
CSCI 454/554 Computer and Network
Security

Topic 5.2 Public Key Cryptography

Outline
1.  Introduction
2.  RSA
3.  Diffie-Hellman Key Exchange
4.  Digital Signature Standard

2

Introduction

Public Key Cryptography

■  Invented and published in 1975
■  A public / private key pair is used

■  public key can be announced to everyone
■  private key is kept secret by the owner of the key

■  Also known as asymmetric cryptography
■  Much slower to compute than secret key cryptography

4

plaintext
encryption

ciphertext
decryption

plaintext

Public key Private key
different!

Applications of Public Key Crypto

5

Plaintext Alice
Signs

Plaintext with
digital signature Bob

Verifies
Signature

Valid /
Not Valid

Alice’s Private Key Alice’s Public Key

1.  Message integrity with digital signatures
Alice computes hash, signs with her private key (no one else

can do this without her key)
Bob verifies hash on receipt using Alice’s public key using the

verification equation

Applications (Cont’d)
■  The digital signature is verifiable by

anybody
■  Only one person can sign the message:

non-repudiation
■  Non-repudiation is only achievable with

public key cryptography

6

Applications (Cont’d)
2.  Communicating securely over an insecure

channel
–  Alice encrypts plaintext using Bob’s public key, and

Bob decrypts ciphertext using his private key
–  No one else can decrypt the message (because they

don’t have Bob’s private key)

7

Plaintext Alice
Encrypts

Ciphertext Bob
Decrypts Plaintext

Bob’s Public Key Bob’s Private Key

Applications (Cont’d)

3.  Secure storage on insecure medium
■  Alice encrypts data using her public key
■  Alice can decrypt later using her private

key
4.  User Authentication

–  Bob proves his identity to Alice by using
his private key to perform an operation
(without divulging his private key)

–  Alice verifies result using Bob’s public
key

8

Applications (Cont’d)
5.  Key exchange for secret key crypto

■  Alice and Bob use public key crypto to
negotiate a shared secret key between
them

9

Public Key Algorithms

■  Public key algorithms covered in this class, and
their applications

10

System Encryption /
Decryption?

Digital
Signatures?

Key
Exchange?

RSA Yes Yes Yes

Diffie-
Hellman

Yes

DSA Yes

Public-Key Requirements

■  It must be computationally
■  easy to generate a public / private key pair
■  hard to determine the private key, given the

public key
■  It must be computationally

■  easy to encrypt using the public key
■  easy to decrypt using the private key
■  hard to recover the plaintext message from

just the ciphertext and the public key

11

Trapdoor One-Way Functions

■  Trapdoor one-way function
■  Y=fk(X): easy to compute if k and X are

known
■  X=f -1k(Y): easy to compute if k and Y

are known
■  X=f -1k(Y): hard if Y is known but k is

unknown
■  Goal of designing public-key algorithm is to

find appropriate trapdoor one-way function

12

The RSA Cipher

RSA (Rivest, Shamir, Adleman)

■  The most popular public key method
■  provides both public key encryption and

digital signatures
■  Basis: factorization of large numbers is hard
■  Variable key length (1024 bits or greater)
■  Variable plaintext block size

■  plaintext block size must be smaller than key
size

■  ciphertext block size is same as key size

14

Generating a Public/Private Key Pair

■  Find (using Miller-Rabin) large primes p and q
■  Let n = p*q

•  do not disclose p and q!
•  φ(n) = ???

■  Choose an e that is relatively prime to φ(n)
•  public key = <e,n>

■  Find d = multiplicative inverse of e mod φ(n)
(i.e., e*d = 1 mod φ(n))

•  private key = <d,n>

15

RSA Operations

■  For plaintext message m and ciphertext
c

16

Signing: s = md mod n, m < n

Verification: m = se mod n

Encryption: c = me mod n, m < n

Decryption: m = cd mod n

RSA Example: Encryption and Signing

■  Choose p = 23, q = 11 (both primes)
■  n = p*q = 253
■  φ(n) = (p-1)(q-1) = 220

■  Choose e = 39 (relatively prime to 220)
■  public key = <39, 253>

■  Find e-1 mod 220 = d = 79
(note: 39*79 ≡ 1 mod 220)
■  private key = <79, 253>

17

Example (Cont’d)

■  Suppose plaintext m = 80

18

Encryption
c = 8039 mod 253 = ____ (c = me mod n)

Decryption
m = ____79 mod 253 = 80 (cd mod n)

Signing (in this case, for entire message m)
s = 8079 mod 253 = ____ (s = md mod n)

Verification
m = ____39 mod 253 = 80 (se mod n)

Example (Cont’d)

■  Suppose plaintext m = 80

19

Encryption
c = 8039 mod 253 = 37 (c = me mod n)

Decryption
m = 3779 mod 253 = 80 (cd mod n)

Signing (in this case, for entire message m)
s = 8079 mod 253 = 224 (s = md mod n)

Verification
m = 22439 mod 253 = 80 (se mod n)

Using RSA for Key Negotiation

■  Procedure
1.  A sends random number R1 to B, encrypted

with B’s public key
2.  B sends random number R2 to A, encrypted

with A’s public key
3.  A and B both decrypt received messages

using their respective private keys
4.  A and B both compute K = H(R1⊕R2), and

use that as the shared key

20

Key Negotiation Example
■  For Alice, e = 39, d = 79, n = 253
■  For Bob, e = 23, d = 47, n = 589 (=19*31)
■  Let R1 = 15, R2 = 55

1.  Alice sends 306 = 1523 mod 589 to Bob
2.  Bob sends 187 = 5539 mod 253 to Alice
3.  Alice computes R2 = 55 = 18779 mod 253
4.  Bob computes R1 = 15 = 30647 mod 589
5.  A and B both compute K = H(R1⊕R2), and

use that as the shared key

21

Proof of Correctness (D(E(m)) = m)

■  Given
■  public key = <e, n> and private key = <d,

n>
■  n =p*q, φ(n) =(p-1)(q-1)
■  e*d ≡ 1 mod φ(n)

■  If encryption is c = me mod n, decryption…
=  cd mod n
=  (me)d mod n = med mod n = med mod φ(n) mod n
=  m mod n (why?)
=  m (since m < n)

■  (digital signature proof is similar)
22

Is RSA Secure?

■  <e,n> is public information
■  If you could factor n into p*q, then

■  could compute φ(n) =(p-1)(q-1)
■  could compute d = e-1 mod φ(n)
■  would know the private key <d,n>!

■  But: factoring large integers is hard!
■  classical problem worked on for

centuries; no known reliable, fast
method

23

Security (Cont’d)

■  At present, key sizes of 1024 bits are
considered to be secure, but 2048 bits is
better

■  Tips for making n difficult to factor
1.  p and q lengths should be similar (ex.:

~500 bits each if key is 1024 bits)
2.  both (p-1) and (q-1) should contain a

“large” prime factor
3.  gcd(p-1, q-1) should be “small”
4.  d should be larger than n1/4

24

Attacks Against RSA

■  Brute force: try all possible private keys
■  can be defeated by using a large

enough key space (e.g., 1024 bit keys
or larger)

■  Mathematical attacks
1.  factor n (possible for special cases of n)
2.  determine d directly from e, without

computing φ(n)
–  at least as difficult as factoring n

25

Attacks (Cont’d)

■  Probable-message attack (using <e,n>)
■  encrypt all possible plaintext messages
■  try to find a match between the ciphertext and one

of the encrypted messages
■  only works for small plaintext message sizes

■  Solution: pad plaintext message with random
text before encryption

■  PKCS #1 v1 specifies this padding format:

26

00 02 R1 R2 R3 R4 R5 R6 R7 R8 data… 00

each 8 bits long

Timing Attacks Against RSA

■  Recovers the private key from the running time of
the decryption algorithm

■  Computing m = cd mod n using repeated
squaring algorithm:

■  m = 1;
■  for i = k-1 downto 1

 m = m*m mod n;
 if di == 1
 then m = m*c mod n;

■  return m;

27

Timing Attacks (Cont’d)

28

•  The attack proceeds bit by bit

•  Attacker assumed to know c, m

•  Attacker is able to determine bit i of d
because for some c and m, the
highlighted step is extremely slow if
di = 1

Countermeasures to Timing Attacks

1.  Delay the result if the computation is too
fast
■  disadvantage: ?

2.  Add a random delay
■  disadvantage?

3.  Blinding: multiply the ciphertext by a
random number before performing
decryption

29

RSA’s Blinding Algorithm

■  To confound timing attacks during decryption
1.  generate a random number r between 0 and n–1

such that gcd(r, n) = 1
2.  compute c’ = c * re mod n
3.  compute m’ = (c’)d mod n
4.  compute m = m’ * r –1 mod n

■  Attacker will not know what the bits of c’ are
■  Performance penalty: < 10% slowdown in

decryption speed

30

this is where
timing attack
would occur

File Encryption and Authentication

■  Alice sends a large file to Bob without
disclosing the content of the file to
anybody else.

■  Also make sure no other people can modify
the message without being noticed.

■  Conditions:
■  No secret key shared between Alice and

Bob.
■  Alice and Bob know each other’s RSA

public key. (SKA, PKA) and (SKB, PKB)
31

Sender

32

Receiver

33

Diffie-Hellman Key Exchange

Diffie-Hellman Protocol

■  For negotiating a shared secret key using
only public communication

■  Does not provide authentication of
communicating parties

■  What’s involved?
■  p is a large prime number (about 512

bits)
■  g is a primitive root of p, and g < p
■  p and g are publicly known

35

D-H Key Exchange Protocol

36

Alice Bob

Publishes or sends g and p Reads g and p

Picks random number SA
(and keeps private)

Picks random number SB
(and keeps private)

Computes public key
TA = gSA mod p

Computes public key
TB = gSB mod p

Sends TA to Bob,
reads TB from Bob

Sends TB to Alice,
reads TA from Alice

Computes TB
SA mod p Computes TA

SB mod p =

Key Exchange (Cont’d)

37

• Alice and Bob have now both computed the
same secret gSASB mod p, which can then be used
as the shared secret key K

• SA is the discrete logarithm of gSA mod p and
SB is the discrete logarithm of gSB mod p

=

D-H Example

■  Let p = 353, g = 3
■  Let random numbers be SA = 97, SB = 233
■  Alice computes TA = ___ mod __ = 40 = gSA mod

p
■  Bob computes TB = ___ mod ___ = 248 = gSB

mod p
■  They exchange TA and TB
■  Alice computes K = __ mod __ = 160 = TB

SA mod
p

■  Bob computes K = __ mod ___ = 160 = TA
SB

mod p
38

D-H Example

■  Let p = 353, g = 3
■  Let random numbers be SA = 97, SB = 233
■  Alice computes TA = 397 mod 353 = 40 = gSA mod

p
■  Bob computes TB = 3233 mod 353 = 248 = gSB

mod p
■  They exchange TA and TB
■  Alice computes K = 24897 mod 353 = 160 =TB

SA

mod p
■  Bob computes K = 40233 mod 353 = 160 =TA

SB

mod p
39

Why is This Secure?

■  Discrete log problem:
■  given TA (= gSA mod p), g, and p, it is

computationally infeasible to compute
SA

■  (note: as always, to the best of our
knowledge; doesn’t mean there isn’t a
method out there waiting to be found)

■  same statement can be made for TB, g,
p, and SB

40

D-H Limitations

■  Expensive exponential operation is required
■  possible timing attacks??

■  Algorithm is useful for key negotiation only
■  i.e., not for public key encryption

■  Not for user authentication
■  In fact, you can negotiate a key with a

complete stranger!

41

Man-In-The-Middle Attack

■  Trudy impersonates as Alice to Bob, and
also impersonates as Bob to Alice

42

Alice Bob Trudy gSA = 397 mod 353
gS”A”

gSB

gS”B” = 3233 mod 353

K1 = 24897 mod 353 =
40233 mod 353 = 160

K2 = (gSB) S”A”

MITM Attack (Cont’d)

■  Now, Alice thinks K1 is the shared key, and
Bob thinks K2 is the shared key

■  Trudy intercepts messages from Alice to
Bob, and
■  decrypts (using K1), substitutes her own

message, and encrypts for Bob (using
K2)

■  likewise, intercepts and substitutes
messages from Bob to Alice

■  Solution???
43

Authenticating D-H Messages

■  That is, you know who you’re negotiating
with, and that the messages haven’t been
modified

■  Requires that communicating parties
already share some kind of a secret

■  Then use encryption, or a MAC (based on
this previously-shared secret), of the D-H
messages

44

Using D-H in “Phone Book” Mode

1.  Alice and Bob each choose a semi-permanent
secret number, generate TA and TB

2.  Alice and Bob publish TA, TB, i.e., Alice can get
Bob’s TB at any time, Bob can get Alice’s TA at
any time

3.  Alice and Bob can then generate a semi-
permanent shared key without communicating
■  but, they must be using the same p and g

■  Essential requirement: reliability of the published
values (no one can substitute false values)
■  how accomplished???

45

Encryption Using D-H?

■  How to do key distribution + message
encryption in one step

■  Everyone computes and publishes their own
individual <pi, gi, Ti>, where Ti=gi

Si mod pi
■  For Alice to communicate with Bob…

1.  Alice picks a random secret SA
2.  Alice computes gB

SA mod pB
3.  Alice uses KAB = TB

SA mod pB to encrypt the
message

4.  Alice sends encrypted message along with
(unencrypted) gB

SA mod pB

46

Encryption (Cont’d)

■  For Bob to decipher the encrypted
message from Alice

1.  Bob computes KAB = (gB
SA)SB mod pB

2.  Bob decrypts message using KAB

47

Example

■  Bob publishes <pB, gB, TB> = <401, 5, 51>
and keeps secret SB = 58

■  Steps
1.  Alice picks a random secret SA = 17
2.  Alice computes gB

SA mod pB = ___ mod ___ = 173
3.  Alice uses KAB = TB

SA mod pB =
___ mod ___ = 360 to encrypt message M

4.  Alice sends encrypted message along with
(unencrypted) gB

SA mod pB = 173
5.  Bob computes KAB = (gB

SA)SB mod pB =
___ mod ___ = 360

6.  Bob decrypts message M using KAB

48

Example

■  Bob publishes <pB, gB, TB> = <401, 5, 51>
and keeps secret SB = 58

■  Steps
1.  Alice picks a random secret SA = 17
2.  Alice computes gB

SA mod pB = 517 mod 401 = 173
3.  Alice uses KAB = TB

SA mod pB =
5117 mod 401 = 360 to encrypt message M

4.  Alice sends encrypted message along with
(unencrypted) gB

SA mod pB = 173
5.  Bob computes KAB = (gB

SA)SB mod pB =
17358 mod 401 = 360

6.  Bob decrypts message M using KAB

49

Picking g and p
■  Advisable to change g and p periodically

■  the longer they are used, the more info
available to an attacker

■  Advisable not to use same g and p for
everybody

■  For “obscure mathematical reasons”…
■  (p-1)/2 should be prime
■  g(p-1)/2 should be ≡ -1 mod p

50

Digital Signature Standard (DSS)

Digital Signature Standard (DSS)

■  Useful only for digital signing (no
encryption or key exchange)

■  Components
■  SHA-1 to generate a hash value (some

other hash functions also allowed now)
■  Digital Signature Algorithm (DSA) to

generate the digital signature from this
hash value

■  Designed to be fast for the signer rather
than verifier
■  e.g., for use in smart cards

52

Digital Signature Algorithm (DSA)

1.  Announce public parameters used for signing
■  pick p (a prime with >= 1024 bits)
■  pick q (a 160 bit prime) such that q|(p-1)

■  choose g ≡ h(p-1)/q mod p, where 1 < h < (p –
1), such that g > 1

■  note: g is of order q mod p

53

ex.: if h = 2, g = 26 mod 103 = 64

ex.: p = 103

ex.: q = 17 (divides 102)

ex.: powers of 64 mod 103 =
64 79 9 61 93 81 34 13 8 100 14 72 76 23 30 66 1

17 values

DSA (Cont’d)

2.  User Alice generates a long-term private key xM
■  random integer with 0 < xM < q

3.  Alice generates a long-term public key yM
■  yM = gxM mod p

54

ex.: xM = 13

ex.: yM = 6413 mod 103 = 76

DSA (Cont’d)

4.  Alice randomly picks a private key k such that
0 < k < q, and generates k-1 mod q

5.  Signing message M
■  public key r = (gk mod p) mod q

■  signature s = [k-1(H(M)+xMr)] mod q

■  transmitted info = M, r, s

55

ex.: k = 12, 12-1 mod 17 = 10

ex.: r = (6412 mod 103) mod 17 = 4

ex.: s = [10 * (75 + 13*4)] mod 17 = 12

ex.: H(M) = 75

ex.: M, 4, 12

ex.: p = 103, q = 17, g = 64, xM = 13, yM = 76

Verifying a DSA Signature

■  Known : g, p, q, yM

■  Received from signer: M, r, s
1.  w = (s)-1 mod q
2.  u1 = [H(M)w] mod q
3.  u2 = (r*w) mod q
4.  v = [(gu1*yM

u2) mod p] mod q

5.  If v = r, then the signature is verified

56

ex.: M, 4, 12

ex.: w = 12-1 mod 17 = 10

ex.: u1 = 75*10 mod 17 = 2

ex.: u2 = 4*10 mod 17 = 6

ex.: v = [(642 * 766) mod 103] mod 17 = 4

ex.: p = 103, q = 17, g = 64, yM = 76, H(M) = 75

Verifying DSA Signature

■  Received: M, r=13, s=24
1.  w = (s)-1 mod q = 24
2.  u1 = [H(M)w] mod q = 22*24 mod 25 = 3
3.  u2 = (r)w mod q = 13 * 24 mod 25 = 12
4.  v = [(gu1yA

u2) mod p] mod q =
[53 * 5612 mod 101] mod 25 = 13

5.  If v = r, then the signature is verified

57

Why Does it Work?

■  Correct? The signer computes
■  s = k-1 * (H(m) + x*r) mod q

■  so k ≡ H(m)*s-1 + x*r*s-1
■  ≡ H(m)*w + x*r*w mod q

■  Since g has order q:
■  gk ≡ gH(m)w * gxrw
■  ≡ gH(m)w * yrw
■  ≡ gu1 * yu2 mod p, and
■  r = (gk mod p) mod q = (gu1*yu2 mod p) mod q =

v
58

Is it Secure?

■  Given yM, it is difficult to compute xM
—  xM is the discrete log of yM to the base

g, mod p
■  Likewise, given r, it is difficult to compute

k
■  Cannot forge a signature without xM

■  Signatures are not repeated (only used
once per message) and cannot be
replayed

59

Assessment of DSA
■  Slower to verify than RSA, but faster

signing than RSA
■  Key lengths of 2048 bits and greater are

also allowed

60

