

CSCI 454/554 Computer and Network Security

Topic 8.3 SSL/TLS

- Overview
- The SSL Record Protocol
- 3. The SSL Handshake and Other Protocols

Overview of SSL

Reminder: What Layer?

- Goal: application independent security
 - Originally for HTTP, but now used for many applications
 - Each application has an assigned TCP port, e.g., https (HTTP over SSL) uses port 443
- Secure Sockets Layer (SSL)
 - the de facto standard for web-based security
 - v3 was developed with public review
- Transport Layer Security (TLS)
 - TLS v1.0 very close to SSL v3.1

Protocol over SSL/TLS

Keyword	Decimal	Description
nsiiops	261/tcp	IIOP Name Service over TLS/SSL
https	443/tcp	http protocol over TLS/SSL
ddm-ssl	448/tcp	DDM-SSL
smtps	465/tcp	smtp protocol over TLS/SSL
nntps	563/tcp	nntp protocol over TLS/SSL
sshell	614/tcp	SSLshell
ldaps	636/tcp	ldap protocol over TLS/SSL
ftps-data	989/tcp	ftp protocol, data, over TLS/SSL
ftps	990/tcp	ftp, control, over TLS/SSL
telnets	992/tcp	telnet protocol over TLS/SSL
imaps	993/tcp	imap4 protocol over TLS/SSL
ircs	994/tcp	irc protocol over TLS/SSL
pop3s	995/tcp	pop3 protocol over TLS/SSL

SSL Architecture

Relies on TCP for reliable communication

Architecture (Cont'd)

- Handshake protocol: establishment of a session key
- Change Cipher protocol: start using the previously-negotiated encryption / message authentication
- Alert protocol: notification (warnings or fatal exceptions)
- Record protocol: protected (encrypted, authenticated) communication between client and server

- Peer authentication
- Negotiation of security parameters
- Generation / distribution of session keys
- Data confidentiality
- Data integrity

Connections and Sessions

SSL Session

- an association between peers
- created through a handshake, negotiates security parameters, can be long-lasting
- SSL Connection
 - a type of service (i.e., an application)
 between a client and a server
 - transient
- Multiple connections can be part of a single session

Session Parameters

- Session ID
- X.509 public-key certificate of peer
- Compression algorithm to use
- Cipher specification: encryption algorithm, message digest, etc.
- Master (session) secret: 48-byte (384 bits) secret negotiated between peers

Connection Parameters

- Server and client nonces
- Server and client authentication keys
- Server and client encryption keys
- Server and client initialization vectors
- Current message sequence number

Ciphers Supported by SSL WILLIAM GMARY

- DES+HMAC/SHA-1
- 3DES+HMAC/SHA-1
- RC4+MD5
- RC2+MD5
- +others

The SSL Record Protocol

Protocol Steps

- Fragment data stream into records
 - each with a maximum length of 2¹⁴
 (=16K) bytes
- Compress each record
- 3. Create message authentication code for each record
- Encrypt each record

Steps... (cont'd)

SSL Record Format

There is, unfortunately, some version number silliness between v2 and v3; see text for (ugly) details

Possible Record "Payloads" WILLIAM PAYLOADS

SSL Handshake Protocol

Phases of Protocol

- Establish security capabilities
 - version of SSL to use
 - cipher + parameters to use
- Authenticate server (optional), and perform key exchange
- Authenticate client (optional), and perform key exchange
- IV. Finish up

All the Messages

I. Establish Security Capabilities Williams

Messages marked with * are mandatory

Client Hello Message

- Transmitted in plaintext
- Contents
 - highest SSL version understood by client
 - R_C: a 4-byte timestamp + 28-byte random number
 - session ID: 0 for a new session, nonzero for a previous session
 - list of supported cryptographic algorithms
 - list of supported compression methods

Server Hello Message

- Also transmitted in plaintext
- Contents
 - minimum of (highest version supported by server, highest version supported by client)
 - R_S: 4-byte timestamp and 28-byte random number
 - session ID
 - a cryptographic choice selected from the client's list
 - a compression method selected from the client's list

II. Server Auth. / Key Exchange

 The Server_Certificate message is optional, but almost always used in practice

Server Certificate Message WILLIAM MARY

- Contains a certificate with server's public key, in X.509 format
 - or, a chain of certificates if required
- The server certificate is necessary for any key exchange method except for anonymous Diffie-Hellman

Authenticating the Server WILLIAM GMARY

Step #4: Domain name in certificate must match domain name of server (not part of SSL protocol, but clients should check this) 27

Key Exchange Methods Supported MARY

- RSA (server must have a certificate)
- Ephemeral Public Key
 - public keys are exchanged, signed using long-term RSA keys
- Fixed Diffie-Hellman
 - server provides the D-H public parameters in a certificate
 - client responds with D-H public key either in a certificate, or in a key exchange message
- Anonymous Diffie-Hellman
 - Diffie-Hellman without authentication
 - Susceptible to Man-in-the-middle attack

- Needed for...
 - anonymous D-H
 - ephemeral public key

Server Key Exchange

- Normally not used, because in most applications
 - only the server is authenticated
 - client is authenticated at the application layer, if needed
- Two parameters
 - certificate type accepted, e.g., RSA/ signature only, DSS/signature only, ...
 - list of certificate authorities recognized (i.e., trusted third parties)

III. Client Auth. / Key Exchange

Client Certificate Message WILLIAM Client Certificate Message

 Contains a certificate, or chain of certificates if needed

Client Key Exchange Message

- If using RSA, the pre-master secret S, encrypted with the server's public key
- If using D-H, the client's public key

- Proves the client is the valid owner of a certificate (i.e., knows the corresponding private key)
- Only sent following any client certificate that has signing capability

IV. Finish Up

Change Cipher Spec Msg WILLIAM & Change Cipher & Change Cip

- Confirms the change of the current state of the session to a newly-negotiated set of cryptographic parameters
- Finished Messages
 - keyed hash of the previous handshake messages to prevent man-in-the-middleattacks from succeeding

"Abbreviated" Protocol Possible

- Allows resumption of a previouslyestablished session
 - does not require authentication of server or client
 - does not exchange keys
- Details omitted

Creating the "Master" Secret

- The master secret is a one-time (per session) 48-byte (= 16+16+16) value
- Parameters
 - the pre-master secret S has previously been communicated using RSA or D-H
 - the client nonce R_c
 - the server nonce R_s
- Computation: K = MD5 (S | SHA-1("A" | S | R_c | R_s)) MD5 (S | SHA-1("BB" | S | R_c | R_s)) MD5 (S | SHA-1("CCC" | S | R_c | R_s))

Cryptographic Parameters WILL

- Generated from
 - the master secret K
 - Rc
 - Rs
- Values to be generated
 - client authentication and encryption keys
 - server authentication and encryption keys
 - client encryption IV
 - server encryption IV

Alert Protocol Examples

- Type 1: Fatal_Alert
 - ex.: Unexpected_Message, Bad_MAC, etc.
 - connection is immediately terminated
- Type 2: Warning
 - ex.: No_Certificate,Close_Notify

Summary

- SSL is the de facto authentication/ encryption protocol standard for HTTP
 - becoming popular for many other protocols as well
- 2. Allows negotiation of cryptographic methods and parameters