
CSCI 454/554 Computer and Network 
Security 

Topic 5.2 Public Key Cryptography 

Outline 
1.  Introduction 
2.  RSA 
3.  Diffie-Hellman Key Exchange 
4.  Digital Signature Standard 
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Introduction 



Public Key Cryptography 

■  Invented and published in 1975 
■  A public / private key pair is used 

■  public key can be announced to everyone 
■  private key is kept secret by the owner of the key 

■  Also known as asymmetric cryptography 
■  Much slower to compute than secret key cryptography 
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plaintext 
encryption 

ciphertext 
decryption 

plaintext 

Public key Private key 
different! 

Applications of Public Key Crypto 
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Plaintext Alice 
Signs 

Plaintext with  
digital signature Bob 

Verifies 
Signature 

Valid /  
Not Valid 

Alice’s Private Key Alice’s Public Key 

1.  Message integrity with digital signatures 
Alice computes hash, signs with her private key (no one else 

can do this without her key) 
Bob verifies hash on receipt using Alice’s public key using the 

verification equation 

Applications (Cont’d) 
■  The digital signature is verifiable by 

anybody 
■  Only one person can sign the message: 

non-repudiation 
■  Non-repudiation is only achievable with 

public key cryptography 
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Applications (Cont’d) 
2.  Communicating securely over an insecure 

channel  
–  Alice encrypts plaintext using Bob’s public key, and 

Bob decrypts ciphertext using his private key 
–  No one else can decrypt the message (because they 

don’t have Bob’s private key) 
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Plaintext Alice 
Encrypts 

Ciphertext Bob 
Decrypts Plaintext 

Bob’s Public Key Bob’s Private Key 

Applications (Cont’d) 

3.  Secure storage on insecure medium 
■  Alice encrypts data using her public key 
■  Alice can decrypt later using her private 

key 
4.  User Authentication 

–  Bob proves his identity to Alice by using 
his private key to perform an operation 
(without divulging his private key) 

–  Alice verifies result using Bob’s public 
key 
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Applications (Cont’d) 
5.  Key exchange for secret key crypto 

■  Alice and Bob use public key crypto to 
negotiate a shared secret key between 
them 
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Public Key Algorithms 

■  Public key algorithms covered in this class, and 
their applications 
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System Encryption / 
Decryption? 

Digital 
Signatures? 

Key 
Exchange? 

RSA Yes Yes Yes 

Diffie-
Hellman 

Yes 

DSA Yes 

Public-Key Requirements 

■  It must be computationally 
■  easy to generate a public / private key pair 
■  hard to determine the private key, given the 

public key 
■  It must be computationally  

■  easy to encrypt using the public key 
■  easy to decrypt using the private key 
■  hard to recover the plaintext message from 

just the ciphertext and the public key 
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Trapdoor One-Way Functions 

■  Trapdoor one-way function 
■  Y=fk(X): easy to compute if k and X are 

known 
■  X=f -1k(Y): easy to compute if k and Y 

are known 
■   X=f -1k(Y): hard if Y is known but k is 

unknown 
■  Goal of designing public-key algorithm is to 

find appropriate trapdoor one-way function 
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The RSA Cipher 

RSA (Rivest, Shamir, Adleman) 

■  The most popular public key method 
■  provides both public key encryption and 

digital signatures 
■  Basis: factorization of large numbers is hard 
■  Variable key length (1024 bits or greater) 
■  Variable plaintext block size 

■  plaintext block size must be smaller than key 
size 

■  ciphertext block size is same as key size 
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Generating a Public/Private Key Pair 

■  Find (using Miller-Rabin) large primes p and q 
■  Let n = p*q 

•  do not disclose p and q! 
•  φ(n) = ??? 

■  Choose an e that is relatively prime to φ(n) 
•  public key = <e,n> 

■  Find d = multiplicative inverse of e mod φ(n)  
(i.e., e*d = 1 mod φ(n)) 

•  private key = <d,n> 
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RSA Operations 

■  For plaintext message m and ciphertext 
c 
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Signing: s = md mod n, m < n 

Verification: m = se mod n 

Encryption: c = me mod n, m < n 

Decryption: m = cd mod n 

RSA Example: Encryption and Signing 

■  Choose p = 23, q = 11 (both primes) 
■  n = p*q = 253 
■  φ(n) = (p-1)(q-1) = 220 

■  Choose e = 39    (relatively prime to 220) 
■  public key = <39, 253> 

■  Find e-1 mod 220 = d = 79  
(note: 39*79 ≡ 1 mod 220) 
■  private key = <79, 253> 
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Example (Cont’d) 

■  Suppose plaintext m = 80 
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Encryption 
c = 8039 mod 253 = ____           (c = me mod n) 

Decryption 
m = ____79 mod 253 = 80           (cd mod n) 

Signing (in this case, for entire message m) 
s = 8079 mod 253 = ____            (s = md mod n) 

Verification 
m = ____39 mod 253 = 80           (se mod n) 



Example (Cont’d) 

■  Suppose plaintext m = 80 
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Encryption 
c = 8039 mod 253 = 37           (c = me mod n) 

Decryption 
m = 3779 mod 253 = 80           (cd mod n) 

Signing (in this case, for entire message m) 
s = 8079 mod 253 = 224           (s = md mod n) 

Verification 
m = 22439 mod 253 = 80           (se mod n) 

Using RSA for Key Negotiation 

■  Procedure 
1.  A sends random number R1 to B, encrypted 

with B’s public key 
2.  B sends random number R2 to A, encrypted 

with A’s public key 
3.  A and B both decrypt received messages 

using their respective private keys 
4.  A and B both compute K = H(R1⊕R2), and 

use that as the shared key 
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Key Negotiation Example 
■  For Alice, e = 39, d = 79, n = 253 
■  For Bob, e = 23, d = 47, n = 589 (=19*31) 
■  Let R1 = 15, R2 = 55 

1.  Alice sends 306 = 1523 mod 589 to Bob 
2.  Bob sends 187 = 5539 mod 253 to Alice 
3.  Alice computes R2 = 55 = 18779 mod 253 
4.  Bob computes R1 = 15 = 30647 mod 589 
5.  A and B both compute K = H(R1⊕R2), and 

use that as the shared key 
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Proof of Correctness (D(E(m)) = m) 

■  Given  
■  public key = <e, n> and private key = <d, 

n> 
■  n =p*q, φ(n) =(p-1)(q-1)  
■  e*d ≡ 1 mod φ(n) 

■  If encryption is c = me mod n, decryption… 
=  cd mod n  
=  (me)d mod n = med mod n = med mod φ(n) mod n 
=  m mod n (why?) 
=  m (since m < n) 

■  (digital signature proof is similar)  
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Is RSA Secure? 

■  <e,n> is public information 
■  If you could factor n into p*q, then 

■  could compute φ(n) =(p-1)(q-1)  
■  could compute d = e-1 mod φ(n) 
■  would know the private key <d,n>! 

■  But: factoring large integers is hard! 
■  classical problem worked on for 

centuries; no known reliable, fast 
method 
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Security (Cont’d) 

■  At present, key sizes of 1024 bits are 
considered to be secure, but 2048 bits is 
better 

■  Tips for making n difficult to factor 
1.  p and q lengths should be similar (ex.: 

~500 bits each if key is 1024 bits) 
2.  both (p-1) and (q-1) should contain a 

“large” prime factor 
3.  gcd(p-1, q-1) should be “small” 
4.  d should be larger than n1/4 
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Attacks Against RSA 

■  Brute force: try all possible private keys 
■  can be defeated by using a large 

enough key space (e.g., 1024 bit keys 
or larger) 

■  Mathematical attacks 
1.  factor n (possible for special cases of n) 
2.  determine d directly from e, without 

computing φ(n) 
–  at least as difficult as factoring n  
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Attacks (Cont’d) 

■  Probable-message attack (using <e,n>) 
■  encrypt all possible plaintext messages 
■  try to find a match between the ciphertext and one 

of the encrypted messages 
■  only works for small plaintext message sizes 

■  Solution: pad plaintext message with random 
text before encryption 

■  PKCS #1 v1 specifies this padding format: 
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00 02 R1 R2 R3 R4 R5 R6 R7 R8 data… 00 

each 8 bits long 

Timing Attacks Against RSA 

■  Recovers the private key from the running time of 
the decryption algorithm 

■  Computing m = cd mod n  using repeated 
squaring algorithm: 

■  m = 1; 
■  for i = k-1 downto 1 

 m = m*m mod n; 
 if di == 1 
  then m = m*c mod n; 

■  return m; 
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Timing Attacks (Cont’d) 
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•  The attack proceeds bit by bit 

•  Attacker assumed to know c, m 

•  Attacker is able to determine bit i of d 
because for some c and m, the 
highlighted step is extremely slow if 
di = 1 

Countermeasures to Timing Attacks 

1.  Delay the result if the computation is too 
fast 
■  disadvantage: ? 

2.  Add a random delay 
■  disadvantage? 

3.  Blinding: multiply the ciphertext by a 
random number before performing 
decryption 
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RSA’s Blinding Algorithm 

■  To confound timing attacks during decryption 
1.  generate a random number r between 0 and n–1 

such that gcd(r, n) = 1 
2.  compute c’ = c * re mod n 
3.  compute m’ =  (c’)d mod n 
4.  compute m = m’ * r –1 mod n 

■  Attacker will not know what the bits of c’ are 
■  Performance penalty: < 10% slowdown in 

decryption speed 
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this is where 
timing attack 
would occur 



File Encryption and Authentication 

■  Alice sends a large file to Bob without 
disclosing the content of the file to 
anybody else.  

■  Also make sure no other people can modify 
the message without being noticed.  

■  Conditions: 
■  No secret key shared between Alice and  

Bob.  
■  Alice and Bob know each other’s RSA 

public key. (SKA, PKA) and (SKB, PKB) 
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Sender  

32 

Receiver 
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Diffie-Hellman Key Exchange 

Diffie-Hellman Protocol 

■  For negotiating a shared secret key using 
only public communication 

■  Does not provide authentication of 
communicating parties 

■  What’s involved? 
■  p is a large prime number (about 512 

bits) 
■  g is a primitive root of p, and g < p 
■  p and g are publicly known 

35 

D-H Key Exchange Protocol 
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Alice Bob 

Publishes or sends g and p Reads g and p 

Picks random number SA  
(and keeps private) 

Picks random number SB  
(and keeps private) 

Computes public key 
TA = gSA mod p 

Computes public key  
TB = gSB mod p 

Sends TA to Bob, 
reads TB from Bob 

Sends TB to Alice, 
reads TA from Alice 

Computes TB
SA mod p Computes TA

SB mod p = 



Key Exchange (Cont’d) 
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• Alice and Bob have now both computed the 
same secret gSASB mod p, which can then be used 
as the shared secret key K 

• SA is the discrete logarithm of gSA mod p and  
SB is the discrete logarithm of gSB mod p 

= 

D-H Example 

■  Let p = 353, g = 3 
■  Let random numbers be SA = 97, SB = 233 
■  Alice computes TA = ___ mod __ = 40  = gSA mod 

p 
■  Bob computes TB = ___ mod ___ = 248  = gSB 

mod p 
■  They exchange TA and TB 
■  Alice computes K = __ mod __ = 160 = TB

SA mod 
p 

■  Bob computes K = __ mod ___ = 160  = TA
SB 

mod p 
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D-H Example 

■  Let p = 353, g = 3 
■  Let random numbers be SA = 97, SB = 233 
■  Alice computes TA = 397 mod 353 = 40  = gSA mod 

p 
■  Bob computes TB = 3233 mod 353 = 248  = gSB 

mod p 
■  They exchange TA and TB  
■  Alice computes K = 24897 mod 353 = 160 =TB

SA 

mod p 
■  Bob computes K = 40233 mod 353 = 160 =TA

SB 

mod p 
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Why is This Secure? 

■  Discrete log problem: 
■  given TA (= gSA mod p), g, and p, it is 

computationally infeasible to compute 
SA 

■  (note: as always, to the best of our 
knowledge; doesn’t mean there isn’t a 
method out there waiting to be found) 

■  same statement can be made for TB, g, 
p, and SB 
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D-H Limitations 

■  Expensive exponential operation is required 
■  possible timing attacks??  

■  Algorithm is useful for key negotiation only 
■  i.e., not for public key encryption 

■  Not for user authentication 
■  In fact, you can negotiate a key with a 

complete stranger! 
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Man-In-The-Middle Attack 

■  Trudy impersonates as Alice to Bob, and 
also impersonates as Bob to Alice 

42 

Alice Bob Trudy gSA = 397 mod 353  
gS”A” 

gSB 

gS”B” = 3233 mod 353  

K1 = 24897 mod 353 =  
40233 mod 353 = 160 

K2 = (gSB) S”A” 



MITM Attack (Cont’d) 

■  Now, Alice thinks K1 is the shared key, and 
Bob thinks K2 is the shared key 

■  Trudy intercepts messages from Alice to 
Bob, and 
■  decrypts (using K1), substitutes her own 

message, and encrypts for Bob (using 
K2) 

■  likewise, intercepts and substitutes 
messages from Bob to Alice 

■  Solution??? 
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Authenticating D-H Messages 

■  That is, you know who you’re negotiating 
with, and that the messages haven’t been 
modified 

■  Requires that communicating parties 
already share some kind of a secret 

■  Then use encryption, or a MAC (based on 
this previously-shared secret), of the D-H 
messages 
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Using D-H in “Phone Book” Mode 

1.  Alice and Bob each choose a semi-permanent 
secret number, generate TA and TB 

2.  Alice and Bob publish TA, TB, i.e., Alice can get 
Bob’s TB at any time, Bob can get Alice’s TA at 
any time 

3.  Alice and Bob can then generate a semi-
permanent shared key without communicating 
■  but, they must be using the same p and g 

■  Essential requirement: reliability of the published 
values (no one can substitute false values) 
■  how accomplished??? 
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Encryption Using D-H? 

■  How to do key distribution + message 
encryption in one step  

■  Everyone computes and publishes their own 
individual <pi, gi, Ti>, where Ti=gi

Si mod pi 
■  For Alice to communicate with Bob…  

1.  Alice picks a random secret SA 
2.  Alice computes gB

SA mod pB 
3.  Alice uses KAB = TB

SA mod pB to encrypt the 
message 

4.  Alice sends encrypted message along with 
(unencrypted) gB

SA mod pB 
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Encryption (Cont’d) 

■  For Bob to decipher the encrypted 
message from Alice 

1.  Bob computes KAB = (gB
SA)SB mod pB  

2.  Bob decrypts message using KAB 
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Example 

■  Bob publishes <pB, gB, TB>  = <401, 5, 51> 
and keeps secret SB = 58  

■  Steps 
1.  Alice picks a random secret SA = 17 
2.  Alice computes gB

SA mod pB = ___ mod ___ = 173 
3.  Alice uses KAB = TB

SA mod pB =  
___ mod ___ = 360 to encrypt message M 

4.  Alice sends encrypted message along with 
(unencrypted) gB

SA mod pB = 173 
5.  Bob computes KAB = (gB

SA)SB mod pB =  
___ mod ___ = 360 

6.  Bob decrypts message M using KAB 
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Example 

■  Bob publishes <pB, gB, TB>  = <401, 5, 51> 
and keeps secret SB = 58  

■  Steps 
1.  Alice picks a random secret SA = 17 
2.  Alice computes gB

SA mod pB = 517 mod 401 = 173 
3.  Alice uses KAB = TB

SA mod pB =  
5117 mod 401 = 360 to encrypt message M 

4.  Alice sends encrypted message along with 
(unencrypted) gB

SA mod pB = 173 
5.  Bob computes KAB = (gB

SA)SB mod pB =  
17358 mod 401 = 360 

6.  Bob decrypts message M using KAB 
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Picking g and p 
■  Advisable to change g and p periodically 

■  the longer they are used, the more info 
available to an attacker 

■  Advisable not to use same g and p for 
everybody 

■  For “obscure mathematical reasons”… 
■  (p-1)/2 should be prime 
■  g(p-1)/2 should be ≡ -1 mod p 
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Digital Signature Standard (DSS) 



Digital Signature Standard (DSS) 

■  Useful only for digital signing (no 
encryption or key exchange) 

■  Components 
■  SHA-1 to generate a hash value (some 

other hash functions also allowed now)  
■  Digital Signature Algorithm (DSA) to 

generate the digital signature from this 
hash value 

■  Designed to be fast for the signer rather 
than verifier 
■  e.g., for use in smart cards 
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Digital Signature Algorithm (DSA) 

1.  Announce public parameters used for signing 
■  pick p (a prime with >= 1024 bits) 
■  pick q (a 160 bit prime) such that q|(p-1) 

■  choose g ≡ h(p-1)/q mod p, where 1 < h < (p – 
1), such that g > 1 

■  note: g is of order q mod p 
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ex.: if  h = 2, g = 26 mod 103 = 64 

ex.: p = 103 

ex.: q = 17  (divides 102) 

ex.: powers of 64 mod 103 =  
64 79 9 61 93 81 34 13 8 100 14 72 76 23 30 66 1 

17 values 

DSA (Cont’d) 

2.  User Alice generates a long-term private key xM  
■  random integer with 0 < xM < q 

3.  Alice generates a long-term public key yM 
■  yM = gxM mod p 
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ex.: xM = 13 

ex.: yM = 6413 mod 103 = 76  



DSA (Cont’d) 

4.  Alice randomly picks a private key k such that  
0 < k < q, and generates k-1 mod q 

5.  Signing message M 
■  public key r = (gk mod p) mod q 

■  signature s = [k-1(H(M)+xMr)] mod q 

■  transmitted info = M, r, s 
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ex.: k = 12,  12-1 mod 17 = 10 

ex.: r = (6412 mod 103) mod 17 = 4  

ex.: s = [10 * (75 + 13*4)] mod 17 = 12  

ex.: H(M) = 75 

ex.: M, 4, 12 

ex.: p = 103, q = 17, g = 64, xM = 13, yM = 76  

Verifying a DSA Signature 

■  Known : g, p, q, yM 

■  Received from signer: M, r, s 
1.  w = (s)-1 mod q 
2.  u1 = [H(M)w] mod q      
3.  u2 = (r*w) mod q 
4.  v = [(gu1*yM

u2) mod p] mod q 

5.  If v = r, then the signature is verified 
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ex.: M, 4, 12 

ex.: w = 12-1 mod 17 = 10  

ex.: u1 = 75*10 mod 17 = 2 

ex.: u2 = 4*10 mod 17 = 6 

ex.: v = [(642 * 766) mod 103] mod 17 = 4 

ex.: p = 103, q = 17, g = 64, yM = 76, H(M) = 75  

Verifying DSA Signature 

■  Received: M, r=13, s=24 
1.  w = (s)-1 mod q = 24 
2.  u1 = [H(M)w] mod q = 22*24 mod 25 = 3 
3.  u2 = (r)w mod q = 13 * 24 mod 25 = 12 
4.  v = [(gu1yA

u2) mod p] mod q =  
[53 * 5612 mod 101] mod 25 = 13 

5.  If v = r, then the signature is verified 
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Why Does it Work? 

■  Correct?  The signer computes 
■   s = k-1 * (H(m) + x*r) mod q 

■  so  k ≡ H(m)*s-1 + x*r*s-1 
■      ≡ H(m)*w + x*r*w mod q 

■  Since g has order q: 
■   gk ≡ gH(m)w * gxrw 
■       ≡ gH(m)w * yrw 
■       ≡ gu1 * yu2 mod p, and 
■  r = (gk mod p) mod q = (gu1*yu2 mod p) mod q = 

v 
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Is it Secure? 

■  Given yM, it is difficult to compute xM 
—  xM is the discrete log of yM to the base 

g, mod p 
■  Likewise, given r, it is difficult to compute 

k 
■  Cannot forge a signature without xM 

■  Signatures are not repeated (only used 
once per message) and cannot be 
replayed 
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Assessment of DSA 
■  Slower to verify than RSA, but faster 

signing than RSA 
■  Key lengths of 2048 bits and greater are 

also allowed 
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