
Effectiveness of IP Address Randomization in Decoy-Based Moving
Target Defense

Andrew Clark, Kun Sun, and Radha Poovendran

Abstract— In a decoy-based moving target defense (MTD),
a computer network introduces a large number of virtual
decoy nodes in order to prevent the adversary from locating
and targeting real nodes. Since the decoys can eventually be
identified and their Internet Protocol (IP) addresses blacklisted
by the adversary, current MTD approaches suggest that the
IP addresses of the real and decoy nodes should be randomly
refreshed and reassigned over time. Refreshing and reassigning
the IP addresses, however, disrupts services such as TCP/IPthat
rely on the IP address. We introduce an analytical approach
to MTD and choosing the optimal randomization policy in
order to minimize disruptions to system performance. Our
approach consists of two components. First, we model the
interaction between the adversary and a virtual node as a
sequential detection process, in which the adversary attempts
to determine whether the node is real or a decoy in the
minimum possible time. We compute the optimal strategy
for the adversary to decide whether the node is real or a
decoy, and derive closed-form expressions for the expected
time to identify the real node using this strategy. Second,
we formulate the problem of deciding when to randomize
the IP addresses, based on a trade-off between reducing the
probability of detecting the real node and minimizing the
disruption to network services, as an optimal stopping problem.
We derive the optimal randomization policy for the network
and analyze the detection probability, expected number of
connections lost due to IP randomization, and expected time
between randomizations under the proposed policy. Our results
are illustrated via a simulation study using real-world data
from NMAP, a software tool used to identify decoy nodes.
Our simulation study indicates that our IP randomization
policy reduces the probability of detection while minimizing the
number of connections that are disrupted by the randomization.

I. I NTRODUCTION

Network security threats are typically preceded by a recon-
naissance phase, in which one or more adversaries monitor
and probe the network over a period of time. Through
monitoring, the adversaries gather information on a set of
network features, which include the Internet Protocol (IP)
addresses and ports used by the nodes, the versions of
protocols (such as DHCP and FTP) that are implemented [1],
the operating systems used by nodes [2], the types of user
input accepted [3], and the access privileges required to exe-
cute commands or receive services on each node [4]. Taken
together, these features comprise theattack surface[4].

This work was supported by ARO grant W911NF-12-1-0448
A. Clark and R. Poovendran are with the Department of Electrical

Engineering, University of Washington, Seattle, WA, 98195, USA, Email:
{awclark, rp3}@uw.edu

K. Sun is with the Department of Computer Science, George Mason
University, Fairfax, VA, 22030, USA, Email: ksun3@gmu.edu

When an attack surface is static, an adversary can monitor
the network, identify vulnerabilities and entry points, and
devise efficient, targeted attacks. One approach to prevent
such targeted attacks is to change one or more features of
the attack surface over time in an unpredictable fashion [5].
By doing so, the network ensures that attacks based on the
previous attack surface are ineffective against the system’s
updated attack surface. Mechanisms for changing the attack
surface are classified asmoving target defenses(MTD).

One widely used approach of MTD makes use of a large
number of decoys that are virtual machines [6]. Each of
these decoys is given a unique and valid IP address and
implements common network protocols, and hence appears
to an adversary as a valid system [7]. By observing the inter-
actions between the adversary and the decoys, the network
monitoring system gains information about the adversary.

While virtualization enables the creation of a large number
of decoys, the capabilities of the decoy nodes are limited by
constraints on memory and processing power of the system
in which the virtual machines are hosted, as hundreds or
even thousands of virtual decoys may reside on a single
physical machine [8]. As a result, these low-end virtual
decoy nodes employ simplified versions of network protocols
such as TCP/IP, do not provide higher-layer services, and
often have longer response time for queries made to them.
An intelligent adversary can make use of such features to
distinguish between real and decoy nodes [9].

After a node has been detected as a decoy by an adver-
sary, the adversary will blacklist that IP address. If the IP
addresses of each node remains fixed, blacklisting the IP
addresses of decoys will allow identifying the IP address of
a real node and penetrating the system. The IP address of
the decoy nodes must therefore be randomly refreshed and
reassigned over time [10]. On the other hand, if only the
decoy node IP addresses are refreshed and reassigned while
the addresses of real nodes remain fixed, the adversary will
determine that long-lasting IP addresses belong to real nodes.
Hence, the network needs to randomize the IP addresses
of all real and decoy nodes. Since higher-layer services
such as TCP rely on maintaining a static IP address, IP
randomization will disrupt and degrade the performance of
the services provided by the real nodes.

Deciding when to randomize to prevent detection while
minimizing the service disruption has been identified in
the literature [11]. Extensive empirical efforts are underway
and systems are being built to study the trade off between
randomization and performance degradation [8], [12]. Such
approaches however are limited to specific and small systems



and hence do not allow the development of general design
principles for effective randomization. On the other hand,
at present, a suitable analytical approach for deciding when
and how often to randomize is missing, thus preventing any
effective performance evaluation of decoy-based MTD.

In this paper, we present an analytical approach to eval-
uating the effectiveness of MTD. We make the following
specific contributions:

• We develop a model for the interaction between a
virtual node and an adversary. We model the adversary’s
actions as a sequential detection problem of deciding
whether the node is real or a decoy based on its response
times, and determine the optimal detection strategy.
When the response times to queries are exponential, we
develop closed-form expressions for the probability of
the real node being identified.

• For the network, we formulate the problem of IP ad-
dress randomization as an optimal stopping problem
and derive the optimal randomization policy. We an-
alyze the performance and security of our proposed
randomization policy, including the probability that the
adversary determines the IP address of the real node,
the expected number of connections that are interrupted,
and the expected time between randomizations under the
proposed policy.

• We evaluate our approach through a numerical study,
which is based on real data from NMAP, a widely-used
tool for identifying the operating system and services
running on a node. Our simulation results characterize
the effectiveness of the decoys in mimicking the real
nodes on the system performance.

The paper is organized as follows. Section II reviews
the related work. Section III states our assumptions on
the system and adversary models. Section IV contains an
analytical approach to modeling the interaction between a
virtual machine and an adversary, who attempts to determine
whether the VM is a decoy. Section V presents a design
approach to randomizing the IP address space based on the
observed behavior of the adversary. Section VI contains a
numerical evaluation. Section VII concludes the paper.

II. RELATED WORK

Decoy-based defenses, such as honeypots, that are based
on virtualization have been extensively studied [6]. Decoy
designs vary in capability. Decoy nodes can be further clas-
sified as low-interaction and high-interaction decoys. High-
interaction decoys implement the full protocol stack, includ-
ing some application-layer services such as fake databasesor
web servers [13]. Low-interaction decoys emulate a partial
network stack, sometimes consisting only of the TCP/IP
layer and below [7]. Due to their limited implementation,
low-interaction decoys require fewer resources such as band-
width, CPU, and memory, but are also easier for an adversary
to detect because of their lack of ability to provide valid
network services and unusually long response time [9], [14].

Address space randomization has been proposed as a
diversification technique, and evaluated through implemen-

tation studies [11]. In spite of this, the security benefit from
address space randomization, as well as the resource cost,
are not well-understood, and hence techniques for adaptively
choosing a randomization strategy in response to sensed data
is not available.

A control-theoretic approach to designing protocol diver-
sification mechanisms, which create diversity by introducing
new, randomized protocol states and are distinct from the IP
randomization considered in this work, was studied in [1].
The authors formulate the problem of estimating whether
the system is in a secure state and discuss principles for
designing a control-theoretic modeling approach, but do not
formulate such an approach or derive the optimal control
policy.

III. A DVERSARY MODEL AND PRELIMINARIES

In this section, we describe the system and adversary
models considered in this work.

A. System Model

We consider a network consisting ofN virtual machines
(VMs). The VMs are classified as real or decoy nodes. Real
nodes implement all layers of the network protocol stack and
are used to provide applications and services to the system
owner and valid users. The function of the decoy nodes is
to distract adversaries from targeting real nodes as well as
to gather information on adversaries.

The virtual network consisting of decoys is monitored and
managed by a hypervisor [15]. The tasks of the hypervisor
include creating and removing virtual nodes and assigning
IP addresses and routing tables to the nodes. In addition,
the hypervisor receives logged information on attempted
connections to the decoy nodes, including the nature and
timing of any queries from the adversary and the timing of
the node response.

Moving target defense (MTD) mechanisms are controlled
by the hypervisor. Based on the received information on the
network state, the hypervisor can decide to reassign a random
IP address to each virtual node. To ensure sufficient entropy
in the randomization, a large address space, such as the
IPv6 address space, must be used. After each node has been
given a new IP address that is independent of its previous
address, any information gathered by the adversary relating
to the identities of real and decoy nodes becomes obsolete.
We assume that all nodes are assigned new IP addresses at
once, since otherwise the adversary can differentiate between
real and decoy nodes if they are assigned new addresses at
different times. When a node is given a new IP address, any
connections to the node from outside the virtual network are
lost and must be reestablished, potentially interrupting the
network services provided by the real node. Legitimate nodes
elsewhere in the network are assumed to have mechanisms
for identifying the real node and reestablishing connections
after randomization has occurred.

B. Adversary Model

The adversary is assumed to know the range of IP ad-
dresses occupied by the real node and the decoys; however, it



does not know which IP address is currently used by the real
node. We assume that IP addresses are randomly assigned to
real and decoy nodes, and the IP address alone does not
give any information of whether the node is real or a decoy
to the adversary. The goal of the adversary is to determine
the IP address of a real node, which can then be targeted
for further attacks, and in the process detect and discard the
decoys from consideration.

The adversary is capable of sending messages to probe
IP addresses and observing the response. Possible messages
include ICMP echo packets. The adversary can send queries
to the IP addresses in any order. The number of nodes that
can be queried at a given time depends on the number of
parallel sessions that the adversary can open, which is a
function of the adversary’s resource capabilities. To simplify
our analytical model, we assume there is only one adversary.
We assume that the IP address of the real node is not known
to the decoys, which do not interact with the real node, so
that the adversary cannot automatically obtain the real node’s
IP address after compromising one decoy. Furthermore, we
assume that the rate at which probe messages are sent
is limited, as any unknown IP address that sends probe
messages at a high rate will be blocked by the hypervisor.

In general, the adversary can determine whether a node is
real or a decoy based on knowledge of the implementation
differences between the real node and the decoys. First, due
to resource constraints, a decoy’s network protocols (e.g.,
TCP/IP) are simplified and thus behave different from those
used by the real node. Second, decoy nodes may be detected
due to abnormalities in application-layer services such as
web servers. This detection method, however, requires se-
mantic analysis of the decoy responses and hence is more
time- and resource-intensive. Third, since decoys typically
have a longer response time than real nodes due to their lim-
ited computation capabilities, the adversary can differentiate
between real and decoy nodes by sending probing messages
to a node and observing the response time.

In this paper, we focus on timing-based decoy detection,
since it is independent of the type of decoy, and hence is the
most popular detection method in practice [9], [14].

IV. A NALYTICAL APPROACH TOINTERACTION

BETWEEN ADVERSARY AND SINGLE VM

In this section, we first give a model for the interaction
between a virtual machine and an adversary attempting to
determine whether the virtual machine is real or a decoy.
We then analyze the probability that the adversary detects
whether the node is real or a decoy, as well as the expected
time for the entire interaction.

A. Single VM Interaction Model

In what follows, we give a model for the interaction of
a single virtual machine with the adversary. The adversary
sends a series of ping messages to the virtual machine and
observes the response times, denotedZ1,Z2, . . .. Based on
the response times, the adversary reaches a decision as to
whether the node is real or a decoy. LetH0 (resp.H1) denote

the event where the node is a decoy (resp. real). Define the
probability distributionsP0(·), P(·|H0) andP1(·),P(·|H1).
Let P(H1) = π andP(H0) = (1−π).

After observingT messages, whereT is a random stopping
time chosen by the adversary, the adversary outputs a random
variableX = f (Z1, . . . ,ZT) ∈ {0,1}, whereX = 0 represents
a belief that the node is a decoy andX = 1 represents a belief
that the node is real. IfX = 0 and the node is real, then the
adversary has failed to detect the real node and will scan all
of the remaining decoys before returning to reinspect the real
node, incurring additional delaycR. If X = 1 and the node
is a decoy, then the adversary spends timecD determining
that the node is a decoy via semantic analysis. The total time
expended by the adversary interrogating the node is therefore
equal to

CA (T, f ) = cD(1−π)p0(X = 1)+ cRπ p1(X = 0)

+E

(

T

∑
k=1

Zk

)

.

The goal of the adversary is to chooseT and f in order to
satisfy

inf
T, f

CA (T, f ). (1)

Equation (1) defines a sequential detection problem for the
adversary. In order to determine the time required for the
adversary to choose and the probability of error, the first
step is to compute the optimal decision for a given value of
T, as follows.

Lemma 1:Given observationsZ1, . . . ,Zk, the optimal de-
cision X = f (Z1, . . . ,Zk) is given by

X =

{

0, Pr(H1|Z1, . . . ,Zk)<
cD

cD+cR

1, Pr(H1|Z1, . . . ,Zk)≥
cD

cD+cR
Proof: We let pk = Pr(H1|Z1, . . . ,Zk) denote the prob-

ability that a node is a decoy conditioned on the observed
response times andEk(·) = E(·|Z1, . . . ,Zk). The adversary
will decide that the node is a decoy and chooseX = 0 when
it minimizes the expected cost, i.e., when

cDPr(Z1, . . . ,Zk|H0)(1−π)> cRPr(Z1, . . . ,Zk)π .

Rearranging terms gives the desired result.
It remains to find the optimal stopping timeT, which

determines the number of pings sent by the adversary before
determining whether a node is real or a decoy. This stopping
time is quantified by the following proposition.

Proposition 1: There exist constantspL, pU ∈ (0,1) such
that the optimal stopping timeT is given by

T = min{k : Pr(H1|Z1, . . . ,Zk) /∈ (pL, pU )}.
Proof: By [16], the optimal stopping time for a problem

of the form (1) is equal to

min{k : min{cRpk,cD(1− pk)}= v(Z1, . . . ,Zk)},

where

v(Z1, . . . ,Zk), inf
T

{

Ek

(

min{cRpT ,cD(1− pT)}+
T

∑
i=1

Zi

)}

.



The functionv can be rewritten as a function ofpk, equal to

s(pk) = inf
T
{Ek(min{cRpT ,cD(1− pT)})

+ (1− pk)E

(

T

∑
i=1

Zi |H0

)

+ pkE

(

T

∑
i=1

Zi |H1

)}

.

Now, since s(pk) is an infimum of linear functions
of pk, then it is concave as a function ofpk. Further-
more, s(p) is bounded above by min{cRp,cD(1− p)},
and hence the infimum is achieved whens(p) =
min{cRp,cD(1− p)}. We therefore have the desired value
of T, with pL = sup{0≤ π ≤ 1/2|s(π) = cRπ} and pU =
inf {1/2≤ π ≤ 1|s(π) = cD(1−π)}.

Proposition 1 implies that the adversary’s optimal strat-
egy in differentiating between real and decoy nodes is to
query the node and observe the timing of responses until
Pr(H1|Z1, . . . ,Zk) < pL, in which case it terminates and
outputsX = 0, or Pr(H1|Z1, . . . ,Zk) > pU , in which case it
terminates and outputsX = 1. In what follows, we analyze
the detection probability and time required for detection
under basic assumptions regarding the responses of real and
decoy nodes.

B. Analysis of Decoy Detection by Adversary

The effectiveness of the decoy nodes depends on their abil-
ity to hide the identity of the real node from the adversary.
Two metrics that quantify the time required for the adversary
to identify the real node are the probability that the adversary
has identified the real node within timet, denotedD(t), and
the expected time for the adversary to identify the real node,
denotedt∗.

In the following analysis, we computeD(t) and t∗ based
on several assumptions of the network and adversary. We
assume that the responses from the decoy and real nodes are
both exponential. The mean response times for the decoy and
real nodes are equal to1λ0

and 1
λ1

, respectively. We assume
that the adversary queries nodes according to a Poisson
process with rateµN, so that the time in between queries
by the adversary is 1

µN . The parameterµ depends on the
resources of the adversary and the adversary’s willingnessto
avoid detection. Based on these assumptions, the following
lemma defines the adversary’s probability of successfully
identifying the real node within timet.

Lemma 2:There exists a constantB> 0, with B a function
of the constantpU in Proposition 1, such that

D(t) =
∞

∑
k=k∗

e−λ1t

k!
µ
∫ t

0
e(λ1−µ)τ(λ1(t − τ))k dτ,

wherek∗ = min{k :
(

λ1
λ0

)k
e−(λ1−λ0)t > B}.

Proof: We let T1 denote the time when the adversary
first queries the real node andT2 denote the time required
for the adversary to identify a node as real after querying it
the first time.D(t) is therefore equal toPr(T1+T2 ≤ t). Let
r1 and r2 denote the probability density functions ofT1 and
T2, respectively, so that

D(t) =
∫ t

0
r1(τ)r2(t − τ) dτ.

We now analyzer1 and r2. Since the adversary is assumed
to query nodes according to a Poisson process with rateµN,
and each node is uniformly likely to be queried, the real node
is queried according to a Poisson process with rateµ . Thus
the time until the first query of the real node is an exponential
random variable with mean1µ , and sor1(τ) = µe−µτ .

In order to computer2, we first defineq0 and q1 to be
the probability density functions of the decoy and real node
response times, respectively. We letΛk denote the likelihood
ratio afterk response timesZ1, . . . ,Zk have been observed,
i.e.,

Λk =
k

∏
j=1

q1(Z j)

q0(Z j)
=

λ k
1e−λ1∑k

j=1 Z j

λ k
0e−λ0∑k

j=1 Z j
.

The detection rule of Proposition 1 is equivalent to detecting
a real node at timek if Λk > B for someB > 0 that is a
function of pU . Let Kt denote the number of responses that
the adversary has received by timet. We have

Pr

(

Kt

∏
j=1

q1(Z j)

q0(Z j)
> B

)

=
∞

∑
k=0

[

Pr

(

Kt

∏
j=1

q1(Z j )

q0(Z j )
> B|Kt = k,H1

)

· Pr(Kt = k|H1)] .

Assuming that messageKt is received at timet implies that

r2(t) =
∞

∑
k=0

[

Pr

(

k

∏
j=1

q1(Z j)

q0(Z j)
> B |

k

∑
j=1

Z j = t,H1

)

· Pr(Kt = k|H1)]

=
∞

∑
k=0

[

Pr

(

λ k
1e−λ1∑k

j=1 Z j

λ k
0e−λ0∑k

j=1 Z j
> B |

k

∑
j=1

Z j = t,H1

)

· Pr(Kt = k|H1)]

=
∞

∑
k=0

Pr

(

(

λ1

λ0

)k

e−(λ1−λ0)t > B

)

Pr(Kt = k|H1).

Now, Pr

(

(

λ1
λ0

)k
e−(λ1−λ0)t > B

)

is equal to 0 if k < k∗.

Hence we haver2(t) = Pr(Kt ≥ k∗|H1). Combining the
expressions ofr1(t) and r2(t) gives the desired result.

The second metric that we consider is the expected time
until the adversary determines the identity of the real node.

Proposition 2: The expected time for the adversary to
determine the identity of the real node, denotedt∗, is given
by t∗ = 1

µ + k∗

λ1
, wherek∗ is defined as in Lemma 2.

Proof: The time for the adversary to determine the real
node’s identity is equal to the time until the adversary queries
the real node plus the time for the real node’s identity to be
found. This is equal toT1+T2. Since the adversary queries
the real node according to a Poisson process with rateµ ,
we haveE(T1) =

1
µ . The timeT2 is equal to the time until

k∗ responses have been received by the adversary. Since the
response times are independent and identically distributed
with mean 1

λ1
, we haveE(T2) =

k∗

λ1
. Hence

t∗ = E(T1)+E(T2) =
1
µ
+

k∗

λ1
.



The time required for the adversary to determine the iden-
tity of the real node affects the behavior of the hypervisor.
Intuitively, if the adversary can quickly identify the realnode,
then the IP addresses of the real and decoy nodes must be
randomized often, even in spite of lost connections at the real
node. This trade-off is formulated explicitly in the following
section.

V. OPTIMAL RANDOMIZATION BY HYPERVISOR

In this section, we describe the optimal defense strategy,
as characterized by the time at which the IP address space is
randomized. For simplicity, we lett = 0 represent the time
when the address space was last randomized, and denote by
R the random variable representing the time when the next
randomization takes place. The goal of the hypervisor is to
minimize the probability of the adversary discovering the
real node, which we denoteD(t) as in Section IV. At the
same time, IP address randomization disconnects all users
currently communicating with the real node, leading to a
cost proportional to the number of connectionsYt . In what
follows, we assume that the number of connectionsYt is
defined by an M/M/1 queuing process, where connections
form with rateλ and are served with rateω . The selection
of the next randomization time can therefore be formulated
as the optimal stopping problem

min
R

{E(D(R)+βYR)}, (2)

where β ≥ 0 is a parameter used to describe the trade-off
between detection probability and performance.

We first describe how the hypervisor estimatesD(t) in
order to solve (2). Since any connection to a decoy node
likely comes from an adversary, and since the decoy nodes
record information on when they have been scanned, the
number of distinct nodes that have been scanned up to
time t, denotedLt is known to the hypervisor. Hence the
probability that a random node, including the real node, has
been scanned prior to timet is estimated asLt

n . Furthermore,
since the rate at which nodes are scanned prior to timet is
Lt
t , the expected number of nodes that are scanned prior to

time t ′ > t is equal toE(Lt′ |Lt) =
Lt
t t ′. The solution to (2) is

given by the following theorem.
Theorem 1:Let Tc(y) denote the expected time to wait

for the number of connections to the real node to reach
zero, given that the current number of connections isy. The
optimal randomization strategy for (2) is to randomize the
IP address space at timet if one of the following conditions
holds:

1) Lt = n
2) Lt

t ≥ nβ (ω −λ ), and Lt
n +βYt ≤

Lt
n

Tc(Yt )
t , or

3) Yt = 0.
Proof: If Lt = n, then all virtual nodes have been

scanned and hence the IP address space must be randomized
to prevent targeting the real node. We first prove that if
Yt = 0, then it is optimal to randomize the address space.
We then consider the case whereYt > 0, and prove that it is
never optimal to randomize unlessLt

t ≥ nβ (ω −λ ). Finally,

we show that whenLt
t ≥ nβ (ω −λ ), the optimal strategy is

either to randomize immediately or wait until the number of
connections to the real node reaches zero.

First, note that sinceD(t) is increasing in time, it is
optimal to randomize the IP address space whenever the
number of connectionsYt = 0. Furthermore, ifLt = n, then
the adversary has already scanned the entire network and
there is no additional benefit to randomizing, and so the
hypervisor will wait untilYt = 0.

If Lt < n andYt > 0, we use the fact [16] that the solution
to the optimal stopping problem (2) is given by

R∗ = min{t : D(t)+βYt = w(Lt ,Yt)},

wherew(Lt ,Yt) is defined as

w(Lt ,Yt) = inf
R′≥t

{E(D(R′)+Y(R′)|Lt ,Yt)}.

To evaluate whetherD(t)+βYt = w(Lt ,Yt), we first compute
E(D(t + δ t) +Yt+δ t |Lt ,Yt). Based on the above analysis,
E(D(t + δ t)|Lt ,Yt) = D(t) + Ltδ t

nt . Furthermore, forδ t suf-
ficiently small, E(Yt+δ t |Yt ,Lt)−Yt = (λ −ω)δ t. Hence we
have

E(D(t + δ t)+βYt+δ t|Lt ,Yt)− (D(t)+βYt+δ t) =

Ltδ t
nt

+(λ −ω)δ t

and it is therefore optimal to wait for at least timeδ t if
Lt
t < nβ (ω −λ ).

To analyze the case whereLt < n and Lt
t > nβ (ω−λ ), we

let A(t) denote the arrival process of connections to the real
node and letS(t) denote a Poisson process with rateω that
is independent ofA(t). We therefore have

E(Yt′ −Yt |Yt)≥ E(A(t ′− t)−S(t ′− t))

= (λ −ω)(t ′− t),

which implies that

E(Y′
t |Yt)−Yt

t ′− t
≥

d
dt

E(Yt′ |Yt)

and henceE(Yt′) is convex as a function oft. ThusE(D(t ′)+
βYt′ |Lt ,Yt) attains its minimum either att ′ = t or at the
boundary point whereYt′ = 0, i.e., at time Tc(Yt). The
expected probability of detection at this time is equal to

E(D(Tc)|Lt ,Yt) =
Lt

nt
Tc(Yt).

Thus, it is optimal to randomize at timet if Lt < n, Lt
t ≥

nβ (ω −λ ), andD(t)+βYt ≤
Lt
nt Tc(Yt), as desired.

Theorem 1 states that the optimal IP randomization strat-
egy for the hypervisor is the following. First, if the numberof
connections is 0, then the hypervisor randomizes the address
space immediately, as there is no cost to randomization
at that point. If the rate of scanning by the adversary is
sufficiently low, then the hypervisor should wait until all
connections to the real node have finished. Otherwise, the
hypervisor should randomize immediately.

In what follows, we characterize the resulting system per-
formance by analyzing the time between IP randomizations,



the probability that the real node is detected, and the expected
number of connections that are disrupted.

A. Analysis of Detection Probability and Resource Cost

We begin with an analysis of the expected time between
address randomizations. We state our results as two lemmas,
which depend on the average scanning rate of the adversary.
As a preliminary, we letT ′ = inf {t ′− t : Yt′ =Yt −1} and
τb = E(T ′). We let ∆ , Lt

t denote the scanning rate of the
adversary.

Lemma 3: If the scanning rate∆ satisfies∆ < nβ (ω −λ )
and the number of connections to the real node has reached
its stationary distribution, then the expected time between
randomizations of the address space isE(R) = λ τb

ω−λ .
Proof: If the scanning rate satisfies∆ < nβ (ω − λ ),

then by Theorem 1, the hypervisor will not randomize the
address space untilYt = 0. HenceE(R) = τbE(Y0) since we
have assumed that connections to the real node follow an
M/M/1 queuing process. Furthermore, if we assume that the
connection process of the real node is in steady-state, then
E(Y0) =

λ
ω−λ .

The following lemma describes the expected number of
connections broken and the probability of detection under
the slow-scanning assumption.

Lemma 4: If the scanning rate∆ satisfies∆ < nβ (ω −
λ ), then the expected number of connections lost due to IP
randomization is 0 and the probability of detection is∆

n
τbλ

ω−λ .
Proof: By Theorem 1, IP randomization will not take

place until Yt = 0, and hence 0 connections are lost. The
probability of detection is given by

E(D(R)) = E
(

LR

n

)

=
∆
n

E(R) =
∆
n

τbλ
ω −λ

,

giving the desired result.
In the case where∆ ≥ nβ (ω −λ ), the following proposi-

tion describes the time between randomizations, probability
that the real node is identified, and the expected number of
dropped connections.

Proposition 3: If the scanning rate∆ satisfies∆≥ nβ (ω−
λ ), then the following hold. If ∆

n τb − β < 0, then the
derivations ofE(R), E(D(R)), andE(YR) in Lemmas 3 and
4 hold. Otherwise, definea= ∆t

n

(∆
n τb−β

)−1
. We have

E(R)≤ min

{

τbλ
ω −λ

,

[

τ f

(

a−
λ

ω −λ

)]

+

}

(3)

and the probability of detection is bounded by

E(D(R)) ≤
∆
n

min

{

τbλ
ω −λ

,

[

τ f

(

a−
λ

ω −λ

)]

+

}

. (4)

Furthermore, the expected number of broken connections is
given by

E(YR) = a
πa

π0+πa
,

whereπa = ∑i≥a p(i), π0 = p(0), and p(·) is the stationary
distribution ofYk.

Proof: Theorem 1 implies that, if∆ ≥ nβ (ω −λ ), then
the IP address space is randomized either whenYt = 0 or

whenLt
n +βYt ≤

Lt
t

τbYt
n , which is equivalent to

(∆
n τb−β

)

Yt ≥
∆t
n . If ∆

n τb < β , then the condition never holds and the space
is randomized whenYt = 0, leading to the results of Lemmas
3 and 4.

Otherwise,R is reached whenYt = 0 or Yt ≥ a, i.e.,

R= inf {t : Yt /∈ (0,a)}.

Let τ0 = inf {t : Yt = 0} andτa = inf {t : Yt = a}. We have

E(R) = E(min{τ0,τa})

≤ min{E(τ0),E(τa)}

= min{τbE(Y0),τ f (a−E(Y0))}

= min

{

τb
λ

ω −λ
,τ f

(

a−
λ

ω −λ

)}

.

As a result,E(D(R)) is given by

E(D(R)) =
∆
n

E(R)≤
∆
n

min

{

τb
λ

ω −λ
,τ f

(

a−
λ

ω −λ

)}

.

Finally, the expected valueE(YR) is derived as follows.
Define τa = min{t : Yt ≥ a} and τ0 = min{t : Yt = 0}. By
Theorem 1,R= min{τ0,τa}. Hence

E(YR) = 0 ·Pr(R= τ0)+a ·Pr(R= τa).

Supposing that the system is in steady-state, we have

Pr(R= τa) =
∫ ∞

t=0
Pr(YR ≥ a|R= t)Pr(R= t) dt

=
∫ ∞

t=0
Pr(Yt ≥ a|Yt = 0∪Yt ≥ a)Pr(R= t) dt

=
∫ ∞

t=0

πa

π0+πa
Pr(R= t) dt

=
πa

π0+πa
.

The expected number of disconnected sessionsE(YR) is
therefore given bya πa

π0+πa
.

VI. SIMULATION STUDY

In this section, we present a simulation study using Matlab.
Our simulations addressed the adversary’s querying process,
described in Section IV, as well as the IP address random-
ization by the hypervisor in Section V. The setup of our
threat model is motivated by the NMAP software tool [2],
which performs automated scanning of a network in order
to identify node configurations, including whether a virtual
node is real or a decoy.

We consider a network withN = 100 nodes, including
one real node and 99 decoys. Each real node was assumed
to have an exponential response time with mean 100ms. The
mean response times of the decoys varied from 120ms to
200ms; these parameters are based on the empirical study
of [9], which indicates that the response time of a decoy
node to a ping request is 20% to 50% greater than the
response time of a real node in the same network. It was
assumed that determining that a node is a decoy via semantic
analysis required 120 seconds. Connections arrived at the
real node according to an M/M/1 process with an average of



0.02 0.04 0.06 0.08 0.1
0

2

4

6

8

10

12

14

Difference in response times, seconds

T
im

e 
sp

en
t q

ue
ry

in
g 

ea
ch

 n
od

e

Time for adversary to scan a node

 

 

No time limit
Limit=500ms

0 0.02 0.04 0.06 0.08 0.1

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Difference in response times, seconds

P
ro

ba
bi

lit
y 

of
 id

en
tif

yi
ng

 r
ea

l n
od

e

Ability of adversary to detect real node

 

 

No time limit
Limit=500ms

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (seconds)

P
ro

ba
bi

lit
y 

of
 id

en
tif

yi
ng

 r
ea

l n
od

e

Scanning capability of adversary

 

 

r=0
r=1
r=2
r=3
r=4
r=5

(a) (b) (c)

0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
0

2

4

6

8

10

12

14

16

Trade−off parameter β

N
um

be
r 

of
 d

ro
pp

ed
 c

on
ne

ct
io

ns

Number of connections lost due to randomization

 

 

r=3
r=4
r=5

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (seconds)

P
ro

ba
bi

lit
y 

of
 id

en
tif

yi
ng

 r
ea

l n
od

e

Scanning capability of adversary as function of network size

 

 

N=10

N=100

N=1000

N=10000

0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

20

40

60

80

100

120

140

160

180

Trade−off parameter β

T
im

e 
be

tw
ee

n 
ra

nd
om

iz
at

io
n

Average time to randomize for different scanning rates, N=100

 

 

r=3
r=4
r=5

(d) (e) (f)

Fig. 1. Simulation results for network ofN = 100 nodes, with one real node and 99 decoys. Real nodes have mean response time 100ms, while response
time of decoys varies from 120 to 200ms. (a) Time for the adversary to identify whether a node is real or fake, either using the decision rule of Section
IV or a rule where a node is a decoy if the response time exceedsa threshold of 500ms. The detection time is decreasing in thedifference between
real and decoy response times. (b) Probability that the adversary correctly identifies a node as real. While the decisionrule of Section IV requires more
queries per node, it results in higher detection probability. (c) Probability that the adversary has scanned the real node as a function of time, based on the
scanning rate of the adversary (determined by parameterr). Asterisks indicate the time at which randomization occurs. (d) Number of dropped connections
when randomization occurs. When the adversary employs a higher scanning rate, the network randomizes at a higher rate, thus increasing the number of
connections that must be dropped and restored after randomization. (e) Effect of network size on the adversary’s probability of identifying the real node. A
larger number of decoys decreases the probability of identification and allows the hypervisor to wait longer before randomizing (randomization times shown
as asterisks). (f) Expected time between IP randomization as a function of the trade-offβ . If more weight is assigned to the cost of dropped connections
(higher β ), then the hypervisor will wait longer before randomizing.Additionally, a higher scanning results in shorter delay before randomization.

one new connection per second, and 1.1 existing connections
terminated per second.

To evaluate the time required to determine whether a
node is a decoy, we considered two querying strategies by
the adversary. The first strategy, based on Proposition 1,
terminates when thea posteriori probability that the node
is real leaves a predetermined range(pL, pU). We chose
pL = 6.7x10−4 and pU = 0.037, ensuring that the probability
of classifying a real node as fake is no more than 0.05 and
the probability of classifying a fake node as real is no more
than 0.25. In the second strategy, the adversary stops making
queries either when thea posterioriprobability that the node
is real leaves the range(pL, pU), or when the response time
of a query exceeds 500ms.

In order to analyze the hypervisor’s randomization behav-
ior, we simulated an adversary scanning the virtual network
based on NMAP fingerprinting rules. In NMAP, the scanning
rate varies according to a parameterr ∈ {0,1, . . . ,5}. Each
value of r represents a different scanning rate, withr = 0
a slow scanning rate in order to avoid intrusion detection
systems andr = 5 representing a rapid scanning rate. Atr =
0, the adversary waits for 300 seconds (5 minutes) between
scanning nodes, greatly increasing the time to identify the
real node. Whenr = 1, the adversary waits 15 seconds in
between scans, whiler = 2 represents a waiting time of 0.4
seconds between scans. Whenr = 3, there is no waiting

time. At r = 4, the adversary does not wait between scans,
and stops querying a node when the response time exceeds
500ms. Atr = 5, the adversary does not wait between scans,
and stops querying a node when the response time exceeds
200ms.

The time required for the adversary to query each node
and differentiate between real and decoy nodes is illustrated
in Figure 1(a). When the response time of the decoy nodes
is 120ms, compared to 100ms for the real nodes, it takes
the adversary 14 seconds on average to distinguish between
a real and decoy node using the strategy of Proposition 1.
As the response time of the decoys diverges from the real
node response time, however, the time required to diminish
decreases. When the adversary times out after waiting 500ms
for a response, the detection time is reduced, at the cost of
increasing the probability of error.

Figure 1(b) shows the probability that a real node is
correctly identified as a real node, as a function of the
response time of the decoy nodes. The optimal detection
strategy of Proposition 1 consistently provides a probability
of correctness close to 1, at the cost of increased time to
query each node. Imposing a timeout of 500ms, on the
other hand, results in a low correctness probability when the
response times of the real and decoy nodes are similar. The
detection probability of this strategy converges to 1 because,
when the average response time of the decoy is longer than



that of a real node, most responses that exceed the 500ms
limit will be from decoy nodes.

The ability of the adversary to scan the entire virtual
network and identify the real node is examined in Figure
1(c). Each curve represents a different value of the parameter
r, which determines the delay between scans and the time
allocated to each node. Whenr = 0 andr = 1, the adversary
introduces delays between scans to avoid detection, increas-
ing the time required between IP randomizations. In these
cases, the hypervisor waits until all connections to the valid
node have terminated (condition 1 of Theorem 1) before
randomizing the address space. Asr increases, the rate of
scanning and hence the probability of identifying the real
node at each timet increases. Whenr ∈ {4,5}, the hypervisor
must randomize frequently in order to prevent the adversary
from finding the real node.

The effect of randomization on the system performance
is shown in Figure 1(d). Whenr = 0,1,2, the adversary’s
scanning rate is sufficiently low that the hypervisor can afford
to wait until there are zero connections before randomiz-
ing. For the casesr = 3,4,5 shown, the hypervisor must
randomize before all connections are concluded (condition
2 of Theorem 1), thus disrupting the performance of valid
users. As the scanning rate increases (r = 5), the number
of dropped connections increases due to the decreased time
between randomization.

To mitigate the impact of a more powerful adversary, the
system can deploy additional decoy nodes. Figure 1(e) shows
the adversary’s detection probability over time for different
network sizes,N. Even if the adversary scans at the fastest
possible rate (r = 5), the detection probability at the time
of randomization is only 0.1 (when N = 1000) and 0.01
(whenN = 10000). This allows the hypervisor to wait until
the number of connections to the real node goes to zero.
This improvement in availability to outside nodes, however,
must be balanced with the resource cost in CPU and memory
required to maintain a large number of decoys.

The average time between consecutive randomizations is
illustrated in Figure 1(f). As the parameterβ increases,
additional weight is placed on the disruptions of valid con-
nections caused by randomization, and hence the hypervisor
will wait longer until more connections have been completed.
On the other hand, a higher scanning rater decreases the
time between randomizations, since the detection probability
increases at a faster rate.

VII. C ONCLUSION

In this paper, we studied moving target defense mecha-
nisms that use decoy-based deception and IP address ran-
domization in order to thwart reconnaissance by adversaries.
We first considered the interaction between a single virtual
node and the adversary, in which the adversary attempts to
determine whether a node is real or a decoy by observing the
timing of the node responses to probe packets. We modeled
the adversary’s behavior as the solution to a sequential
detection problem and derived closed-form solutions for the

detection probability and expected time of detection for the
case where the response times are exponentially distributed.

We then developed a design framework in which the hy-
pervisor, which controls the virtual network, receives inputs
from the decoy nodes, including which decoy nodes have
been scanned by the adversary. We formulated the decision
of when to randomize as an optimal stopping problem and
derived the optimal policy for the hypervisor. We then
analyzed probability of identifying the real node before
randomization, the expected number of lost connections, and
the expected time between randomizations as a function of
the network parameters. Our results were further illustrated
through simulation study, which was based on the NMAP
network scanning tool.

In future work, we will extend our framework to consider
design parameters other than the time of IP randomization,
such as the number of decoys and the CPU and memory
resources allocated to each decoy. We will also explore other
decoy detection methods for the adversary, such as detection
based on protocol implementations, using our framework.

REFERENCES

[1] J. Rowe, K. Levitt, T. Demir, and R. Erbacher, “Artificialdiversity
as maneuvers in a control-theoretic moving target defense,” Moving
Target Research Symposium, 2012.

[2] M. Wolfgang, “Host discovery with NMAP,”
http://moonpie.org/writings/discovery.pdf, 2002.

[3] R. Chandrashekhar, M. Mardithaya, S. Thilagam, and D. Saha, “SQL
injection attack mechanisms and prevention techniques,”Advanced
Computing, Networking and Security, pp. 524–533, 2012.

[4] P. Manadhata and J. Wing, “An attack surface metric,”IEEE Transac-
tions on Software Engineering, vol. 37, no. 3, pp. 371–386, May-June
2011.

[5] S. Jajodia, A. Ghosh, V. Swarup, C. Wang, and X. S. Wang,Moving
Target Defense: Creating Asymmetric Uncertainty for CyberThreats.
Springer, 2011.

[6] N. Provos and T. Holz,Virtual Honeypots: From Botnet Tracking to
Intrusion Detection. Addison-Wesley Professional, 2007.

[7] N. Provos, “A virtual honeypot framework,”Proceedings of the 13th
USENIX security symposium, vol. 132, 2004.

[8] X. Liu, L. Peng, and C. Li, “The Dynamic Honeypot Design and
Implementation Based on Honeyd,”Advances in Computer Science,
Environment, Ecoinformatics, and Education, pp. 93–98, 2011.

[9] S. Mukkamala, K. Yendrapalli, R. Basnet, M. Shankarapani, and
A. Sung, “Detection of virtual environments and low interaction hon-
eypots,” IEEE Information Assurance and Security Workshop (IAW),
pp. 92–98, 2007.

[10] M. Abu Rajab, F. Monrose, and A. Terzis, “On the impact ofdynamic
addressing on malware propagation,”Proceedings of the 4th ACM
Workshop on Recurring Malcode, pp. 51–56, 2006.

[11] S. Antonatos, P. Akritidis, E. P. Markatos, and K. G. Anagnostakis,
“Defending against hitlist worms using network address space random-
ization,” Computer Networks, vol. 51, no. 12, pp. 3471–3490, 2007.

[12] I. Kuwatly, M. Sraj, Z. Al Masri, and H. Artail, “A dynamic honeypot
design for intrusion detection,”IEEE/ACS International Conference
on Pervasive Services, pp. 95–104, 2004.

[13] M. Vrable, J. Ma, J. Chen, D. Moore, E. Vandekieft, A. Snoeren,
G. Voelker, and S. Savage, “Scalability, fidelity, and containment in
the potemkin virtual honeyfarm,”SIGOPS Operating Systems Review,
vol. 39, no. 5, pp. 148–162, 2005.

[14] X. Fu, W. Yu, D. Cheng, X. Tan, K. Streff, and S. Graham, “On rec-
ognizing virtual honeypots and countermeasures,”IEEE International
Symposium on Dependable, Autonomic and Secure Computing, pp.
211–218, 2006.

[15] D. Chisnall, The Definitive Guide to the Xen Hypervisor. Prentice
Hall, 2007.

[16] G. Peskir and A. Shiryaev,Optimal Stopping and Free-boundary
Problems. Birkhäuser Basel, 2006.


