

WILLIAN & MARY

CSCI 454/554 Computer and Network Security

Topic 6. Authentication

Authentication

WILLIAN & MARY

- Authentication is the process of reliably verifying certain information.
- Examples
 - User authentication
 - Allow a user to prove his/her identity to another entity (e.g., a system, a device).
 - Message authentication
 - Verify that a message has not been altered without proper authorization.
- A related concept
 - identification

Identification

- Identification is a process through which one ascertains the identity of another person or entity.
- Authentication and identification are different.
 - Identification requires that the verifier check the information presented against all the entities it knows about,
 - Authentication requires that the information be checked for a single, previously identified, entity
 - · Identification must, by definition, uniquely identify a given entity,
 - Authentication does not necessarily require uniqueness.

Mathentication Mechanisms WILLIAM Mechanisms

- Password-based authentication
 - Use a secret quantity (the password) that the prover states to prove he/she knows it.
 - Threat: password guessing/dictionary attack

Alice

Computer System

Authentication Mechanisms (Cont'd) WILLIAM & MARY

- Address-based authentication
 - Assume the identity of the source can be inferred based on the network address from which packets
 - Adopted early in UNIX and VMS
- Berkeley rtools (rsh, rlogin, etc)
 - /etc/hosts.equiv file
 - List of computers
 - Per user .rhosts file
 - List of <computer, account>
- Threat
 - Spoof of network address
 - Not authentication of source addresses

Authentication Mechanisms (Cont'd) WILLIAM GMARY

- Cryptographic authentication protocols
 - Basic idea:
 - A prover proves some information by performing a cryptographic operation on a quantity that the verifier supplies.
 - Usually reduced to the knowledge of a secret value
 - A symmetric key
 - The private key of a public/private key pair

CSCI 454/554 Computer and Network Security

Topic 6.1 User Authentication

Authentication and Identity MARY

- What is identity?
 - which characteristics uniquely identifies a person?
 - do we care if identity is unique?
- Authentication: verify a user's identity
 - a supplicant wishes to authenticate
 - a *verifier* performs the authentication
- What's relationship of identity to role, or job function?

8

Wary User Authentication Can Be Based On.. WILLIAM MARY

- What the user knows
 - passwords, personal information, a key, a credit card number, etc.
- 2. What the user is
 - Physical characteristics: fingerprints, voiceprint, signature dynamics, iris pattern, DNA, etc.
- 3. What the user has in their possession
 - smart card, (physical) key, smartphone, USB token ...
- 4. Where the user is or can be reached
 - email address, IP address, ...
- 5. Who the user knows?

Which of the above is best? Best in what way?

Crypto-Based Authentication WILLIAM WHARY

- Basic idea: user performs a requested cryptographic operation on a value (a challenge) that the verifier supplies
- Usually based on knowledge of a key (secret key or private key)
- Examples: RSA, zero knowledge proofs, ...
- We'll look at such protocols in more detail next time

10

WILLIAM

Address-Based User Authentication WILLIAM SMARY

- Associates identity with network address or email address
 - used by many web services
- Several early OS functions and tools worked this way
- Benefits? Problems?

<u>¢</u>

Password Authentication

- A password should be easy to remember but hard to guess
 - that's difficult to achieve!
- Some questions
 - what makes a good password?
 - where is the password stored, and in what form?
 - how is knowledge of the password verified?

Password Storage WILLIAM CHARRY

- Storing unencrypted passwords in a file is high risk
 - compromising the file system compromises all the stored passwords
- Better idea: use the password to compute a one-way function (e.g., a hash, an encryption), and store the output of the one-way function
- When user inputs the requested password...
 - 1. compute its one-way function
 - 2. compare with the stored value

15

* Attacks on Passwords WILLIAM GMARY

- Suppose passwords could be up to 9 characters long
- This would produce 10¹⁸ possible passwords; 320,000 years to try them all at 10 million a second!
- Unfortunately, not all passwords are equally likely to be used

16

Example of a Study WILLIAM MARY In a sample of over 3000 passwords: 500 were easily guessed versions of dictionary words or first name / last name 86% of passwords were easily guessed Length in characters 1 2 3 4 5 6 Number of passwords 15 72 464 477 706 605 (lower case only)

- Simple idea: generate a long list of passwords, use each only one time
 - attacker gains little/no advantage by eavesdropping on password protocol, or cracking one password
- Disadvantages
 - storage overhead
 - users would have to memorize lots of passwords!
- Alternative: the S/Key protocol
 - based on use of one-way (e.g. hash) function

- Key feature: no one knowing x_i can easily find an x_{i+1} such that $H(x_{i+1}) = x_i$
 - only Alice possesses that information

- Desired qualities
 - 1. uniquely identifying
 - 2. very difficult to forge / mimic
 - 3. highly accurate, does not vary
 - 4. easy to scan or collect
 - 5. fast to measure / compare
 - 6. inexpensive to implement
- Which of these are concerns for passwords?

Assessment

Convenient for users (e.g., you always have your fingerprints, never have to

- remember them), but...potentially troubling sacrifice of private information
 - new wounds on your fingers
 - no technique yet has all the desired properties

39

Example Biometric Technologies WILLIAM SMARY

- Signature / penmanship / typing style
- Fingerprints
- Palm geometry
- Retina scan
- Iris scan
- Face recognition
- Voice recognition

40

- more characteristics should be better?

 Suppose true positive rate was AND of the
- Suppose true positive rate was AND of the two, and false positive rate was OR of the two...
 - TP = TP1 * TP2
 - FP = 1 (1-FP1)*(1-FP2)
- Alternative: combine a biometric technique with passwords

Tokens WILLIAM CHARK

- A token is a physical device that can be interfaced to the computer, and carries identifying information
- Types
 - passive tokens just store information
 - active tokens have processors and can perform cryptographic operations
- Examples
 - cards with magnetic strips
 - smart cards
 - USB storage devices
 - RFID tags

44

Design Issues for Tokens WILLIAM WARY

- Cost
- Size
- Capabilities
- Robustness
- Resistance to tampering
- Usefulness if stolen / lost

Ŵ

An Example: Time Synchronized Tokens

VILLIA S'MAR

- The token contains:
 - internal clock
 - display
 - a secret key
- Token computes a one-way function of current time+key, and displays that
 - this value changes about once per minute
- User reads this value and types it in to authenticate to the server
 - requires that server and token time stays synchronized

46

45

One-time Password on Smartphone

WILLIAM どMARY

- Integrate physical tokens into smartphone
- Requirements:
 - Security
 - Malicious mobile OS cannot compromise the keying material in the one-time password (OTP) generator
 - . It cannot read the OTP
 - Reliability
 - OTP works even if mobile OS crashes
 - Trusted inputs (e.g., clock time) for the OTP generator
 - Trusted display

47

TrustZone-based Solution WILLIAM GMARY

- ARM TrustZone Technology
 - Two isolated execution environments
 - Mobile OS cannot access the disk, memory, CPU states of the OTP generator.
 - A secure clock for OTP generator
 - A self-contained display and touchscreen.

