& WILLIAM
W G MARY

CSCI 454/554 Computer and Network
Security

Topic 5.1 Basic Number Theory -- Foundation of
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GCD and Euclid’s Algorithm

Primes and Factors ®Hi

. ais prime if it has no non-trivial factors
= examples: 2, 3, 5,7, 11, 13,17, 19, 31,...
. Theorem: there are infinitely many primes
- Any integer a > 1 can be factored in a unique
way as p;P1e py2e ... pdt
= where all p;>p,>...>p, are prime numbers
and where each a;> 0

Examples:
91 = 131x71
11011 = 131 x112 x7!
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- GCD and Euclid’s Algorithm
= Modulo Arithmetic
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- Discrete Logarithms

Some Review: Divisors W

- Set of all integersis Z ={...,-2, -1,0,1,2,
o}

« b divides a (or bis a divisor of a) if a =
mb for some m

= denoted b|a
m any b= 0 divides 0
- For any a, 1 and a are trivial divisors of a

= all other divisors of a are called factors
of a

Common Divisors WhLRY

- A number dthat is a divisor of both a and
b is a common divisor of a and b

‘ Example: common divisors of 30 and 24 are 1, 2, 3, 6 ‘

- If dlaand d|b, then d|(a+b) and d|(a-b)

|Example: Since 3|30 and 3|24, 3| (30+24) and 3 | (30-24) |

- If dla and d|b, then d|(ax+by) for any
integers x and y

[Example: 3[30and 3|24 > 3] (2*30 + 6*24) |
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Greatest Common Divisor (GCD) &Miry

« gcd(a,b) = max{k | k|a and k| b}
Example: gcd(60,24) =12, gcd(a,0)=a ‘
« Observations

= gcd(a,b) = ged(|al, [bl)

= gcd(a,b) = min(|al, |b])

m if 0 = n, then gcd(an, bn) = n*gcd(a,b)
- For all positive integers d, a, and b...

.ifd]| ab

..and gcd(a,d) =1

..then d|b

GCD (Cont'd) W

» Computing GCD by hand:

if a= p p ... p? and

b= pPp?..p~,

...where p; < p, < ... < p,are prime,

...and g;and b;are nonnegative,

...then gcd(a, b) =

Py min(ai, b1) o)) min(az, b2) b, min(ar, br)

- Slow way to find the GCD

- requires factoring a and b first (which
can be slow)

Euclid’s Algorithm for GCD A

Insight:
ged(x, y) = ged(y, x mod y)
Procedure euclid(x, y):

r[0] = x, r[1l] =y, n=1;

while (r[n] !'= 0) {

n = n+l;

r[n] = r[n-2] % r[n-1];
}

return r[n-1];

Example AR

595 mod 408 = 187

408 mod 187 =34

gcd(595,408) = 17
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Running Time

= Running time is logarithmic in size of x and y
- Worst case occurs when ??7?
Enter x and y: 102334155 63245986
Step 1: rfi] = 39088169
Step 2: rfi] = 24157817
Step 3:r[i] = 14930352
Step 4:r[i] = 9227465

Step 34:r[i] =
Step 35:1[i] =
Step 36: r[i] =
Step 37:t[i] =
Step 38:1[i] = 0

ged of 102334155 and 63245986 is 1

—_— N W W

EA Extended Euclid’s Algorithm®i

« Let LA(x,y) = {ux+vy: x,y € Z} be the
set of linear combinations of x and y

- Theorem: if x and y are any integers > 0,
then gcd(x,y) is the smallest positive
element of L((x,y)

« Euclid’s algorithm can be extended to
compute v and v, as well as gcd(x,y)

= Procedure exteuclid(x, y):
(next page...)




p:d Extended Euclid’s AlgorithmZi

=x, r[l] =
=1, ul[l]
=0, v[1]
while (r[n] !'=
n = n+l;
floor _ o c i 5
cnction r[n] = r[n-2] % r[n-11;
qln] (int) (r[n-2] / r[n-1]);
u[n] u[n-2] - g[n]*u[n-1];
v[n] v[n-2] - q[n]*v[n-1];
Exercise: Show }
r[n]=u[n]x+v[n]y

return r[n-1], u[n-1], v[n-1];

Extended Euclid’s Example %!

gcd(99,78) = 3 = -11*%99 +  14*78
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b8 Extended Euclid’s Example
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gcd(595,408) = 17 = 11%595 + -16*408

Extended Euclid’s Example &
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gcd(99,78) = 3 = -11*%99 +

14*78
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Relatively Prime

. Integers a and b are relatively prime iff
gcd(ab) =1
= example: 8 and 15 are relatively prime

. Integers ny,n,,...n, are pairwise relatively
prime if ged(n;n;) = 1 for all /= j
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Review of Modular Arithmetic




Remainders and Congruenditi’

« For any integer a and any positive integer
n, there are two unique integers gand r,
suchthatO<r<nanda=gn+r

m ris the remainder of division by n,
written r=amod n
[Example: 12=2*5+2 & 2=12mod5 \

« aand b are congruent modulo n, written

a=bmod n, if amod n= bmod n
‘ Example: 7mod5=12mod5 = 7=12mod 5 ‘

Negative Numbers At

. In modular arithmetic,
...a hegative number a is usually replaced
by the congruent number b mod n,
...where b is the smallest non-negative
number
...such that b= a + m*n

‘ Example: -3 =4 mod 7 ‘
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Remainders (Cont'd) i

- For any positive integer n, the integers
can be divided into n equivalence classes
according to their remainders modulo n

= denote the set as Z,

- i.e., the (mod n) operator maps all
integers into the set of integers Z,={0, 1,
2, ..., (1)}

21

Modular Arithmetic WHHA

- Modular addition
s [(amod n) + (b mod n)] mod n = (a+b) mod n
‘ Example: [16 mod 12 + 8 mod 12] mod 12 = (16 + 8) mod 12=0 ‘
= Modular subtraction
s [(@amod n) - (bmod n)] mod n = (a—b) mod n

|Example: [22 mod 12 - 8 mod 12] mod 12=(22-8)mod 12=2_ |

= Modular multiplication
s [(@amod n) x (bmod n)] mod n= (ax b) mod n
[ Example: [22 mod 12 x 8 mod 12] mod 12 = (22 x 8) mod 12=38 |
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An Exercise (n=5) AR

. Addition

= Multiplication

-

AM

An Exercise (n=5) AR

« Addition = Multiplication
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Properties of Modular Arithmetic Mk

- Commutative laws
s (W+Xx)mod n=(x+ w)mod n
s (Wx x)mod n=(xx w) mod n

- Associative laws
s [(W+X)+ylmodn=[w+ (x+y)] mod n

s [(WxX)xylmodn=[wx (xx y)] mod n

- Distributive law
s [Wx(x+ yY)Imod n=[(wx x)+(wx y¥)] mod
n
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Multiplicative Inverses ‘Wi

- Don't always exist!
s Ex.: thereis no zsuch that 6 x z=1 mod 8

oy Jo 1o 1o > o 1o 1+ >

- An positive integer m €Z,, has a multiplicative
inverse nt' mod n iff gcd(m, n) = 1, i.e., mand
n are relatively prime

- If nis a prime number, then all positive elements in
Z, have multiplicative inverses
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Inverses (Cont'd) YRR

- 1
X

S<zmod8 1 0 5] 2] 7]
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Properties (Cont'd) ‘@i

. Idempotent elements
s (0+ m)mod n=mmod n
s (1x m)ymod n=mmod n
- Additive inverse (-w)

= for each m e Z,, there exists z such that
(m+2z)modn=20

n alternatively, z = (n—m)mod n
Example: 3 are 4 are additive inverses mod 7, since (3 +4) mod 7 =0
- Multiplicative inverse

= for each positive me Z,, is there a zs.t.
m *z=1mod n?
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Inverses (Cont'd)

IXZ
somods || | | | | | |
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W Finding the Multiplicative Inverse sMary

= Given m and n, how do you find nr! mod
n?
- Extended Euclid’s Algorithm
exteuclid(m,n):
nrtmod n=v,_,;
s if gcd(m,n) = 1 there is no
multiplicative inverse nr! mod n

30
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Example

ged(35,12) = 1 = -1%35 4+ 3%12

121 mod 35 = 3 (i.e., 12*3 mod 35 = 1)
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Modular Exponentiation (Power)
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Modular Division

. If the inverse of b mod n exists, then
(@amodn)/(bmod n) =(a* b)) mod n

Example: (13 mod 11) / (4 mod 11) = (13*4' mod 11) =
(13*3)mod 11 =6

Example: (8 mod 10) / (4 mod 10) not defined since
4 does not have a multiplicative inverse mod 10
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R Modular Powers VAR

Example: show the powers of 3 mod 7

2imod 7
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Fermat’'s “Little” Theorem &viw

- If pis prime
...and a is a positive integer not divisible by p,
..then a71=1 (mod p)

Example: 11 is prime, 3 not divisible by 11,
$0 3""1'=159049 = 1 (mod 11)

Example: 37 is prime, 51 not divisible by 37,
50 51371 =1 (mod 37)

Useful?
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Ed  Multiplicative Group Z,*

. Let Z be the set of numbers between 1 and n-1
that are relatively prime to n
« Z."is closed under multiplication mod n

. Ex: Zg ={1,3,57}

36
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R The Totient Function  ®H&Y

¢o(n) = |Z,"| = the number of integers less than
n and relatively prime to n
2 If nis prime, then ¢(n) = n-1

‘ Example: ¢(7) =6 ‘

» if n= p* where pis prime and o > 0, then
o(n) = (p-1)*p=t
[ Example: 9(25) = §(5%) = 4*5' =20 \

o if n=p*q, and p, q are relatively prime, then
o(n) = o(p)*o(q)

[ Example: ¢(15) = §(5*3) = o(5) * 9(3) =4 *2=8 |
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More Euler... R
- Variant:
for all n, a ©(mW+1 = a mod n for all ain Z,*, and all non-
negative k

Example: forn=20,a=7, ¢(n) =8, and k=3:
7 381 = 7 mod 20

« Generalized Euler’s Theorem:
for n = pg (p and g distinct primes),
ak+1 = amod n for all ain Z, and all non-negative k

Example: forn=15,a =06, ¢(n) =8, and k =3:
6381 = 6mod 15
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BEd The Powers of An Integer, Modulo n‘g}f\ff%]ﬁ\“"1

. Consider the expression a”= 1 mod n

- If aand n are relatively prime, then there
is at least one integer m that satisfies the
above equation

. Ex: for a=3 and n= 7, what is m?

i afalsfelslel7]8]9]
3imod 7 3 n
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R Euler's Theorem W

- For every a and n that are relatively prime,
& =1 mod n

Example: For a = 3, n = 10, which relatively prime:
o(10)= 4
3000=34=8] = 1 mod 10

Example: For a=2, n = 11, which are relatively prime:

o(11) = 10
260D =210= 1024 = 1 mod 11
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Modular Exponentiation i’

. xmod n= xymedo(n) mod n

Example: x=5,y=7,n=6, ¢(6) =2
5"mod 6 = 57242 mod 6 = 5 mod 6

- by this, if y=1 mod ¢(n), then ¥ mod n = x mod
n

Example:
x=2,y=101,n=33, ¢(33) =20, 10l mod 20 =1

2101 mod 33 =2 mod 33
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The Power (Cont'd) @i

- The least positive exponent m for which
the above equation holds is referred to
as...

n the order of a (mod n), or
n the /ength of the period generated by a

42
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Understanding Order of a (mod n) &MARY
« Powers of some integers @ modulo 19 5
v

Reminder of Results
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Totient function:
if n is prime, then ¢(n) = n-1
if n = p% where p is prime and o > 0, then ¢(n) = (p-1)*p=!
if n=p*q, and p, q are relatively prime, then ¢(n) = ¢p(p)*d(q)

‘ Example: ¢(7) =6 ‘

[ Example: 9(25) = (%) = 4*5' = 20 |

[Example: ¢(15) = (5*3) = ¢(5) * 9(3) =4 *2=8 |
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P& Computing Modular Powers Efficiently &Mary

« The repeated squaring algorithm for
computing a?(mod n)

- Let b, represent the # bit of b (total of k
bits)

47
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BEdl Observations on The Previous Table &Mary

WILLIAM

- The length of each period divides 18=
®(19)
m i.e., thelengthsarel, 2, 3, 6,9, 18
= Some of the sequences are of length 18
= e.g., the base 2 generates (via powers)
all members of Z.*
= The base is called the primitive root
= The base is also called the generator
when n is prime

44
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Reminder (Cont'd)

Fermat: If pis prime and a is positive integer not divisible by p, then

a#t=1 (mod p)
‘ Example: 11 is prime, 3 not divisible by 11, so 3'"! = 59049 = 1 (mod 11) ‘

Euler: For every a and n that are relatively prime, then ¢°*) = 1 mod n

‘ Example: For a =3, n = 10, which relatively prime: ¢(10) = 4,3 #10=34=8] = | mod 10 ‘

Variant: for all a in Z,*, and all non-negative &, a “*)*! = a mod n
[ Example: for n =20, = 7, g(n) = 8, and k = 3: 73" = 7 mod 20

Generalized Euler’s Theorem: for n = pg (p and g are distinct primes), all a in Z,,
and all non-negative k, @ **)"! = @ mod n
‘ Example: forn =15, a= 6, ¢(n) =8, and k=3: 635" =6 mod 15 ‘

X mod n = x’ ™44 mod n
[ Example: x =5,y =7,n=6,0(6) =2, 5 mod 6 = 57> mod 6= 5 mod 6 _ |
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Computing (Cont'd)

Algorithm modexp (a,b,n)
d=1;
for i = k downto 1 do
(d * d) % n;
if (b, == 1)

/* square */

= (d * a) %

endif
enddo
return d;

at each iteration, not just at end
Requires time o k = logarithmic in b

48
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HC Example
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. Compute a?(mod n) = 7550 mod 561 = 1
mod 561

i 10

Q: Can some other result be used to compute this particular
example more easily? (Note: 561 =3*11*17.)
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Discrete Logarithms

5.

pig Square Roots VR

« X is a non-trivial square root of 1 mod n if
it satisfies the equation x2 = 1 mod n, but x
is neither 1 nor -1 mod n

‘Ex: 6 is a square root of 1 mod 35 since 6% = 1 mod 35 ‘

= Theorem: if there exists a non-trivial
square root of 1 mod n, then nis not a
prime
= i.e., prime numbers will not have non-
trivial square roots

Primitive Roots WhLRY

- Reminder: the highest possible order of
a(mod n) is ¢(n)
. If the order of a (mod n) is ¢(n), then ais
referred to as a primitive root of n
s for a prime number p, if ais a primitive root
of p, then a, &, ..., a*! are all distinct
numbers mod p
= No simple general formula to compute primitive
roots modulo n

s there are methods to locate a primitive root
faster than trying out all candidates
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Roots (Cont'd) o

- If n= 2% p;*1 p,*2 ... p% , where p;...p, are
distinct primes > 2, then the number of square
roots (including trivial square roots) are:

n 2kifoy=1

Example: forn=70=2'*5'*7' ‘qy=1,k=2, and
the number of square roots =22 =4 (1,20.41,69

. 26 g = 2

Example: forn=60=22*3! *5! k=2,
the number of square roots = 23 = 8 (1,11,19,20,31,41,49,59)

w 2K420f g > 2

Example: forn=24=23*31 k=1,
the number of square roots = 2% = 8 (1,5,7,11,13,17,19,23)

Primitive Roots (Cont'd) &

. Theorem: the only integers with primitive roots
are of the form 2, 4, p¢, and 2p°, where

m pisany prime > 2
= o is a positive integer

‘ Example: for n =4, ¢(n) = 2, primitive roots = {3} ‘

‘ Example: for n =32 =9, ¢(n) = 6, primitive roots = {2,5} ‘

Example: for n = 19, ¢(n) = 18, primitive roots =
{2,3,10,13,14,15}
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Discrete Logarithms i

. For a primitive root a of a number p,
where
a = bmod p, for some0=<i=<pl
= the exponent /is referred to as the
index of b for the base a (mod p),
denoted as ind,, ,(b)
= /is also referred to as the discrete
logarithm of b to the base a, mod p

55

Logarithms (Cont'd) WA’

- Example: 2 is a primitive root of 19.
The powers of 2 mod 19 =

b 10 (b) =
log(b) base 2 mod 19

Given q, i, and p, computing b = a’ mod p is straightforward
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Computing Discrete Logarithrigiiy

- However, given a, b, and p, computing i =
ind,, (b) is difficult
= Used as the basis of some public key
cryptosystems

Computing (Cont'd) '

- Some properties of discrete logarithms
= ind, (1) = 0 because & mod p = 1 ,.4rming: ¢(p). not p!
= ind, (@) = 1 because &' mod p = a /
w ind, (y2) = (ind, (y) + ind, (2)) mod ¢(p)

‘ Example: ind, 15(5*3) = (ind, ;4(5) + ind, ;9(3)) = 11 mod 18 ‘
= ind, (y ") = (rind,,(y)) mod ¢(p)

‘ Example: ind, 4(3%) = (3*ind, ,o(3))= 3 mod 18

Ed More on Discrete Logarithmitiy

Consider:
X = @"ad mod p, [Ex:3=2%med 19

y = adap mod p, and  [Ex:5-2%mod 19
Xy = @"9a,p%) mod p [Ex:3*5=2"mod 19 |

1y @"dapx) mod p = (@"ar®) mod p)(adaxy) mod p)

Ex: 15=3*%*5

2 d@ndap) mod p = (gndap¥+inday) ) mod p

[Ex: 15=21"19mod 19 |

3) by Euler’s theorem: a%=a? mod p iff z=qg mod ¢(p)
[Ex: 15=2"mod 19=2" mod 19 <> 11 =29 mod I8 |
59
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Summary SR

1. Number theory is the basis of public key
cryptography

2. Eudlid’s algorithm is used to find GCD and
multiplicative inverse

3. Computing a ® (mod n) is accomplished
by repeated squaring

4. Only primes have discrete logarithms, and
they are expensive to compute
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