5 4 3 2 1 

bi 1 0 0 0 1 1 0 0 0 0 

d 1 7 49 157 526 160 241 298 166 67 1 

step 2 

Q: Can some other result be used to compute this particular 
example more easily? (Note: 561 = 3*11*17.) 

Discrete Logarithms 

Square Roots 
■  x is a non-trivial square root of 1 mod n if 

it satisfies the equation x2 ≡ 1 mod n, but x 
is neither 1 nor -1 mod n 

■  Theorem: if there exists a non-trivial 
square root of 1 mod n, then n is not a 
prime 
■  i.e., prime numbers will not have non-

trivial square roots 
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Ex: 6 is a square root of 1 mod 35 since 62 ≡ 1 mod 35                  



Roots (Cont’d) 

■  If n = 2α0 p1
α1 p2

α2 … pk
αk , where p1…pk are 

distinct primes > 2, then the number of square 
roots (including trivial square roots) are: 
■  2k if α0 ≤ 1 

■  2k+1 if α0 = 2 

■  2k+2 if α0 > 2 
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Example: for n = 70 = 21 * 51 * 71 , α0 = 1, k = 2, and 
                 the number of square roots = 22 = 4  (1,29,41,69) 

Example: for n = 60 = 22 * 31 * 51, k = 2,                  
                  the number of square roots = 23 = 8 (1,11,19,29,31,41,49,59) 

Example: for n = 24 = 23 * 31, k = 1, 
                 the number of square roots = 23 = 8 (1,5,7,11,13,17,19,23) 

Primitive Roots 

■  Reminder: the highest possible order of  
a (mod n) is φ(n) 

■  If the order of a (mod n) is φ(n), then a is 
referred to as a primitive root of n 
■  for a prime number p, if a is a primitive root 

of p, then a, a2, …, ap-1 are all distinct 
numbers mod p 

■  No simple general formula to compute primitive 
roots modulo n  
■  there are methods to locate a primitive root 

faster than trying out all candidates 
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Primitive Roots (Cont’d) 
■  Theorem: the only integers with primitive roots 

are of the form 2, 4, pα, and 2pα, where 
■  p is any prime > 2 
■  α is a positive integer 
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Example: for n = 4, φ(n) = 2, primitive roots = {3} 

Example: for n = 32 = 9, φ(n) = 6, primitive roots = {2,5} 

Example: for n = 19, φ(n) = 18, primitive roots = 
{2,3,10,13,14,15} 



Discrete Logarithms 

■  For a primitive root a of a number p, 
where  
ai ≡ b mod p, for some 0 ≤ i ≤ p-1 
■  the exponent i is referred to as the 

index of b for the base a (mod p), 
denoted as inda,p(b) 

■  i is also referred to as the discrete 
logarithm of b to the base a, mod p 
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Logarithms (Cont’d) 

b 1 2 3 4 5 6 7 8 9 

ind2,19 (b) =  
log(b) base 2 mod 19 0 1 13 2 16 14 6 3 8 
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■  Example: 2 is a primitive root of 19.  
The powers of 2 mod 19 = 

10 11 12 13 14 15 16 17 18 

17 12 15 5 7 11 4 10 9 

Given a, i, and p, computing b = ai mod p is straightforward 

Computing Discrete Logarithms 

■  However, given a, b, and p, computing i = 
inda,p(b) is difficult 
■  Used as the basis of some public key 

cryptosystems 
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Computing (Cont’d) 

■  Some properties of discrete logarithms 

■  inda,p(1) = 0 because a0 mod p = 1 

■  inda,p(a) = 1 because a1 mod p = a 

■  inda,p(yz) = (inda,p(y) + inda,p(z)) mod φ(p) 

■  inda,p(y r ) = (r inda,p(y)) mod φ(p) 
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Example: ind2,19(5*3) = (ind2,19(5) + ind2,19(3)) = 11 mod 18  

Example: ind2,19(33) = (3*ind2,19(3))= 3 mod 18  

warning: φ(p), not p! 

More on Discrete Logarithms 

■  Consider: 
x ≡ ainda,p(x) mod p, 
y ≡ ainda,p(y) mod p, and 
xy ≡ ainda,p(xy) mod p  

1)  ainda,p(xy) mod p ≡ (ainda,p(x) mod p)(ainda,p(y) mod p) 

2)  ainda,p(xy) mod p ≡ (ainda,p(x)+inda,p(y) ) mod p 

3)  by Euler’s theorem: az≡aq mod p iff z ≡q mod φ(p) 

59 

Ex: 15 = 3 * 5  

Ex: 3*5 = 211 mod 19 

Ex: 3 = 213 mod 19 

Ex: 5 = 216 mod 19 

Ex: 15 = 213+16 mod 19  

Ex: 15 = 211 mod 19 = 229 mod 19  ⇔ 11 ≡ 29 mod 18 

Summary 
1.  Number theory is the basis of public key 

cryptography 
2.  Euclid’s algorithm is used to find GCD and 

multiplicative inverse 
3.  Computing a b (mod n) is accomplished 

by repeated squaring 
4.  Only primes have discrete logarithms, and 

they are expensive to compute 
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