

CSCI 454/554 Computer and Network Security

Topic 5.2 Public Key Cryptography

Outline

- Introduction
- 2. RSA
- 3. Diffie-Hellman Key Exchange
- 4. Digital Signature Standard

Introduction

Public Key Cryptography

- Invented and published in 1975
- A public / private key pair is used
 - public key can be announced to everyone
 - private key is kept secret by the owner of the key
- Also known as asymmetric cryptography
- Much slower to compute than secret key cryptography

Applications of Public Key Crypto WILLIAN CRYPTON OF Public Key Crypto

- 1. Message integrity with *digital signatures*
 - Alice computes hash, signs with her private key (no one else can do this without her key)
 - Bob verifies hash on receipt using Alice's public key using the verification equation

- The digital signature is verifiable by anybody
- Only one person can sign the message:
 non-repudiation
 - Non-repudiation is only achievable with public key cryptography

- Communicating securely over an insecure channel
 - Alice encrypts plaintext using Bob's public key, and Bob decrypts ciphertext using his private key
 - No one else can decrypt the message (because they don't have Bob's private key)

- 3. Secure storage on insecure medium
 - Alice encrypts data using her public key
 - Alice can decrypt later using her private key

4. User Authentication

- Bob proves his identity to Alice by using his private key to perform an operation (without divulging his private key)
- Alice verifies result using Bob's public key

- 5. Key exchange for secret key crypto
 - Alice and Bob use public key crypto to negotiate a shared secret key between them

Public Key Algorithms

 Public key algorithms covered in this class, and their applications

System	Encryption / Decryption?	Digital Signatures?	Key Exchange?
RSA	Yes	Yes	Yes
Diffie- Hellman			Yes
DSA		Yes	

Public-Key Requirements

- It must be computationally
 - easy to generate a public / private key pair
 - hard to determine the private key, given the public key
- It must be computationally
 - easy to encrypt using the public key
 - easy to decrypt using the private key
 - hard to recover the plaintext message from just the ciphertext and the public key

Trapdoor One-Way Function Traps

- Trapdoor one-way function
 - Y=f_k(X): easy to compute if k and X are known
 - $X=f^{-1}_k(Y)$: easy to compute if k and Y are known
 - $X=f^{-1}_k(Y)$: hard if Y is known but k is unknown
- Goal of designing public-key algorithm is to find appropriate trapdoor one-way function

The RSA Cipher

RSA (Rivest, Shamir, Adleman)

- The most popular public key method
 - provides both public key encryption and digital signatures
- Basis: factorization of large numbers is hard
- Variable key length (1024 bits or greater)
- Variable plaintext block size
 - plaintext block size must be smaller than key size
 - ciphertext block size is same as key size

Generating a Public/Private Key Pair

- Find (using Miller-Rabin) large primes p and q
- Let n = p*q
 - do not disclose p and q!
 - $\phi(n) = ???$
- Choose an e that is relatively prime to $\phi(n)$
 - public key = <*e*,*n*>
- Find $d = \text{multiplicative inverse of } e \mod \phi(n)$ (i.e., $e^*d = 1 \mod \phi(n)$)
 - private key = $\langle d, n \rangle$

RSA Operations

For plaintext message *m* and ciphertext
 c

```
Encryption: c = m^e \mod n, m < n
```

Decryption: $m = c^d \mod n$

```
Signing: s = m^d \mod n, m < n
```

Verification: $m = s^e \mod n$

- Choose p = 23, q = 11 (both primes)
 - n = p*q = 253
 - $\phi(n) = (p-1)(q-1) = 220$
- Choose e = 39 (relatively prime to 220)
 - public key = <**39**, 253>
- Find $e^{-1} \mod 220 = d = 79$ (note: $39*79 = 1 \mod 220$)
 - private key = <79, 253>

Example (Cont'd)

Suppose plaintext m = 80

```
Encryption
\mathbf{c} = 80^{39} \mod 253 = \underline{\qquad} (c = m^e \mod n)
Decryption
\mathbf{m} = \underline{\qquad}^{79} \mod 253 = \mathbf{80} \qquad (c^d \mod n)
Signing (in this case, for entire message \mathbf{m})
\mathbf{s} = \mathbf{80}^{79} \mod 253 = \underline{\qquad} (\mathbf{s} = m^d \mod n)
Verification
\mathbf{m} = \underline{\qquad}^{39} \mod 253 = \mathbf{80} \qquad (s^e \mod n)
```


Example (Cont'd)

Suppose plaintext m = 80

```
Encryption
\mathbf{c} = 80^{39} \mod 253 = \mathbf{37}
(c = m^e \mod n)

Decryption
\mathbf{m} = 37^{79} \mod 253 = \mathbf{80}
(c^d \mod n)

Signing (in this case, for entire message \mathbf{m})
\mathbf{s} = \mathbf{80}^{79} \mod 253 = 224
(\mathbf{s} = m^d \mod n)

Verification
\mathbf{m} = 224^{39} \mod 253 = \mathbf{80}
(s^e \mod n)
```


Using RSA for Key Negotiation William

Procedure

- A sends random number R1 to B, encrypted with B's public key
- B sends random number R2 to A, encrypted with A's public key
- 3. A and B both decrypt received messages using their respective private keys
- 4. A and B both compute $K = H(R1 \oplus R2)$, and use that as the shared key

Key Negotiation Example

- For Alice, e = 39, d = 79, n = 253
- For Bob, e = 23, d = 47, n = 589 (=19*31)
- Let R1 = 15, R2 = 55
 - 1. Alice sends $306 = 15^{23} \mod 589$ to Bob
 - 2. Bob sends $187 = 55^{39}$ mod 253 to Alice
 - 3. Alice computes $R2 = 55 = 187^{79} \mod 253$
 - 4. Bob computes $R1 = 15 = 306^{47} \mod 589$
 - 5. A and B both compute K = H(R1⊕R2), and use that as the shared key

Proof of Correctness (D(E(m)) = m)

Given

- public key = $\langle e, n \rangle$ and private key = $\langle d, n \rangle$
- $n = p*q, \phi(n) = (p-1)(q-1)$
- $e^*d \equiv 1 \mod \phi(n)$
- If encryption is $c = m^e \mod n$, decryption...
 - $= c^d \mod n$
 - $= (m^e)^d \mod n = m^{ed} \mod n = m^{ed \mod \phi(n)} \mod n$
 - $= m \mod n \text{ (why?)}$
 - = m (since m < n)
- (digital signature proof is similar)

Is RSA Secure?

- <e,n> is public information
- If you could factor n into p*q, then
 - could compute $\phi(n) = (p-1)(q-1)$
 - could compute $d = e^{-1} \mod \phi(n)$
 - would know the private key < d,n>!
- But: factoring large integers is hard!
 - classical problem worked on for centuries; no known reliable, fast method

Security (Cont'd)

- At present, key sizes of 1024 bits are considered to be secure, but 2048 bits is better
- Tips for making n difficult to factor
 - 1. p and q lengths should be similar (ex.: \sim 500 bits each if key is 1024 bits)
 - 2. both (p-1) and (q-1) should contain a "large" prime factor
 - 3. gcd(p-1, q-1) should be "small"
 - 4. d should be larger than $n^{1/4}$

Attacks Against RSA

- Brute force: try all possible private keys
 - can be defeated by using a large enough key space (e.g., 1024 bit keys or larger)
- Mathematical attacks
 - 1. factor *n* (possible for special cases of n)
 - 2. determine d directly from e, without computing $\phi(n)$
 - at least as difficult as factoring n

Attacks (Cont'd)

- Probable-message attack (using <e,n>)
 - encrypt all possible plaintext messages
 - try to find a match between the ciphertext and one of the encrypted messages
 - only works for small plaintext message sizes
- Solution: pad plaintext message with random text before encryption
- PKCS #1 v1 specifies this padding format:

each 8 bits long

Timing Attacks Against RSA MARY

- Recovers the private key from the running time of the decryption algorithm
- Computing $m = c^d \mod n$ using repeated squaring algorithm:

```
m = 1;
for i = k-1 downto 1
    m = m*m mod n;
    if d<sub>i</sub> == 1
        then m = m*c mod n;
return m;
```


Timing Attacks (Cont'd)

- The attack proceeds bit by bit
- Attacker assumed to know c, m
- Attacker is able to determine bit i of d because for some c and m, the highlighted step is extremely slow if $d_i = 1$

- Delay the result if the computation is too fast
 - disadvantage: ?
- Add a random delay
 - disadvantage?
- 3. Blinding: multiply the ciphertext by a random number before performing decryption

RSA's Blinding Algorithm

- To confound timing attacks during decryption
 - generate a random number r between 0 and n-1 such that gcd(r, n) = 1
 - compute $\mathbf{c'} = \mathbf{c} * r^{\mathbf{e}} \mod n$
 - compute $m' = (c')^d \mod m'$

this is where timing attack would occur

- 4. compute $m = m' * r^{-1} \mod n$
- Attacker will not know what the bits of c' are
- Performance penalty: < 10% slowdown in decryption speed

File Encryption and Authentication MARY

- Alice sends a large file to Bob without disclosing the content of the file to anybody else.
- Also make sure no other people can modify the message without being noticed.
- Conditions:
 - No secret key shared between Alice and Bob.
 - Alice and Bob know each other's RSA public key. (SK_A, PK_A) and (SK_B, PK_B)

Sender

 $\mathbf{M} = \mathbf{E}_{\mathbf{K}s}(\mathbf{F}) \parallel \mathbf{E}_{\mathbf{PKB}}(\mathbf{K}s) \parallel \mathbf{Sig}_{\mathbf{SKA}} \left(\mathbf{E}_{\mathbf{K}s}(\mathbf{F}) \parallel \mathbf{E}_{\mathbf{PKB}}(\mathbf{K}s) \right).$

Receiver

Diffie-Hellman Key Exchange

Diffie-Hellman Protocol

- For negotiating a shared secret key using only public communication
- Does not provide authentication of communicating parties
- What's involved?
 - p is a large prime number (about 512 bits)
 - g is a primitive root of p, and g < p
 - p and g are publicly known

D-H Key Exchange Protocollary

Alice	<u>Bob</u>	
Publishes or sends g and p	Reads g and p	
Picks random number S_A (and keeps private)	Picks random number S_B (and keeps private)	
Computes public key $T_A = g^{S_A} \mod p$	Computes public key $T_{B} = g^{S_{B}} \mod p$	
Sends T_A to Bob, reads T_B from Bob	Sends T_B to Alice, reads T_A from Alice	
Computes $T_B^{S_A} \mod p$	Computes $T_A^{S_B} \mod p$	

Key Exchange (Cont'd) WILLIAM GENERAL CONT'S AND CONT'S

- •Alice and Bob have now both computed the same secret $g^{S_AS_B} \mod p$, which can then be used as the shared secret key K
- • S_A is the discrete logarithm of g^{S_A} mod p and S_B is the discrete logarithm of g^{S_B} mod p

D-H Example

- Let p = 353, g = 3
- Let random numbers be $S_A = 97$, $S_B = 233$
- Alice computes $T_A = \underline{\hspace{1cm}} \mod \underline{\hspace{1cm}} = 40 = g^{S_A} \mod p$
- Bob computes $T_B = \underline{\hspace{1cm}} \mod \underline{\hspace{1cm}} = 248 = g^{S_B}$ $\mod p$
- They exchange T_A and T_B
- Alice computes $K = \underline{\hspace{0.5cm}} \mod \underline{\hspace{0.5cm}} = \mathbf{160} = T_B^{S_A} \mod p$
- Bob computes $K = \underline{\quad} \mod \underline{\quad} = \mathbf{160} = T_A^{S_B}$ mod p

D-H Example

- Let p = 353, g = 3
- Let random numbers be $S_A = 97$, $S_B = 233$
- Alice computes $T_A = 3^{97} \mod 353 = 40 = g^{S_A} \mod p$
- Bob computes $T_B = 3^{233} \mod 353 = 248 = g^{S_B} \mod p$
- They exchange T_A and T_B
- Alice computes $K = 248^{97} \mod 353 = 160 = T_B^{S_A} \mod p$
- Bob computes $K = 40^{233} \mod 353 = 160 = T_A^{S_B} \mod p$

Why is This Secure?

- Discrete log problem:
 - given $T_A (= g^{S_A} \mod p)$, g, and p, it is computationally infeasible to compute S_A
 - (note: as always, to the best of our knowledge; doesn't mean there isn't a method out there waiting to be found)
 - same statement can be made for T_B , g, p, and S_B

D-H Limitations

- Expensive exponential operation is required
 - possible timing attacks??
- Algorithm is useful for key negotiation only
 - i.e., not for public key encryption
- Not for user authentication
 - In fact, you can negotiate a key with a complete stranger!

Man-In-The-Middle Attack WILLIAM GMARY

 Trudy impersonates as Alice to Bob, and also impersonates as Bob to Alice

MITM Attack (Cont'd)

- Now, Alice thinks K1 is the shared key, and Bob thinks K2 is the shared key
- Trudy intercepts messages from Alice to Bob, and
 - decrypts (using K1), substitutes her own message, and encrypts for Bob (using K2)
 - likewise, intercepts and substitutes messages from Bob to Alice
- Solution???

Authenticating D-H Messages WILLIAM MARY

- That is, you know who you're negotiating with, and that the messages haven't been modified
- Requires that communicating parties already share some kind of a secret
- Then use encryption, or a MAC (based on this previously-shared secret), of the D-H messages

Using D-H in "Phone Book" Modery

- 1. Alice and Bob each choose a semi-permanent secret number, generate T_A and T_B
- Alice and Bob *publish* T_A , T_{B_p} i.e., Alice can get Bob's T_B at any time, Bob can get Alice's T_A at any time
- 3. Alice and Bob can then generate a semipermanent shared key without communicating
 - but, they must be using the same p and g
- Essential requirement: reliability of the published values (no one can substitute false values)
 - how accomplished???

Encryption Using D-H? WILLIAM D-H?

- How to do key distribution + message encryption in one step
- Everyone computes and publishes their own individual $\langle p_i, g_i, T_i \rangle$, where $T_i = g_i^{S_i} \mod p_i$
- For Alice to communicate with Bob...
 - 1. Alice picks a random secret S_A
 - 2. Alice computes $g_B^{S_A} \mod p_B$
 - Alice uses $K_{AB} = T_B^{S_A} \mod p_B$ to encrypt the message
 - Alice sends encrypted message along with (unencrypted) $g_B^{S_A}$ mod p_B

Encryption (Cont'd)

- For Bob to decipher the encrypted message from Alice
 - Bob computes $K_{AB} = (g_B^{S_A})^{S_B} \mod p_B$
 - 2. Bob decrypts message using K_{AB}

Example

- Bob publishes $\langle p_B, g_B, T_B \rangle = \langle 401, 5, 51 \rangle$ and keeps secret $S_B = 58$
- Steps
 - 1. Alice picks a random secret $S_A = 17$
 - 2. Alice computes $g_B^{S_A}$ mod $p_B =$ ___ mod ___ = 173
 - Alice uses $K_{AB} = T_B^{S_A} \mod p_B =$ ___ mod ___ = **360** to encrypt message M
 - Alice sends encrypted message along with (unencrypted) $g_B^{S_A}$ mod $p_B = 173$
 - 5. Bob computes $K_{AB} = (g_B^{S_A})^{S_B} \mod p_B =$ ___ mod ___ = **360**
 - 6. Bob decrypts message M using K_{AB}

Example

- Bob publishes $\langle p_B, g_B, T_B \rangle = \langle 401, 5, 51 \rangle$ and keeps secret $S_B = 58$
- Steps
 - 1. Alice picks a random secret $S_A = 17$
 - 2. Alice computes $g_B^{S_A} \mod p_B = 5^{17} \mod 401 = 173$
 - Alice uses $K_{AB} = T_B^{S_A} \mod p_B = 51^{17} \mod 401 = 360$ to encrypt message M
 - Alice sends encrypted message along with (unencrypted) $g_B^{S_A}$ mod $p_B = 173$
 - 5. Bob computes $K_{AB} = (g_B^{S_A})^{S_B} \mod p_B = 173^{58} \mod 401 =$ **360**
 - 6. Bob decrypts message M using K_{AB}

Picking g and p

- Advisable to change g and p periodically
 - the longer they are used, the more info available to an attacker
- Advisable not to use same g and p for everybody
- For "obscure mathematical reasons"...
 - (p-1)/2 should be prime
 - $g^{(p-1)/2}$ should be $\equiv -1 \mod p$

Digital Signature Standard (DSS)

Digital Signature Standard (DSS) WILLIAM GMARY

- Useful only for digital signing (no encryption or key exchange)
- Components
 - SHA-1 to generate a hash value (some other hash functions also allowed now)
 - Digital Signature Algorithm (DSA) to generate the digital signature from this hash value
- Designed to be fast for the signer rather than verifier
 - e.g., for use in smart cards

Digital Signature Algorithm (DSA) MARY

- Announce public parameters used for signing
 - pick p (a prime with >= 1024 bits) ex.: p = 103
 - pick q (a 160 bit prime) such that q(p-1)

ex.:
$$q = 17$$
 (divides 102)

- choose $g = h^{(p-1)/q} \mod p$, where 1 < h < (p-1), such that g > 1 ex.: if h = 2, $g = 2^6 \mod 103 = 64$
- note: g is of order q mod p

```
ex.: powers of 64 mod 103 = 64 79 9 61 93 81 34 13 8 100 14 72 76 23 30 66 1
```


DSA (Cont'd)

- User Alice generates a long-term private key X_M
 - random integer with $0 < x_M < q$

ex.:
$$x_M = 13$$

- Alice generates a long-term public key y_M
 - $y_M = g^{x_M} \mod p$

ex.:
$$y_M = 64^{13} \mod 103 = 76$$

DSA (Cont'd)

ex.:
$$p = 103$$
, $q = 17$, $g = 64$, $x_M = 13$, $y_M = 76$

Alice randomly picks a private key k such that 0 < k < q, and generates $k^1 \mod q$

ex.:
$$k = 12$$
, $12^{-1} \mod 17 = 10$

5. Signing message M ex.: H(M) = 75

$$ex.: H(M) = 75$$

public key $r = (q^k \mod p) \mod q$

ex.:
$$r = (64^{12} \mod 103) \mod 17 = 4$$

signature $s = [k^{-1}(H(M) + x_M r)] \mod q$

ex.:
$$s = [10 * (75 + 13*4)] \mod 17 = 12$$

transmitted info = M, r, s

ex.: M, 4, 12

Verifying a DSA Signature MARY

- Known: g, p, q, V_M ex.: p = 103, q = 17, g = 64, V_M = 76, V_M
- Received from signer: M, r, s ex.: M, 4, 12

1. $W = (s)^{-1} \mod q$

ex.:
$$w = 12^{-1} \mod 17 = 10$$

2. $U_1 = [H(M)w] \mod q$ ex.: $u_1 = 75*10 \mod 17 = 2$

ex.:
$$u_1 = 75*10 \mod 17 = 2$$

3. $U_2 = (r^* w) \mod q$ ex.: $u_2 = 4*10 \mod 17 = 6$

ex.:
$$u_2 = 4*10 \mod 17 = 6$$

4. $v = [(g^{u1*}y_{M}^{u2}) \mod p] \mod q$

```
ex.: v = [(64^2 * 76^6) \mod 103] \mod 17 = 4
```

5. If v = r, then the signature is verified

Verifying DSA Signature WILLIAM SIGNATURE WILLIM

- Received: *M*, *r*=**13**, *s*=24
- 1. $W = (s)^{-1} \mod q = 24$
- 2. $u_1 = [H(M)w] \mod q = 22*24 \mod 25 = 3$
- 3. $u_2 = (r)w \mod q = 13 * 24 \mod 25 = 12$
- 4. $v = [(g^{u1}y_A^{u2}) \mod p] \mod q =$ $[5^3 * 56^{12} \mod 101] \mod 25 = 13$
- 5. If v = r, then the signature is verified

Why Does it Work?

- Correct? The signer computes
- $s = k^{-1} * (H(m) + x*r) \mod q$
- SO $k = H(m)*s^{-1} + x*r*s^{-1}$
- $= H(m)*w + x*r*w \mod q$
- Since g has order q:
- $q^k \equiv q^{H(m)w} * q^{xrw}$
- $= g^{H(m)w} * y^{rw}$
- $\equiv g^{u1} * y^{u2} \mod p$, and
- $r = (g^k \mod p) \mod q = (g^{u1*}y^{u2} \mod p) \mod q = v$

Is it Secure?

- Given y_M , it is difficult to compute x_M
 - x_M is the discrete log of y_M to the base g, mod p
- Likewise, given r, it is difficult to compute
 k
- Cannot forge a signature without X_M
- Signatures are not repeated (only used once per message) and cannot be replayed

Assessment of DSA

- Slower to verify than RSA, but faster signing than RSA
- Key lengths of 2048 bits and greater are also allowed