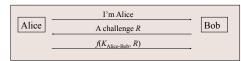
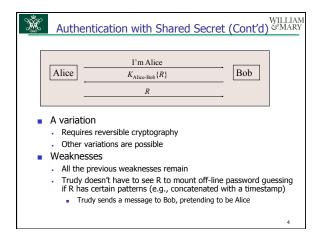
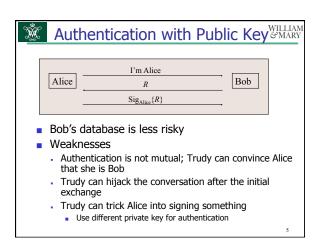


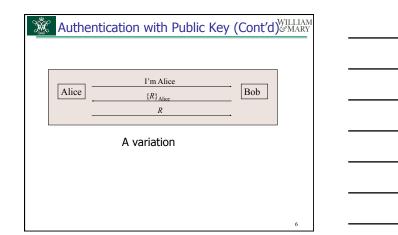
WILLIAM & MARY

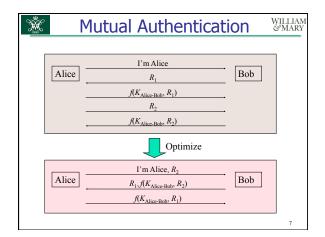

CSCI 454/554 Computer and Network Security

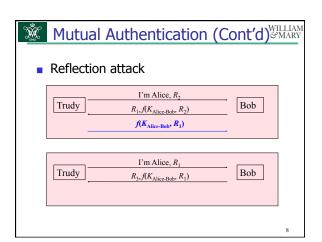
Topic 6.2 Authentication Protocols

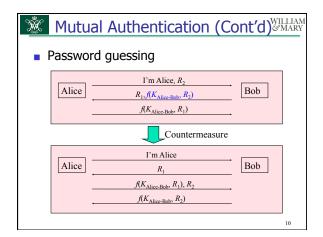

MARY Authentication Handshakes WILLIAM GMARY

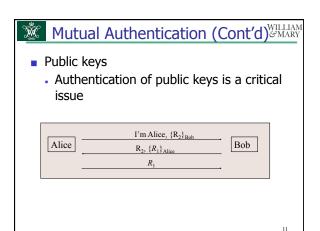

- Secure communication almost always includes an initial authentication handshake.
 - Authenticate each other
 - Establish session keys
 - This process is not trivial; flaws in this process undermine secure communication

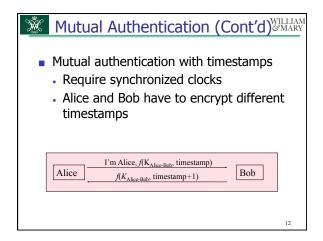

Authentication with Shared Secret WILLIAM MARY




- Weaknesses
 - Authentication is not mutual; Trudy can convince Alice that she is Bob
 - Trudy can hijack the conversation after the initial exchange
 - If the shared key is derived from a password, Trudy can mount an off-line password guessing attack
 - Trudy may compromise Bob's database and later impersonate







Reflection Attacks (Con'td) WILLIAM Lesson: Don't have Alice and Bob do exactly the same thing Different keys Totally different keys Kalice-Bob = KBob-Alice + 1 Different Challenges The initiator should be the first to prove its identity Assumption: initiator is more likely to be the bad guy

Integrity/Encryption for Data WILLIAM Communication after mutual authentication should be cryptographically protected as well Require a session key established during mutual authentication

■ Secret key based authentication

• Assume the following authentication happened.

• Can we use K_{Alice-Bob}{R} as the session key?

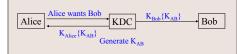
• Can we use K_{Alice-Bob}{R+1} as the session key?

• In general, modify K_{Alice-Bob} and encrypt R. Use the result as the session key.

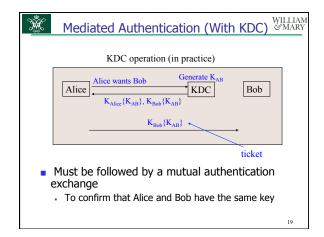
Establishment of Session Keys (Cont'd) WILLIAM Two-way public key based authentication Alice chooses a random number R, encrypts it with Bob's public key Trudy may hijack the conversation Alice encrypts and signs R Trudy may save all the traffic, and decrypt all the encrypted traffic when she is able to compromise Bob Less severe threat

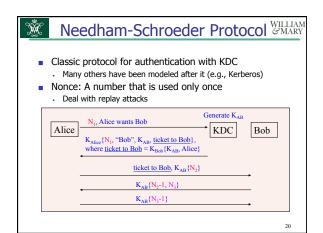
- A better approach
 - Alice chooses and encrypts R₁ with Bob's public key
 - Bob chooses and encrypts R₂ with Alice's public key
 - Session key is R₁⊕R₂
 - Trudy will have to compromise both Alice and Bob
- An even better approach
 - Alice and Bob estatlish the session key with Diffie-Hellman key exchange
 - Alice and Bob signs the quantity they send
 - Trudy can't learn anything about the session key even if she compromises both Alice and Bob

Establishment of Session Keys (Cont'd) WILLIAM (Cont'd) WILLIAM (CONT'D)

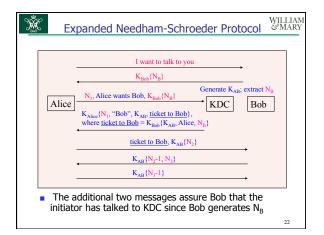

- One-way public key based authentication
 - It's only necessary to authenticate the server
 - Example: SSL
 - Encrypt R with Bob's public key
 - Diffie-Hellman key exchange
 - Bob signs the D-H public key

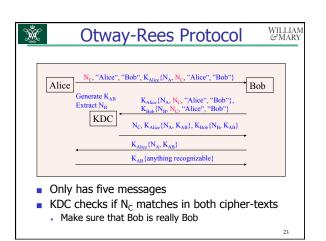
17




Mediated Authentication (With KDC) WILLIAM OF MARY

KDC operation (in principle)




- Some concerns
 - Trudy may claim to be Alice and talk to KDC
 - Trudy cannot get anything useful
 - Messages encrypted by Alice may get to Bob before
 - . It may be difficult for KDC to connect to Bob

Needham-Schroeder Protocol (Cont'd) MARY A vulnerability When Trudy gets a previous key used by Alice, Trudy may reuse a previous ticket issued to Bob for Alice Essential reason The ticket to Bob stays valid even if Alice changes her key

