

CSCI 454/554 Computer and Network Security

Topic 6.2 Authentication Protocols

Authentication Handshakes

- Secure communication almost always includes an initial authentication handshake.
 - Authenticate each other
 - Establish session keys
 - This process is not trivial; flaws in this process undermine secure communication

Authentication with Shared Secret WILLIAM SHARY

Weaknesses

- Authentication is not mutual; Trudy can convince Alice that she is Bob
- Trudy can hijack the conversation after the initial exchange
- If the shared key is derived from a password, Trudy can mount an off-line password guessing attack
- Trudy may compromise Bob's database and later impersonate Alice

Authentication with Shared Secret (Cont'd) WILLIAM SMARY

A variation

- Requires reversible cryptography
- Other variations are possible

Weaknesses

- All the previous weaknesses remain
- Trudy doesn't have to see R to mount off-line password guessing if R has certain patterns (e.g., concatenated with a timestamp)
 - Trudy sends a message to Bob, pretending to be Alice

Authentication with Public Key WILLIAM Public Key

- Bob's database is less risky
- Weaknesses
 - Authentication is not mutual; Trudy can convince Alice that she is Bob
 - Trudy can hijack the conversation after the initial exchange
 - Trudy can trick Alice into signing something
 - Use different private key for authentication

Authentication with Public Key (Cont'd) WILLIAM MARY

A variation

Mutual Authentication

Reflection attack

Reflection Attacks (Con'td) WILLIAM CON'TE (Con'td)

- Lesson: Don't have Alice and Bob do exactly the same thing
 - Different keys
 - Totally different keys
 - $K_{Alice-Bob} = K_{Bob-Alice} + 1$
 - Different Challenges
 - The initiator should be the first to prove its identity
 - Assumption: initiator is more likely to be the bad guy

Password guessing

- Public keys
 - Authentication of public keys is a critical issue

- Mutual authentication with timestamps
 - Require synchronized clocks
 - Alice and Bob have to encrypt different timestamps

Integrity/Encryption for Data

- Communication after mutual authentication should be cryptographically protected as well
 - Require a session key established during mutual authentication

Establishment of Session Keys WILLIAM SESSION KEYS

- Secret key based authentication
 - Assume the following authentication happened.
 - Can we use $K_{Alice-Bob}\{R\}$ as the session key?
 - Can we use $K_{Alice-Bob}\{R+1\}$ as the session key?
 - In general, modify $K_{Alice-Bob}$ and encrypt R. Use the result as the session key.

- Two-way public key based authentication
 - Alice chooses a random number R, encrypts it with Bob's public key
 - Trudy may hijack the conversation
 - Alice encrypts and signs R
 - Trudy may save all the traffic, and decrypt all the encrypted traffic when she is able to compromise Bob
 - Less severe threat

Two-Way Public Key Based Authentication (Cont'd) WILLIAM CONTROL (Cont'd)

A better approach

- Alice chooses and encrypts R₁ with Bob's public key
- Bob chooses and encrypts R₂ with Alice's public key
- Session key is R₁⊕R₂
- Trudy will have to compromise both Alice and Bob

An even better approach

- Alice and Bob estatlish the session key with Diffie-Hellman key exchange
- Alice and Bob signs the quantity they send
- Trudy can't learn anything about the session key even if she compromises both Alice and Bob

- One-way public key based authentication
 - It's only necessary to authenticate the server
 - Example: SSL
 - Encrypt R with Bob's public key
 - Diffie-Hellman key exchange
 - Bob signs the D-H public key

Mediated Authentication (With KDC)

KDC operation (in principle)

Some concerns

- Trudy may claim to be Alice and talk to KDC
 - Trudy cannot get anything useful
- Messages encrypted by Alice may get to Bob before KDC's message
- It may be difficult for KDC to connect to Bob

Mediated Authentication (With KDC)

KDC operation (in practice)

- Must be followed by a mutual authentication exchange
 - To confirm that Alice and Bob have the same key

Needham-Schroeder Protocol WHARK

- Classic protocol for authentication with KDC
 - Many others have been modeled after it (e.g., Kerberos)
- Nonce: A number that is used only once
 - Deal with replay attacks

Needham-Schroeder Protocol (Cont'd) WILLIAM SCHOOL (CO

- A vulnerability
 - When Trudy gets a previous key used by Alice, Trudy may reuse a previous ticket issued to Bob for Alice
 - Essential reason
 - The ticket to Bob stays valid even if Alice changes her key

 The additional two messages assure Bob that the initiator has talked to KDC since Bob generates N_B

Otway-Rees Protocol

- Only has five messages
- KDC checks if N_C matches in both cipher-texts
 - Make sure that Bob is really Bob