
Amnesia: A Bilateral Generative Password Manager
Luren Wang∗, Yue Li∗, Kun Sun

Department of Computer Science
College of William and Mary

lurenwang@gmail.com, {yli,ksun}@cs.wm.edu

Abstract—While numerous flaws have been recognized in
using passwords as a method of authentication, passwords still
remain the de-facto authentication standard in use today. Though
password managers can ameliorate password fatigue, the vast
majority of password managers require the user to choose and
maintain a strong master password while offering little to no
recourse in the event that the master password is compromised.
The wide-application of cloud-based password managers con-
gregate passwords in an encrypted database, which becomes
an attractive target for attackers and also represents a single
point of failure. In this paper, we propose Amnesia, a bilateral
generative password manager that requires both the knowledge of
the master password and the possession of the user’s smartphone
to generate website passwords for the user. Our generative
password manager is not vulnerable to the password database
leakage, since it generates the requested password on demand
using both the master password and the secret information
on the smartphone. An attacker wishing to steal the user’s
website passwords has to compromise both the user’s smartphone
and the master password. Amnesia also has strong recovery
capability when either the master password is compromised or
the smartphone is lost/stolen. By using an Amnesia server, a
user can have the access to the password manager on multiple
computers without installing any software on those computers.
We implemented an Amnesia system prototype using Android
and Cherrypy web framework and evaluated it in terms of
security, usability, and overhead. A user study of 31 testers shows
that Amnesia increases password security while maintaining
reasonable user convenience.

I. INTRODUCTION

Despite consensus among security researchers on the nu-
merous problems password based authentication impose, pass-
words have nevertheless been the main form of electronic
authentication for over 50 years [1]. The main issue regarding
passwords as a form of authentication is the limitation of
human memory. It is proven users have selected very weak
passwords that are vulnerable to various attacks [2]–[4]. Fur-
thermore, it is not realistic to depend on users to follow the
most secure practice [1], [5]. For example, a password is
shown to be shared across 3.9 different sites even though
password reuse is known to be an insecure practice [6].

A number of password managers exist which help mitigate
password management issues. The two main types of password
managers are retrieval and generative. Retrieval password
managers are characterised by an encrypted vault that stores

∗ The first two authors contribute equally to this paper. The idea and most
of the paper writing are from Luren Wang, who is mentored by Yue Li. The
developments are equally contributed between Luren and Yue.

the user’s passwords online or offline. The user needs to input
the master password in order to access the passwords in the
vault. Despite security precautions, online retrieval password
databases are attractive targets to attackers and are at risk
to data breaches [7]. Meanwhile, offline retrieval password
managers incur the danger of leaving multiple copies of
encrypted database across several devices. Generative pass-
word managers generate user passwords based on information
such as site URL, account username, and a master password.
Though generative password managers can avoid the data
breach problems of retrieval password managers, they are often
unwieldy. For instance, some generative password managers
force the user to set and memorize a counter that specifies how
many times they have changed a password to an account [8].
Both retrieval and generative password managers rely on a
single master password as a security anchor. Thus, the master
password is a single point of failure in these systems.

In this paper, we develop Amnesia, a bilateral generative
password manager that enhances the password security by
generating a requested password with both the knowledge of a
master password and the possession of the user’s smartphone.
When the user wishes to obtain a password to a particular
website account, it first uses its master password to log into an
Amnesia web server. After the user clicks the targeted account
it wants to use, a password request is sent from the Amnesia
web server to the user’s smartphone. With the confirmation
from the user, the smartphone sends a token of sensitive
password data to the server. Then, the server combines the
token with its server-side secrets to generate the requested
password. Finally, the server sends the generated password to
the user’s computer.

Amnesia is a bilateral password manager since it splits
password generative information between the Amnesia server
and the user’s smartphone. Since a desktop without wireless
communication devices cannot directly contact the smart-
phone, we provide an Amnesia server to communicate with
the smartphone by using a rendezvous server such as Google
Cloud Messaging [9]. Note since the Amnesia server usually
has static IP address, the smartphone can directly communi-
cate with the Amnesia server without the packet forwarding
through the rendezvous server. Moreover, with the deploy-
ment of the Amnesia server, a user can have access to the
password manager on multiple computers without installing
any software on those computers. To access the secrets in
the Amnesia server, the user only needs to authenticate itself
to the Amnesia web server using its master password. As a

generative password manager, Amnesia is not vulnerable to
database breaches.

An attacker wishing to steal the user’s passwords has to
either compromise both the user’s smartphone and master
password or both the user’s smartphone and the Amnesia web
server. Amnesia also provides strong recovery capability when
either the master password is compromised or the smartphone
is lost/stolen. First, when the smartphone is stolen, the user
can use the master password and backup data to reset a
new smartphone and update the password information on
the Amnesia server. Second, when the master password is
compromised, the user can use the secret information in the
smartphone to change the master password. To prevent the
attacker from misusing the stolen smartphone to reset the
master password, the user should first input the current master
password to authenticate itself.

We implement an Amnesia system prototype using Android
to develop the Amnesia mobile application on the smartphone
and CherryPy [10] web framework to build up the Amnesia
server. The experimental results show that Amnesia only
introduces small time latency. We compare Amnesia with
other password managers using the comparative evaluation
framework developed by Bonneau, et al. [11]. Moreover, we
perform a user study consisting of 31 testers to measure the
security and usability of Amnesia. The study results show
that Amnesia increases password security while maintaining
reasonable user convenience.

In summary, we make the following contributions:
1) We propose a bilateral generative password manager

architecture that both eliminates password breach vulner-
abilities and provides an additional layer of security to
the master password by utilizing the user’s smartphone.

2) We implement a prototype of Amnesia that includes the
Amnesia server and the Amnesia mobile application. We
also conduct experiments to show that the time latency
of password generation is small.

3) We conduct a user study with 31 participants. The study
explores participants’ password management habits and
measures their disposition towards Amnesia’s usability.
It shows that Amnesia does increase password security
with minimal user involvement during the authentication
process.

The remainder of the paper is organized as follows. In
section II, we discuss the threat model. Section III describes
Amnesia’s system architecture while section IV performs se-
curity analysis on Amnesia. Section V illustrates the prototype
implementation. Section VI includes Amnesia evaluation while
section VII details our user study. Section VIII discusses
limitations of Amnesia and section IX surveys related works.
Finally, section X concludes this paper.

II. THREAT MODEL

We assume the user’s smartphone may be stolen, and
then the attacker can have full access to the sensitive data
in the Amnesia mobile application and the communication
between the smartphone and the Amnesia server. Also, we

assume the user’s master password may be compromised.
Though the attackers are able to compromise either the user’s
smartphone or the master password of the password manager,
we assume they cannot compromise both smartphone and the
master password without the user noticing and taking reactive
measures. Moreover, we assume that the attacker is able to
compromise the Amnesia web server. Here, the attacker may
gain full access to the data at rest including the server side
secrets. However, we do not assume the attacker can read the
memory of other processes on the same server.

Since we focus on the security of password manager, we
assume the computer that is used to access websites can be
trusted. Moreover, the web browser can be trusted. Otherwise,
it can see all the passwords in plaintext. We assume all
the communication between the browser, the Amnesia server,
and the Amnesia mobile application is protected. We also
assume the a third-party cloud provider can be trusted and
its connection to Amnesia application is secure during the
recovery process when a smart phone is lost.

III. SYSTEM ARCHITECTURE

Figure 1 shows the system architecture of Amnesia, which
consists of three main components, namely, a web browser
on user’s computer, an Amnesia web server on a remote
server, and an Amnesia mobile app on the user’s smart phone,
which collaborate password management with six steps. First,
when the user uses the computer to access a website that
requests password for user authentication, the web browser
forwards the web domain information such as the URL to
the Amnesia server, to which the user has been successfully
authenticated. In the third step, the Amnesia server generates
a password request to the user’s smartphone. However, since
the Amnesia server may not be able to directly communicate
with the smartphone, it has to use a rendezvous server to
help forward the request. Next, the smartphone calculates a
token based on the password request and its phone-side secret.
Since the Amnesia server’s address is fixed, the smartphone
can directly send the token to the Amnesia server. In the fifth
step, after generating the password using the token and its
server-side secret, the Amnesia server will send the password
to the browser, which can automatically fill the password into
the website authentication page. The process is the same for
a user using a mobile browser. In this case, the phone would
also take on the role of the PC.

For clarification purposes, we list important notations used
in our system as follows.

• Server-side secret Ks: Server-side secret is a collection
of secrets that are only stored on the Amnesia server. It
is used in the computation of a requested password along
with a requested token from the phone.

• Phone-side secret Kp: Phone-side secret is a collection of
secrets that are only stored on the Amnesia application.
It is used in the computation of a token which is then
sent to the Amnesia server for password generation.

Fig. 1: Amnesia System Architecture

TABLE I: Server Side Data

Data Value
Oid 0xa457fe1

Registration ID fl1K4V TKHcc : AP . . .
H(MP + salt) 0x6fa2514. . .
H(Pid + salt) 0x4a3f321 . . .

Salt 0x19ad452 . . .
(µ, d, σ)1 (Alice, mail.google.com, 0xff4323a . . .)
(µ, d, σ)2 (Alice2, www.facebook.com, 0xe12341f . . .)
(µ, d, σ)3 (Bob, www.yahoo.com, 0xe58ae34 . . .)
µ is the account username, d is the domain ID, and σ is the seed.

• Password request R: A value that is derived from the
server-side secret Ks and the website’s domain informa-
tion.

• Token T : A value that is calculated by the smartphone
using the phone-side secret Kp and the password request
R.

• Generated password P : A password that is generated for
a particular user web account. The password is computed
using both Ks and Kp.

• Master password MP : The password the user uses to
authenticate to the Amnesia server.

A. Core Components

We elaborate in detail on the three core components -
the Amnesia server, mobile application, and user computer
- particularly on the variables and secrets stored in each
component.

1) User Computer: The user computer itself does not
store any variables necessary to generate particular passwords.
Rather, the user computer can authenticate to and interact with
the Amnesia server with the master password MP , usually
in the form of a web browser. MP is the only password
that should be remembered by the user. The communication
between the computer and the server is protected by HTTPS.

2) Amnesia Server: Amnesia server stores two types of
secrets, Ks for generating passwords and functional variables
Vf for other functionalities such as authentication and account
recovery. Upon registration to the Amnesia server, the user will
be associated with a 512-bit online ID that is denoted as Oid,

TABLE II: Application Side Data

Data Value
Pid 0xff32241 . . .
e1 0x312ae44 . . .
e2 0x988ffe1 . . .
.
e4999 0x2034af4 . . .

ei is the ith entry value.

which is static and unique per Amnesia account. When the
user adds one website password account, an entry is created.
The entry is composed of three values, namely, the account
domain d, the account username u, and a 256-bit seed σ. The
account domain can be anything (for example a URL) that
identifies a website or entity that the user has an account on.
The account username is simply the username of a particular
account on domain d. In brief, the pair (d, u) is used to
uniquely identify the user’s accounts. σ plays two roles. First,
if the user wishes to change its password to account A, it
only needs to change σi in order to regenerate a new password.
Second, σ also provides security when the server generates and
sends request R. This aspect is elaborated on in Section III-B.
Besides Ks, The server also stores several other functional
variables. These are the hash of the salted master password
MP for user authentication and registration id (Rid), which
is required for the communication through a rendezvous server.
Furthermore, the server also stores a hashed and salted Pid to
associate a physical mobile phone for recovery. In brief, the
server data can be represented as

Ks = (Oid, (µ, d, σ)), Vf = (H(MP, salt), Rid, (H(Pid, salt))

We summarize the server side data in Table I.
3) Amnesia Mobile Application: The phone-side secret Kp

consists of a static and unique value called phone ID, which
is 512-bits in length and denoted Pid. The mobile application
also provides an entry table TE containing N 256-bit random
entry values and each of the entry is denoted as e, which is
used to generate the Token.

Kp = (Pid, TE), TE = {ei}

We choose N to be 5000 and an application side data example
in shown in Table II.

B. Core Functions

Now we dissect the core functions involved in both ap-
plication registration and password generation processes, par-
ticularly the functions on generating password request R,
generating token T , and generating the requested password
P .

1) Registering mobile application with the Amnesia server.:
After the user signs up with Amnesia server, it needs to
download and register the Amnesia mobile application. Each
application instance is uniquely identified with both Pid and
registration id. A new Pid is generated each time the appli-
cation is installed. Likewise, the registration id is assigned to

the application by the rendezvous server. Upon registration,
the application provides the server with both the registration
id and Pid. For instance, we can simply make the user type in
a generated CAPTCHA code on their application that is dis-
played on the Amnesia webpage. If the captcha codes match,
the server will accept the application’s Pid and registration
id. Next, the server stores the registration id in plaintext and
hash and salt the Pid. It is important that the server does not
store the Pid in plaintext as the Pid is considered a phone-side
secret.

2) Generating password request R: Assume that the user
wishes to generate their password for account A. Account
A is identified by (µA, dA), which is signaled by the user
to Amnesia server through standard HTTPS request. On the
server, R is then generated as

R = H(µA||dA||σA)

σA is included as a preventative measure. Consider the follow-
ing scenario, a passive attacker is eavesdropping on Amnesia
server to rendezvous server communication. Without σA, the
attacker could easily verify that the user is sending request R
to their Amnesia application by computing H(uA +dA) since
uA and dA are predictable secrets.

3) Generating token T : Because R was generated with
SHA-256, R is 64 hex-digit long. In order to generate T ,
we first split R into 16 segments of length 4. Each segment
is denoted as si and si = R[4i : 4i+ 4]. Note that the length
of each segment should be able to cover the entry table size
N , namely 16l ≥ N . Each segment is modded against the
entry table size N to obtain an index which is then used
to get a particular ei (i = si%N). Next, the set of ei will
be concatenated and hashed with SHA-256. Thus, T can be
expressed as

T = H(e0||e1||...||e15)

We express this process in Algorithm 1 for clearer presenta-
tion. Additionally, we observe that since N = 5000 and each
request R yields 16 ei, there are 500016 or 1.53×1059 unique
T .

4) Generating requested password P : Password generation
begins as soon as the token T arrives to the server. First, the
server obtains the account’s σ and the user’s Oid. These values
are concatenated with T and hashed using SHA-512. Thus,
the hashed intermediate value, which we designate as p, for
account A can be expressed as

pA = H(TA||Oid||σA)

The intermediate value is then passed through a template
function, which aims to map the intermediate value to a real
password. The template function parallels the token generating
function in the previous subsection. Here, the server contains
a character table set. The size Nc of the character table set
Tc is 94 and this includes lowercase letters, uppercase letters,
numbers, and special characters. However, the character set on
the table can be adjusted per account by the user to adapt to
various website password policy. For instance, if an account

Algorithm 1 generateToken function

procedure GENERATETOKEN(R) . Generates T from R
c ← 0
segmentList ← ∅
entrySet ← ∅
concatenated ← ∅
while c + 4 ≤ R.length do

segmentList.add(R.subString[c, c + 4])
c ← c + 4

end while
for each segment in segmentList do

index ← segment mod tableSize
entryValue ← table[index]
entrySet.add(entryValue)

end for
for each value in entrySet do

concatenated.append(value)
end for
token ← SHA-256(concatenated)
return token

end procedure

does not allow the user to use special characters such as
exclamation marks, the user can exclude them. Similar to
generating a token T , p is then split into 32 4 hex-digit long
segments gi expressed as gi = p[4i : 4i+ 4]. Each segment is
then modded against the table size and the value is used as an
index to retrieve a particular character ci = Tc[gi%Nc] . The
retrieved characters are then concatenated to obtain P as

P = c0||c1||c2 . . . ||c31

Thus, the maximum password length the user can generate
is 32 characters. Of course, the user also has the option
to limit the password length if situation demands it. In this
case, the remaining characters that exceed the defined length
are simply discarded. Note that Amnesia can support longer
passwords. However, we believe a 32-character-long password
is sufficiently secure.

C. Recovery Protocols

Amnesia is a robust password manager that allows the user
to recover when the user’s phone is compromised/lost or when
the user’s master password is compromised.

1) Phone compromise recovery: Upon Amnesia application
install and registration, the user is prompted to perform a one-
time backup of Kp data onto a third-party cloud provider
such as Google Drive or Dropbox. This process can be fully
automated by utilizing the respective APIs. The backup pro-
cess occurs between the mobile phone and the cloud provider.
Specifically, this includes Pid and the entry table Te. Even if
the phone is compromised, the users are able to reset their
passwords in order to recover Amnesia’s two-factor security.
We assume that both the third-party storage and the HTTPS
connection between the phone and the storage are secure. The
user will first log into the Amnesia server using MP . Next,

the user will initiate phone recovery by uploading backup
information from their cloud storage. The server then verifies
the user by hashing the uploaded Pid value and matching it
with the value stored in its database. After verification, the
server will use the uploaded entry table and regenerate all of
the user’s passwords. The regenerated passwords can then be
downloaded by the user for password recovery. The server
then purges information related to the old phone such as the
old hashed Pid value and registration id. From here, the user
would then need to reinstall the Amnesia application on the
new phone and re-register the application with the Amnesia
server.

At this point, the user should have completely new pass-
words for each account since a new Te is generated. Using
the downloaded old passwords, the user should then access
and reset the old passwords of each account to the newly
generated ones. Note that while the attacker who compromised
the phone now has access to Kp, the password is still safe
due to lack of Ks. However, sole Ks may not be able to
withhold a second attack as Kp is already lost in the first
attack. Amnesia requires the user to reset their passwords to
maintain 2 factor security. We believe that the user losing their
phone is infrequent enough for this recovery to become too
troublesome.

2) Master password compromise recovery: Compared to
the phone recovery protocol, master password recovery is
painless and easy. The user would first log into the server using
their compromised master password. The user then initiates
the process to change the master password. Next, the user
sends the Pid from the phone to the server for verification.
The Pid is hashed and matched with the hashed Pid stored
on the server. If the verification passes, the user is allowed to
change the master password. Note, however, that there is no
protocol available if the user forgets their master password.

IV. SECURITY ANALYSIS

Although Amnesia is similar to 2FA, they are still different.
The key point is that Amnesia uses 2FA to generate passwords.
However, the websites themselves are unaltered, which means
they still rely on a single-password (generated by Amnesia) for
authentication. Although Amnesia provides strong protection
for the password generation process, unlike 2FA, Amnesia
does not provide client-side security. For instance, a keylogger
is able to capture the passwords retreived by the client.
Nevertheless, Amnesia is highly compatible and deployable
since it does not require any modification on existing websites.

There are five potential attack vectors against the Amnesia
architecture, including three connections and two components.
The connections include the HTTPS between the user’s com-
puter and the Amnesia server, the rendezvous server routing
from the Amnesia server to the user’s application, and the
HTTPS connection from the application to the Amnesia server.
On the other hand, the attacker can also attack the server or
compromise the user’s phone. We do not include an attack on
the user’s computer since the consequences are similar to the

case when the attacker compromises the HTTPS connection
between the computer and the server.

A. Broken HTTPS

HTTPS is used to protect communication between the user’s
computer and Amnesia server. Likewise, HTTPS is also used
for protecting phone to server communication. Assuming that
the attacker is somehow able to compromise the connection
and snoop the traffic, the severity of the consequences would
depend on where the connection is. If the attacker is able to
eavesdrop on the communication from the phone to the server,
he would be able to retrieve T . However, having T alone is
useless since the attacker does not have enough information to
use it. The case where the attacker compromises the HTTPS
connection between the user’s computer and Amnesia server
would represent a far greater threat. In this situation, the
attacker can eavesdrop on password P that the victim has
generated for some account. Over a period of time, it is
possible for the attacker to collect a large set of P from the
user.

B. Rendezvous Server Eavesdropping

The rendezvous server is used to transmit request R from
the Amnesia server to the user’s Amnesia application on their
smartphone. Assuming that the attacker is able to eavesdrop on
rendezvous messages, he will be able to obtain R. However,
R = H(uA||dA||σA) for some account A. As briefly men-
tioned in section-III, the σA helps prevent the attacker from
deriving any information from R. Without σA, the attacker can
simply compute H(uA||dA) in order to verify the fact that the
user is making a request for account A. Since σA is a 256-bit
value, it is very unlikely for the attacker to make use of this
information by itself.

C. Server Breach

The Amnesia server stores the Ks of each Amnesia account.
As detailed in section III, Ks is comprised of Oid for each
user in addition to d, u, and σ for each account that the user
manages through Amnesia. Furthermore, the server also stores
hashed and salted Pid along with the Amnesia application’s
registration id. Recall that pA = H(TA||Oid||σA) for some
account A. Here, the attacker who has compromised the server
would have access to Oid and σA. However, he is still missing
TA if he wished to steal the password for account A. Since
TA is a 256-bit value, it is very unlikely for the attacker to
derive anything password related from Ks alone. Furthermore,
current password cracking techniques such as brute-force and
dictionary attacks will not work against Amnesia’s generative
method. In order to derive the 256-bit TA value, the attacker
would need to brute-force 2256 possible combinations. Assum-
ing only 50 percent needs to be exhausted to yield the correct
TA value, this still results in 2255 combinations. Additionally,
the attacker would not have any feedback whether a particular
guessed TA value is correct since the real password PA would
not resemble anything created by a human due to its generative
origins.

However, a server breach will nevertheless still afford the
attacker information. Because Amnesia server stores u and
d for each account, the attacker would know the accounts
and usernames that the victims are managing under Amnesia.
Additionally, it is conceivable that the attacker may leverage
the registration id to their advantage. For instance, the attacker
may abscond with the victim’s Ks and then send a request R
from his own malicious server using the victim’s registration
id. Although it would appear suspicious to the victim that
a request R came in despite the victim never requesting
anything, nevertheless the possibility is there that a naive user
may simply press accept and give away their password.

D. Phone Compromise

The Amnesia application stores Kp which includes the Pid

and entry table. Additionally, the server’s certificate is also
stored here. As with the threat model, we assume that the
user’s smartphone is an insecure environment. This suggests
that an attacker who has compromised the user’s smartphone
not only has the ability to view Kp but also peek into
application memory. Therefore, the attacker would be able
to view the computation of T from R which we recall is
T = H(e0||e1||...||e15). Despite this advantage however,
there are two key information deprived from the attacker.
Specifically, the attacker does not know Ks and the attacker
does not know which account R is for. As stated before,
the reason the attacker does not know details regarding R
is due to the inclusion of σ. Therefore, unless the attacker
either compromises the user’s master password or breach the
Amnesia server, he will be unable to derive anything useful
from the user through their phone.

E. Generated Password Strength

By default, Amnesia will generate a 32 character length
password. The users, however, have the option to curtail
this length if they wish as well as modify the character
set. However, assuming that the hashed intermediate value
p is random and the character set and its length are set to
default, the average generated password would comprise of
roughly 9 lowercase characters, 9 uppercase characters, 3 nu-
merals, and 11 special characters. Additionally, the password
space is 9432 or 1.38 × 1063 possible combinations. Since
Amnesia’s passwords are generated, attackers are unable to
employ dictionary-based attacks. Furthermore, attackers would
lack any confirmation whether the password they cracked is
legitimate due to its generative nature.

V. IMPLEMENTATION

The Amnesia system requires two major components,
specifically the Amnesia server and the Amnesia smartphone
application. The Amnesia web server is implemented on
Amazon’s EC2 platform while the Amnesia application is de-
veloped on Android. Additionally, we use Google’s GCM [9]
as our rendezvous server to forward messages from the Amnsia
server to the smartphone.

(a) Registering application (b) Receiving password request

Fig. 2: Amnesia application screenshots

A. Amnesia Server

We build a prototype of Amnesia server use Cherrypy [10],
a lightweight python-based web framework. Additionally, we
generated a self-signed HTTPS certificate to protect traffic
between the user’s smartphone as well as the user’s computer.
Because the prototype is at most used for latency tests (section
VI) and our user study (section VII), we only allocated a
maximum of 10 threads in our Cherrypy thread-pool.

The server is comprised of three components, namely, a
component that manages and handles user interaction and
sessions, a cryptography component, and a database handler.
Information such as Ks, hashed and salted master password,
registration id, etc. are stored in a SQLite database. Our
cryptography component is implemented using PyCrypto [12].

B. Amnesia Mobile Application

The Amnesia application is implemented with Java using
Android Studio targeted at SDK version 23 with a minimum
SDK version of 16. If the user has not registered, the mobile
phone will be prompted a screen as shown in Figure 2(a)
for phone registration. The application is comprised of three
components, specifically a GCM service listener, cryptography
service, and database handler. The GCM listener is responsible
for handling password requests from the Amnesia server. Once
a password request arrives, the GCM service listener will
notify the user via Android’s notification action. Additionally,
the GCM data bundle includes information such as the IP
address of the originating request. This information is captured
on the server and bundled together along with R for transit. We
capture the password request in Figure 2(b). After verification,
the cryptography service is responsible for generating T based
on R. Cryptography on Android, specifically the hashing
operation, is implemented using java.security package. Similar
to the Amnesia server, we store Kp data using a SQLite
database. Furthermore, the application also stores the server’s

TABLE III: Amnesia Comparative Evaluation

Scheme Usability Deployability Security

M
em

or
yw

is
e-

E
ff

or
tle

ss

Sc
al

ab
le

-f
or

-U
se

rs

N
ot

hi
ng

-t
o-

C
ar

ry

Ph
ys

ic
al

ly
-E

ff
or

tle
ss

E
as

y-
to

-L
ea

rn

E
ffi

ci
en

t-
to

-U
se

In
fr

eq
ue

nt
-E

rr
or

s

E
as

y-
R

ec
ov

er
y-

fr
om

-L
os

s

A
cc

es
si

bl
e

N
eg

lig
ib

le
-C

os
t-

pe
r-

U
se

r

Se
rv

er
-C

om
pa

tib
le

B
ro

w
se

r-
C

om
pa

tib
le

M
at

ur
e

N
on

-P
ro

pr
ie

ta
ry

R
es

ili
en

t-
to

-P
hy

si
ca

l-
O

bs
er

va
tio

n

R
es

ili
en

t-
to

-T
ar

ge
te

d-
Im

pe
rs

on
at

io
n

R
es

ili
en

t-
to

-T
hr

ot
tle

d-
G

ue
ss

in
g

R
es

ili
en

t-
to

-U
nt

hr
ot

tle
d-

G
ue

ss
in

g

R
es

ili
en

t-
to

-I
nt

er
na

l-
O

bs
er

va
tio

n

R
es

ili
en

t-
to

-L
ea

ks
-f

ro
m

-O
th

er
-V

er
ifi

er
s

R
es

ili
en

t-
to

-P
hi

sh
in

g

R
es

ili
en

t-
to

-T
he

ft

N
o-

Tr
us

te
d-

T
hi

rd
-P

ar
ty

R
eq

ui
ri

ng
-E

xp
lic

it-
C

on
se

nt

U
nl

in
ka

bl
e

Password l l l m l l l l l l l m l l l l
Firefox (MP) m l m m l l l l l l l l m m l l l l l

LastPass m l m m l l l m l m l l m m m m m l l l l
Tapas l l m m l m l m l l l l m l l l l l

Amnesia m l m m l m l l l l l l l l l l l l l l

l indicates that password manager fully fulfills the property and m indicates that the password manager semi-fulfills the property.

self-signed certificate for HTTPS communication. We tested
the Amnesia application on Samsung Galaxy Note 4 running
Android Lollipop version 5.1.1.

VI. EVALUATION

We conducted a comparative evaluation of Amnesia with
other password managers using the framework developed by
Bonneau et al. [11]. Moreover, we measured Amnesia’s la-
tency during a password generation process. This measurement
is performed on both wifi and 4G connections.

A. Comparative Evaluation Framework
Bonneau’s framework is a comparative platform to gauge

three aspects of various authentication schemes, specifically
usability, deployability, and security. Bonneau argues that the
list has been refined and categorized into these three areas
and thus best highlights the multifaceted nature of mod-
ern authentication. We compare Amnesia with other related
authentication schemes, which are shown in Table III. We
compared Amnesia with Tapas, which is similar to Amnesia
because it also separates information necessary for password
retrieval between two mediums, in this case the desktop and
smartphone. For the other comparisons, we chose examples
that we think best exemplify the most common forms of pass-
word managers: built-in browser password managers (Firefox)
and cloud-based password managers (LastPass).

In regards to other password managers, we see that Amnesia
does comparatively well in both security and deployability.
Specifically, except for the mature property, Amnesia fulfills
all deployability requirements. The reason for this is because
Amnesia, currently as a prototype, implements account man-
agement and password generation all within its web server.
Thus, the user is not required to download a client application
on their computer, such as a browser plugin, in order to use
Amnesia. However, Amnesia does require the user to down-
load and install the Amnesia application on their smartphone.
As of right now, the Amnesia application is only available for
Android OS, although it would not take much effort to port it
to other platforms such as iOS.

In terms of usability, we see that Amnesia lags a bit behind
other password managers. Because Amnesia is a bilateral
password manager, the user would need to carry around
their smartphone in order to use Amnesia. Therefore, unlike
password managers such as LastPass or Firefox’s built-in
password manager, the user would need to interact with the
smartphone in order to authorize password related transactions.
Similarly, Tapas [13] is also a bilateral password manager.
Thus, we see similar scores between Amnesia and Tapas in
the usability section.

Security-wise, Amnesia performs comparatively well. Cur-
rently, the Amnesia prototype is not resistant to physical obser-
vations. This is because the generated password is displayed
to the user in text form. However, this issue can be solved with
the implementation of an auto-filler. Additionally, Amnesia is
not resilient to internal observation. This property requires a
given scheme to be resistant to impersonation in the event an
attacker is able to eavesdrop on internal information. While
Amnesia communications are done securely through HTTPS
and Google’s GCM service, if an attacker were to break
through, as mentioned in section IV, he can easily intercept
generated passwords. While impersonation would be difficult,
since the attacker would need to breach either the server or
compromise the phone in order to forge legitimate R and T ,
we still consider this property to be unfulfilled.

B. Latency Evaluation

A major usability concern with Amnesia is the latency
associated with generating a password. Recall that password
generation involves three steps: the server sending request R
to the user’s application through Google GCM service, the
computation of T from R and Kp, and finally the transmis-
sion of T back to the server along with the final password
computation using Ks and T . Thus, we wish to measure the
total time it takes to generate a single password.

We used our existing prototype for the experiment. We
created several modifications. First, we added timestamp tstart
to the message sent to the application. tstart is the time that

Fig. 3: Amnesia Latency

4G Wifi
600

700

800

900

1000

1100

1200

1300

1400
d
e
la
y
 (
m
s)

960

880

1052

1278

771

1371

749
717

800

909

634

1032

1203

R is being sent from the server to Google GCM. Next, we
removed the user verification notification from the application
and instead made the phone automatically compute T from any
request R. After the computation of T is finished, the phone
will include tstart in its message along with T and send it
to the server. Once the server receives the message from the
application, it will compute password P . After this operation,
it will take the current timestamp tend. The latency is simply
computed by the following: latency = tend − tstart.

We conducted this test over both Wifi and 4G using Sam-
sung Galaxy Note running 5.1.1 Lollipop. The Wifi service
provider is Cox Communications with a download speed of 30
mbps and an upload speed of 10 mbps. Additionally, the 4G
provider is T-Mobile. Both tests were conducted in a suburban
environment. Both Wifi and 4G were tested 100 times.

The latency results under the two settings are shown in
Figure 3. The mean x̄ for the Wifi test is 785.3 ms while
the standard deviation σ is 171.5 ms. x̄ for 4G test is 978.7
ms and σ is 137.9 ms. The sample size for each is 100 test
trials. Hence, under our testing conditions, we see that Wifi
has less latency than 4G. With an average delay of 785.3 ms
for Wifi and 978.7 ms for 4G, we can conclude that latency
is not a big issue.

VII. USER STUDY

While we tried to make Amnesia as secure as possible,
one of the main reasons for password managers is to ease
the burden of memorizing multiple strong passwords for the
user. Therefore, we needed to design Amnesia in a way that
is both reasonably easy and convenient to use as well as
being secure. With this in mind, we had two main purposes
for our user study. Our first goal for the user study was
to determine their current password behaviors. Factors such
as password length, entropy level, and password uniqueness
are all major contributors to password security. Amnesia’s
generative properties satisfies these requirements. However,
we wanted to compare the security of Amnesia’s generated
passwords with the users’ current passwords. As such, the
first portion of the survey will deal with how secure the users’
current passwords are. Our second goal for the user study was
to determine the usability of Amnesia. As password managers

are meant to relieve user stress, it is important for them to be
user friendly. If a password manager becomes too cumbersome
to user, the user might slip into poor password habits such as
reusing passwords rather than continue using the password
manager. As such, the second portion of the survey will deal
with how convenient users find the Amnesia application. Our
user study cannot provide conclusive evidence on Amnesia’s
usability due to its small scale. Sources of potential bias may
result from the study’s size, crowd-sourcing platform, and the
novelty effect. Instead, this is a pilot-study meant to evaluate
the feasibility of Amnesia’s two-factor mechanism in everyday
use. The study allowed us to obtain immediate feedback on
any deficiencies in the user experience which we can improve
upon.

A. Setup

To start testing Amnesia, we created a dummy site so
users can practice adding accounts to Amnesia. While the
dummy site did emulate a lot of functionality of a real
website, we did not wish for users to be creating throwaway
accounts on real sites for the purposes of this testing. We also
created a short video that explains to the user how to use
the Amnesia application. Our video provides instructions for
registering on the Amnesia website, downloading the Amnesia
application, adding and managing accounts on Amnesia, and
generating a password from Amnesia. Once we set up the
video and the dummy site, we asked for participants from
Amazon Mechanical Turk. We requested that the users possess
their own Android phones in order to run our application.
When the users were finished testing out Amnesia with the
dummy website, they were asked to fill out a short post-test
questionnaire about their previous password habits and their
experiences using Amnesia. The survey itself was online for
seven days and users were allocated 2 hours and 30 minutes
to complete the testing.

The users are required to perform a number of tasks that
are briefly summarized as follows:

1) Create an Amnesia account
2) Download and register the Android application
3) Create an account on Amnesia for the dummy website.
4) Generate a password for the dummy website.
5) Create an account on the dummy website using the

generated password.
6) Post a comment on the dummy website containing the

generated password.

B. User Demographics

Because Amnesia is designed for a wide audience, we aimed
for a more diverse population for our user study. We used
the accidental sampling method to obtain a more holistic
representation of our audience as opposed to a snowball
sampling method which would limit our testing population
to those from the college campus. In total, we recruited 31
participants for the user study. 21 of the participants were male
and the participants’ age ranged between 20 and 61 years old
(x̄=33.32, σ=9.92). The participants came from a wide variety

Never Rarely Sometimes Mostly Always
0

2

4

6

8

10

12

N
u
m
b
e
r
o
f
Pe
o
p
le

5 5

7
8

6

(a) Password Reuse

6~8 9~11 12~14 14+
0

5

10

15

20

N
u
m
b
e
r
o
f
Pe
o
p
le

12

16

2
1

(b) Password Length

Personal Info Mnemonic Other
0

5

10

15

20

25

N
u
m
b
e
r
o
f
Pe

o
p
le

20

6
5

(c) Password Creation Techniques

Never Rarely Yearly Monthly Frequently
0

2

4

6

8

10

12

14

N
u
m
b
e
r
o
f
Pe
o
p
le

4

10 10

6

1

(d) Password Change Frequency

Fig. 4: Survey Results

of backgrounds including computer science, homemaking,
business, medicine, engineering, management and real estate.
Additionally, we also asked the users how many hours they
spend per day on the internet. 13 out of 31 participants spend
4 to 8 hours a day online while 4 participants spend 1 to 4
hours. 8 participants spend 8 to 12 hour and 6 participants
spend over 12 hours online everyday.

C. User Security Habits

The first portion of our survey was the user security analysis.
In this part, we asked the users 5 specific questions about
their online behavior, the results for which are illustrated
in Figure 4. To get some context for the users password
habits, we first asked about how many online accounts the
user has. 17 (54.8%) of the participants had 10 unique online
accounts or less while the remaining 14 (45.2%) had between
11 and 20 unique online accounts. The rest of the questions
in this portion dealt different aspects of coming up with
and managing passwords. The data for the user’s password
creation methods is shown in Figure 8. As the graph illustrates,
the majority of users have short, personal information based
passwords that they reuse for most of their accounts. By using
Amnesia, most people (27 out of 31) believe that they would
be increasing the security of their passwords.

D. Amnesia Usability

The second portion of our survey was the usability testing.
To make the analysis easier, we split Amnesia into 3 distinct
parts: creating an account with Amnesia, adding an account
to Amnesia, and generating a password with Amnesia. While
user response to all three portions were favorable, only 77.4%
(24 out of 31) of users found registering with Amnesia to be
convenient, compared to the 83.8% (26 out of 31) that found
it easy to add an account and to generate a password. The
loss of convenience is acceptable because the user only has to
register with Amnesia once.

E. Amnesia Preference

Finally, we asked users to reflect on both their own password
habits and their experience using Amnesia. We then asked
users whether they prefer Amnesia over their current password
manager or management method. We found that 70.9% (22 of
of 31) of users would use Amnesia over what they are currently
using. Specifically, out of 24 subjects who do not utilize
password managers, 14 prefer Amnesia over their current

methods. Out of the 7 subjects who do use password managers,
6 prefer Amnesia over their current password managers.

From the user feedback, most users felt that Amnesia was
very secure. However, the most common complaint was the
non-intuitive UI. This aspect in Amnesia can be improved with
the inclusion of a browser plugin that has auto-fill capabilities.
Currently, the Amnesia prototype was not designed with a
focus on usability. However, we plan to publish a fully fledged
Amnesia system in the future.

VIII. LIMITATIONS

Amnesia has several limitations. First, Amnesia does not
provide a protocol for the user in the event that the user forgets
their master password. Furthermore, Amnesia’s bilateral prop-
erty may negatively impact its usability factor in comparison
to other password managers. Access to the user’s accounts thus
becomes dependent on the availability of their mobile phone.
If the smartphone is powered off or offline, then the user
would lose access to their accounts. Additionally, Amnesia’s
architecture forces the server to compute a hash in order to
generate the final password, which may be a bottleneck to
the system’s performance. As of the current version, users
can pick password properties such as password length and the
presence of special and/or numerical characters. However, they
are unable to store specific chosen passwords. Users would
also need to interact with the phone each time they request a
password from Amnesia. We plan to address these two issues
in the future by including a vault and a session mechanism in
a fully fledged Amnesia system.

IX. RELATED WORKS

A. Password Analysis
Human-chosen passwords have always been weak and pre-

dictable. Morris and Thompson [14] first showed that pass-
words are vulnerable to dictionary attacks. Additionally, time-
memory trade-off [2] and rainbow table [15] further accelerate
dictionary attacks. Modern password cracking techniques in-
clude using Markov Model [4] and probabilistic context-free
grammars [3], or even password semantic information [16].
There have been numerous works focusing on studying the
characteristics of passwords [17]–[20], which conclude that
passwords are highly predictable.

Besides the inherent predictability and low entropy of
human-chosen passwords, users do not always follow the most
secure practices, such as frequently changing passwords and
not reusing old passwords [1], [6], [21].

B. Password Manager

Securely managing passwords becomes a challenging en-
deavour when users acquire an increasing number of accounts.
Since replacing text-based passwords does not seem possi-
ble in the near future [11], password managers become an
important tool for both security and convenience. Password
managers have developed a number secure and advanced
features. For example, PwdHash [22] hash several seeds to
produce strong passwords. Kamouflage [23] proposes to use
decoy passwords to defend brute-force attacks on password
managers. Chatterjee et al [24] breaks Kamouflage [23] and
leverages honey encryption [25] to develop a cracking-resistant
password manager. Despite these various features, there are al-
ways vulnerabilities or limitations [26]. For instance, Silver et
al. [27] investigated the filling policies of password managers
and identified their insecure filling practices. Moreover, Chias-
son et al. [28] stress that the wrong password manager mental
model can significantly hurt the security of user passwords.

C. Phone-assisted authentication

Smartphones are used as a second factor in many authen-
tication schemes. Examples include Google 2-step verifica-
tion [29], Phoolproof [30], PhoneAuth [31], etc. However,
a severe security drawback of password managers is the
single point of failure associated with the master password.
Specifically, losing the master password usually means losing
every passwords in the password manager. To mitigate such
a problem, Tapas [13] isolates the encrypted password wallet
in a mobile phone and the decryption key in a computer to
ensure that the user must have both the computer and the
mobile phone to retrieve any password.

X. CONCLUSION

We present Amnesia, a bilateral generative password man-
ager that provides strong security while maintaining rea-
sonable usability. Amnesia is a new secure architecture for
password managers that avoids the single point of failure
associated with congregating sensitive information in one
location. Amnesia’s bilateral property makes the system im-
mune to critical attacks such as data breaches which retrieval
password managers are vulnerable to. Additionally, we created
a strong password generation method which provides the
users with extremely high entropy passwords without any
associated burden. By using Amnesia, users can be effectively
ignorant of their account passwords and are only responsible
for remembering their master password. Furthermore, users
have effective recovery options when their master password
or phone is compromised.

ACKNOWLEDGMENT

We thank Dr. Georgios Portokalidis as our shepherd and
other anonymous reviewers for their efforts on shaping this
paper. We also thank Mr. Zikuan Li for his help in conducting
experiments and user study. This work is supported by U.S.
Office of Naval Research under grants N00014-15-1-2396 and
N00014-15-1-2012.

REFERENCES

[1] J. Bonneau, C. Herley, P. C. van Oorschot, and F. Stajano, “Passwords
and the evolution of imperfect authentication,” Communications of the
ACM, 2015.

[2] M. E. Hellman, “A cryptanalytic time-memory trade-off,” IEEE Trans-
actions on Information Theory, 1980.

[3] A. Narayanan and V. Shmatikov, “Fast dictionary attacks on passwords
using time-space tradeoff,” in ACM CCS, 2005.

[4] M. Weir, S. Aggarwal, B. De Medeiros, and B. Glodek, “Password
cracking using probabilistic context-free grammars,” in IEEE Security
& Privacy, 2009.

[5] A. Beautement, M. A. Sasse, and M. Wonham, “The compliance budget:
managing security behaviour in organisations,” in NSPW. ACM, 2008.

[6] D. Florencio and C. Herley, “A large-scale study of web password
habits,” in ACM WWW, 2007.

[7] http://www.csoonline.com/article/2936105/data-breach/lastpass-suffers-
data-breach again.html, “Lastpass suffers data breach again.”

[8] M. Billemont, “Master password – secure your life, forget your pass-
words,” http://masterpasswordapp.com.

[9] “Google developers, cloud messaging,” 2012,
https://developers.google.com/cloud-messaging/.

[10] “Cherrypy – a minimalist python web framework,” 2015,
http://www.cherrypy.org.

[11] J. Bonneau, C. Herley, P. C. Van Oorschot, and F. Stajano, “The quest
to replace passwords: A framework for comparative evaluation of web
authentication schemes,” in IEEE Security & Privacy, 2012.

[12] “Pycrypto – the python cryptography toolkit,” 2015,
https://www.dlitz.net/software/pycrypto.

[13] D. McCarney, D. Barrera, J. Clark, S. Chiasson, and P. C. van Oorschot,
“Tapas: design, implementation, and usability evaluation of a password
manager,” in ACSAC. ACM, 2012.

[14] R. Morris and K. Thompson, “Password security: A case history,”
Communications of the ACM, 1979.

[15] P. Oechslin, “Making a faster cryptanalytic time-memory trade-off,” in
Advances in Cryptology-CRYPTO 2003, 2003.

[16] R. Veras, C. Collins, and J. Thorpe, “On the semantic patterns of
passwords and their security impact,” in NDSS, 2014.

[17] J. Yan, A. Blackwell, R. Anderson, and A. Grant, “Password memorabil-
ity and security: Empirical results,” IEEE Security & Privacy Magazine,
2004.

[18] R. Veras, J. Thorpe, and C. Collins, “Visualizing semantics in passwords:
The role of dates,” in IEEE VizSec, 2012.

[19] J. Bonneau, S. Preibusch, and R. Anderson, “A birthday present every
eleven wallets? the security of customer-chosen banking pins,” in
Financial Cryptography and Data Security. Springer, 2012.

[20] Z. Li, W. Han, and W. Xu, “A large-scale empirical analysis of chinese
web passwords,” in Proc. USENIX Security, 2014.

[21] A. Das, J. Bonneau, M. Caesar, N. Borisov, and X. Wang, “The tangled
web of password reuse,” in NDSS, 2014.

[22] B. Ross, C. Jackson, N. Miyake, D. Boneh, and J. C. Mitchell, “Stronger
password authentication using browser extensions.” in Usenix security,
2005.

[23] H. Bojinov, E. Bursztein, X. Boyen, and D. Boneh, “Kamouflage: Loss-
resistant password management,” in ESORICS, 2010.

[24] R. Chatterjee, J. Bonneau, A. Juels, and T. Ristenpart, “Cracking-
resistant password vaults using natural language encoders,” in IEEE
Security & Privacy, 2015.

[25] A. Juels and T. Ristenpart, “Honey encryption: Beyond the brute-force
barrier,” in EUROCRYPT, 2014.

[26] Z. Li, W. He, D. Akhawe, and D. Song, “The emperor’s new pass-
word manager: Security analysis of web-based password managers,” in
USENIX Security, 2014.

[27] D. Silver, S. Jana, E. Chen, C. Jackson, and D. Boneh, “Password
managers: Attacks and defenses,” in Usenix Security, 2014.

[28] S. Chiasson, P. C. van Oorschot, and R. Biddle, “A usability study and
critique of two password managers.” in Usenix Security, 2006.

[29] “Google 2-step verification.” [Online]. Available:
https://www.google.com/landing/2step/

[30] B. Parno, C. Kuo, and A. Perrig, Phoolproof phishing prevention.
Springer, 2006.

[31] A. Czeskis, M. Dietz, T. Kohno, D. Wallach, and D. Balfanz, “Strength-
ening user authentication through opportunistic cryptographic identity
assertions,” in ACM CCS, 2012.

