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Abstract—In a decoy-based moving target defense (MTD), = When an attack surface is static, an adversary can monitor
a computer network introduces a large number of virtual  the network, identify vulnerabilities and entry points,dan
decoy nodes in order to prevent the adversary from locating geyise efficient, targeted attacks. One approach to prevent

and targeting real nodes. Since the decoys can eventually be ht ted attacks is to ch feat f
identified and their Internet Protocol (IP) addresses blackisted such targeted attacks IS 10 change one or more teatures o

by the adversary, current MTD approaches suggest that the the attack surface over time in an Unpredictable fashion [5]
IP addresses of the real and decoy nodes should be randomly By doing so, the network ensures that attacks based on the

refreshed and reassigned over time. Refreshing and reassig@g  previous attack surface are ineffective against the system
the IP addresses, however, disrupts services such as TCPHRL —,,qateq attack surface. Mechanisms for changing the attack

rely on the IP address. We introduce an analytical approach e -
to MTD and choosing the optimal randomization policy in Surface are classified asoving target defense8TD).

order to minimize disruptions to system performance. Our One widely used approach of MTD makes use of a large
approach consists of two components. First, we model the number of decoys that are virtual machines [6]. Each of
interaction between the adversary and a virtual node as a these decoys is given a unique and valid IP address and
sequential detection process, in which the adversary attepts jh1ements common network protocols, and hence appears
to determine whether the node is real or a decoy in the - . ;
minimum possible time. We compute the optimal strategy to an adversary as a valid system [7]. By observing the inter-
for the adversary to decide whether the node is real or a @actions between the adversary and the decoys, the network
decoy, and derive closed-form expressions for the expected monitoring system gains information about the adversary.
time to identify the real node using this strategy. Second,  While virtualization enables the creation of a large number
we formulate the problem of deciding when to randomize ¢ qecoys, the capabilities of the decoy nodes are limited by
the IP addresses, based on a trade-off between reducing the : .

probability of detecting the real node and minimizing the f:onstr_alnts on memory anq processing power of the system
disruption to network Services’ as an optima| Stopping proﬂBm_ n Wh|Ch the V|rtua| maCh|neS are hOSted, as hundl‘eds or
We derive the optimal randomization policy for the network  even thousands of virtual decoys may reside on a single
and analyze the detection probability, expected number of physical machine [8]. As a result, these low-end virtual
connections lost due to IP randomization, and expected time decoy nodes employ simplified versions of network protocols

between randomizations under the proposed policy. Our redts . . )
are illustrated via a simulation study using real-world data such as TCP/IP, do not provide higher-layer services, and

from NMAP, a software tool used to identify decoy nodes. Often have longer response time for queries made to them.
Our simulation study indicates that our IP randomization An intelligent adversary can make use of such features to

policy reduces the probability of detection while minimizing the  distinguish between real and decoy nodes [9].

number of connections that are disrupted by the randomizatbn. After a node has been detected as a decoy by an adver-
sary, the adversary will blacklist that IP address. If the IP
addresses of each node remains fixed, blacklisting the IP
addresses of decoys will allow identifying the IP address of

Network security threats are typically preceded by a recorf '€@l node and penetrating the system. The IP address of
naissance phase, in which one or more adversaries monitgf decoy nodes must therefore be randomly refreshed and
and probe the network over a period of time. Througﬁeasmgned over time [10]. On the other hand, if _onIy the_
monitoring, the adversaries gather information on a set §€c0y node IP addresses are refreshed and reassigned while
network features, which include the Internet Protocol (IP{€ addresses of real nodes remain fixed, the adversary will
addresses and ports used by the nodes, the versions dgtermine that long-lasting IP addresses_ belong to reasod
protocols (such as DHCP and FTP) that are implemented [1]€nce, the network needs to randomize the IP addresses
the operating systems used by nodes [2], the types of u rall real and decoy nogles._ _Smce hlgher-layer services
input accepted [3], and the access privileges requiredge exdUch as TCP rely on maintaining a static IP address, IP
cute commands or receive services on each node [4]. TakEHrdomization will disrupt and degrade the performance of

I. INTRODUCTION

together, these features comprise #tack surfacg4]. the services provided by the real nodes. _ .
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and hence do not allow the development of general desigation studies [11]. In spite of this, the security benefinfr
principles for effective randomization. On the other handaddress space randomization, as well as the resource cost,
at present, a suitable analytical approach for decidingnwheare not well-understood, and hence techniques for ad#ptive
and how often to randomize is missing, thus preventing arghoosing a randomization strategy in response to sensad dat
effective performance evaluation of decoy-based MTD. is not available.

In this paper, we present an analytical approach to eval- A control-theoretic approach to designing protocol diver-
uating the effectiveness of MTD. We make the followingsification mechanisms, which create diversity by introdgci
specific contributions: new, randomized protocol states and are distinct from the IP

« We develop a model for the interaction between &ndomization considered in this work, was studied in [1].

virtual node and an adversary. We model the adversarylie authors formulate the problem of estimating whether

actions as a sequential detection problem of decidiri§e system is in a secure state and discuss principles for
whether the node is real or a decoy based on its resporf#@signing a control-theoretic modeling approach, but do no

times, and determine the optimal detection strategformulate such an approach or derive the optimal control

When the response times to queries are exponential, Welicy.

develop closed-form expressions for the probability of I1l. ADVERSARY MODEL AND PRELIMINARIES
the real node being identified.

« For the network, we formulate the problem of IP ad- In this section, we describe the system and adversary

- . . models considered in this work.
dress randomization as an optimal stopping problem

and derive the optimal randomization policy. We anA. System Model

alyze the performance and security of our proposed \we consider a network consisting bf virtual machines

randomization policy, including the probability that the(\/\ms). The VMs are classified as real or decoy nodes. Real
adversary determines the IP address of the real nodgsdes implement all layers of the network protocol stack and
the expected number of connections that are interruptegke used to provide applications and services to the system
and the expected time between randomizations under thner and valid users. The function of the decoy nodes is

proposed policy. to distract adversaries from targeting real nodes as well as
» We evaluate our approach through a numerical studyy gather information on adversaries.
which is based on real data from NMAP, a widely-used The virtual network consisting of decoys is monitored and
tool for identifying the operating system and servicesnanaged by a hypervisor [15]. The tasks of the hypervisor
running on a node. Our simulation results characteriz@clude creating and removing virtual nodes and assigning
the effectiveness of the decoys in mimicking the realp addresses and routing tables to the nodes. In addition,
nodes on the system performance. the hypervisor receives logged information on attempted
The paper is organized as follows. Section Il reviewgonnections to the decoy nodes, including the nature and
the related work. Section Il states our assumptions owiming of any queries from the adversary and the timing of
the system and adversary models. Section IV contains &@e node response.
analytical approach to modeling the interaction between a Moving target defense (MTD) mechanisms are controlled
virtual machine and an adversary, who attempts to determibg the hypervisor. Based on the received information on the
whether the VM is a decoy. Section V presents a designetwork state, the hypervisor can decide to reassign a mndo
approach to randomizing the IP address space based on HReaddress to each virtual node. To ensure sufficient entropy
observed behavior of the adversary. Section VI containsia the randomization, a large address space, such as the
numerical evaluation. Section VIl concludes the paper.  IPv6 address space, must be used. After each node has been
given a new IP address that is independent of its previous

address, any information gathered by the adversary rglatin
Decoy-based defenses, such as honeypots, that are bagethe identities of real and decoy nodes becomes obsolete.

on virtualization have been extensively studied [6]. Decoyye assume that all nodes are assigned new IP addresses at
designs vary in capability. Decoy nodes can be further clagice, since otherwise the adversary can differentiatedsstw
sified as low-interaction and high-interaction decoys.tHig ea1 and decoy nodes if they are assigned new addresses at
interaction decoys implement the full protocol stack, ikl gitterent times. When a node is given a new IP address, any
ing some application-layer services such as fake dataloases.onnections to the node from outside the virtual network are
web servers [13]. Low-interaction decoys emulate a partighst and must be reestablished, potentially interrupting t
network stack, sometimes consisting only of the TCP/IRgtyork services provided by the real node. Legitimate sode
layer and below [7]. Due to their limited implementation,g|sewhere in the network are assumed to have mechanisms

low-interaction decoys require fewer resources such ad-bar,, identifying the real node and reestablishing connestio
width, CPU, and memory, but are also easier for an adversager randomization has occurred.

to detect because of their lack of ability to provide valid
network services and unusually long response time [9],.[14B- Adversary Model

Address space randomization has been proposed as d&he adversary is assumed to know the range of IP ad-
diversification technique, and evaluated through implemeniresses occupied by the real node and the decoys; however, it
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does not know which IP address is currently used by the retile event where the node is a decoy (resp. real). Define the

node. We assume that IP addresses are randomly assignegrmbability distributionsPy(-) £ P(-|Ho) andPy(-) £ P(:|Hy).

real and decoy nodes, and the IP address alone does het P(H;) = mandP(Hp) = (1— ).

give any information of whether the node is real or a decoy After observingl messages, whefieis a random stopping

to the adversary. The goal of the adversary is to determiriene chosen by the adversary, the adversary outputs a random

the IP address of a real node, which can then be targetedriableX = f(Zy,...,Zr) € {0,1}, whereX = O represents

for further attacks, and in the process detect and discard th belief that the node is a decoy add-= 1 represents a belief

decoys from consideration. that the node is real. IK =0 and the node is real, then the
The adversary is capable of sending messages to prohdversary has failed to detect the real node and will scan all

IP addresses and observing the response. Possible messafdéise remaining decoys before returning to reinspect the re

include ICMP echo packets. The adversary can send querigsde, incurring additional delagr. If X =1 and the node

to the IP addresses in any order. The number of nodes thata decoy, then the adversary spends tetpedetermining

can be queried at a given time depends on the number thiat the node is a decoy via semantic analysis. The total time

parallel sessions that the adversary can open, which iseapended by the adversary interrogating the node is therefo

function of the adversary’s resource capabilities. To $ifijmp equal to

our analytical model, we assume there is only one adversary.

We assume that the IP address of the real node is not known C«(T>f) = co(1— M po(X = 1) + crrpy (X = 0)

to the decoys, which do not interact with the real node, so JE il 2

that the adversary cannot automatically obtain the readisod k; |

IP address after compromising one decoy. Furthermore, we i )

assume that the rate at which probe messages are stff 9oal of the adversary is to chooeand f in order to

is limited, as any unknown IP address that sends prot&tisfy _

messages at a high rate will be blocked by the hypervisor. 'T”I Co (T, 1). (1)

In general, the adversary can determine whether a node is

real or a decoy based on knowledge of the implementatid%q”aﬂon (1) defines a sequential detection problem for the

differences between the real node and the decoys. First, O%%versary. In order to determine the time required for the

to resource constraints, a decoy’s network protocols ,(e.gdversary to choose and the probability of error, the first
TCP/IP) are simplified and thus behave different from thosa'€P IS t0 compute the optimal decision for a given value of
used by the real node. Second, decoy nodes may be detecledS follows. , ) .

due to abnormalities in application-layer services such as -€mma 1:Given observationgy, ..., Z, the optimal de-
web servers. This detection method, however, requires seSION X
mantic analysis of the decoy responses and hence is more 0, Pr(Hi|zy,...,Z) < CDCECR
time- and resource-inten_sive. Third, since decoys tyty’pa! _{ 1, Pr(Hi|Zy,...,2Z) > CC%

have a Ionger.response.tllr.ne than real nodes due t_o Fhe|r lim- proof: We let Pk = Pr(Hi|Zy,...,Z) aenRote the prob-
ited computation capabilities, the adversary can difféaé®  apility that a node is a decoy conditioned on the observed
between real and decoy nodes by sending probing messagésponse times anBy(-) = E(+|Zy,...,Z). The adversary

to a node and observing the response time. ~ will decide that the node is a decoy and choise 0 when
In this paper, we focus on timing-based decoy detection, minimizes the expected cost, i.e., when

since it is independent of the type of decoy, and hence is the

= f(Zy,...,Z) is given by

most popular detection method in practice [9], [14]. CoPr(Zy,...,Z4Ho)(1— 1) > CrPr(Zy, ..., Z) T
IV. ANALYTICAL APPROACH TOINTERACTION Rearranging terms gives the desired result. =
BETWEENADVERSARY AND SINGLE VM It remains to find the optimal stopping timE, which

. . , . . . determines the number of pings sent by the adversary before
In this sec_t|on, we f“@t give a model for the Inte‘r"’u?t'ondetermining whether a node is real or a decoy. This stopping
between a virtual machine and an adversary attempting ﬁ?ne is quantified by the following proposition.
determine whether the virtual machine is real or a decoy. Proposition 1: There exist constantg., pu € (0,1) such
We then analyze the probability that the adversary dete t the optimal stopping timé is given ’by ’
whether the node is real or a decoy, as well as the expecteéj1
time for the entire interaction. T =min{k: Pr(H1|Za,...,Z) ¢ (pL,pu)}-
, ) Proof: By [16], the optimal stopping time for a problem
A. Single VM Interaction Model of the form (1) is equal to
In what follows, we give a model for the interaction of . .
a single virtual machine with the adversary. The adversary ~ MiN{k:min{crpx,co(1— P} = V(Z,- -, Z)},
sends a series of ping messages to the virtual machine aRfere
observes the response times, dendfedZ,,.... Based on T
the response times, the adversary reaches a decision a A ; _ :
whether the node is real or a decoy. Ikt (resp.H;) denote Y- 2 Igf{Ek <m|n{cRpT,cD(1 m)}+iZZ.> }



The functionv can be rewritten as a function @f, equal to We now analyze; andr,. Since the adversary is assumed
. : to query nodes according to a Poisson process withurite
s(px) = IQf{Ek(mm{CRpT’CD(l_ Pr)}) and each node is uniformly likely to be queried, the real node
T T is queried according to a Poisson process with fat&hus
+(1-pE <_lei |H0> + pE <'Z\Zi |H1> } - the time until the first query of the real node is an exponéntia
= = random variable with mea%, and sory (1) = pe T,
Now, since s(px) is an infimum of linear functions  |n order to compute,, we first defineqy and g; to be
of px, then it is concave as a function qd. Further- the probability density functions of the decoy and real node
more, s(p) is bounded above by mimrp,co(1-p)}, response times, respectively. We Agtdenote the likelihood

and hence the infimum is achieved whes(p) = ratio afterk response timegs,...,Z have been observed,
min{crp,cp(1—p)}. We therefore have the desired valug g

of T, with p. = sup{0< m<1/2|s(r) = crrt} and py = K qu(z) )\{(e*)‘lzilezj

inf{1/2< m<1|s(mm) = cp(1— )} n Ne=T1 =

0\ k Lt
Proposition 1 implies that the adversary’s optimal strat- =1 do(Z)) )\cl)(ef/\oz‘ﬂzJ
egy in differentiating between real and decoy nodes is tphe detection rule of Proposition 1 is equivalent to detegti
query the node and observe the timing of responses undilreal node at timé if Ax > B for someB > 0 that is a
Pr(Hi|Zy,...,Z) < p., in which case it terminates and function of py. Let K; denote the number of responses that

outputsX =0, or Pr(H1|Zy,...,Z) > pu, in which case it the adversary has received by timeNe have
terminates and outpu®$ = 1. In what follows, we analyze

the detection probability and time required for detection, “ai(Z)) .8 g Pr Koau(Z)) > BIK: = k Hy
under basic assumptions regarding the responses of real an BQO(ZJ) & quO(Zj) ’

decoy nodes. -Pr(K; = k|Hy)].
B. Analysis of Decoy Detection by Adversary

. ~Assuming that messagdg is received at time implies that
The effectiveness of the decoy nodes depends on their abil-

ity to hide the identity of the real node from the adversary. e [ K qu(zZ)) £
Two metrics that quantify the time required for the adversar r2(t) = kZO Pr - o(Z;) >B J.;ZJ =tH
to identify the real node are the probability that the adamsrs - Pr(K; = k|Hy)]
has identified the real node within tiniedenotedD(t), and ' i
; . . ) /\ke*/\lzjzlzj k
the expected time for the adversary to identify the real node =5 |pr 1 >B| Y Zj=tH
denoted*. s ,\geﬂ\ozjk:lzj &7 !
In the following analysis, we computg(t) andt* based i
wing analysis, w pu(t) -Pr(K; = k|Hy)]

on several assumptions of the network and adversary. We ‘
assume that the responses from the decoy and real nodes are ~ _ Pr ﬂ e M-ttt 5 g Pr(K; = k|H1).
both exponential. The mean response times for the decoy and k; Ao

real nodes are equal % and il respectively. We assume )

that the adversary queries nodeg acg:ording to a Po_issNIaW, Pr (%) e -2t > B) is equal to 0 ifk < k*.
process with rateuN, so that the time in between queries 0

by the adversary i 1N The parameteu depends on the ; : X
resources of the adversary and the adversary’s Wi”ingtmssexpressmns ofy (t) qnd ra(t) gives the dgswed result. m i
avoid detection. Based on these assumptions, the followingThe second metric that we consider is the expected time

lemma defines the adversary’s probability of successfullvmil the adversary determines the identity of the real node
identifying the real node within time Proposition 2: The expected time for the adversary to

Lemma 2: There exists a constaBt> 0, with B a function determine the identity of the real node, denoté&ds given

_1,K ; : ;
of the constanpy in Proposition 1, such that by t* = & + 5, » wherek® is defined as in Lemma 2.
o A Proof: The time for the adversary to determine the real
o

u /t e(Arwr(Al(t _ T))k dr, node’s identity is equal tp the time until the advgrsary_ |er
k! 0 the real node plus the time for the real node’s identity to be
K found. This is equal td; + T,. Since the adversary queries
* H (M —(A1—Ag)t . . .
wherek® = min{k: g;\—o) € > B} the real node according to a Poisson process with pate
~ Proof: We letT; denote the time when the adversarywe haveE(T;) = -. The timeT; is equal to the time until
first queries the real node afig denote the time required k* responses have been received by the adversary. Since the

for the adversary to identify a node as real after querying fesponse times are independent and identically distiibute
the first time.D(t) is therefore equal t€r(Ty + T, <t). Let  with mean)\i, we haveE(T,) K Hence
1

ri andr, denote the probability density functions &f and M i
To, respectively, so that t* = E(Ty) + E(T) = 1 + k_
t H o A
D(t) :/ f1(T)ra(t — 1) dr. .
0

Hence we havery(t) = Pr(K; > k*|H;). Combining the

D(t) =
K=k*



The time required for the adversary to determine the idemve show that Wheﬁ;i >nB(w—A), the optimal strategy is
tity of the real node affects the behavior of the hypervisoeither to randomize immediately or wait until the number of
Intuitively, if the adversary can quickly identify the redde, connections to the real node reaches zero.
then the IP addresses of the real and decoy nodes must b&irst, note that sinceD(t) is increasing in time, it is
randomized often, even in spite of lost connections at thk reoptimal to randomize the IP address space whenever the
node. This trade-off is formulated explicitly in the follayg number of connection% = 0. Furthermore, ifL; = n, then

section. the adversary has already scanned the entire network and
there is no additional benefit to randomizing, and so the
V. OPTIMAL RANDOMIZATION BY HYPERVISOR hypervisor will wait until; = 0.

In this section, we describe the optimal defense strategy, If Lt <nand¥; >0, we use the fact [16] that the solution
as characterized by the time at which the IP address spacdasthe optimal stopping problem (2) is given by
randomized. For simplicity, we ldt=0 represent the time R =min{t: D(t) + BY = w(Ly,Y))},
when the address space was last randomized, and denote by
R the random variable representing the time when the nextherew(Lt,Y;) is defined as
randomization takes place. The goal of the hypervisor is to WL Y.) = inf {E(D(R) +Y(R)IL . Y.
minimize the probability of the adversary discovering the (L, %) th{ (BR)+Y(R)ILe, )3
real node, which we denot®(t) as in Section IV. At the 14 evaluate whethed(t) + BY; = w(L, Y;), we first compute

same time, IP address randomization disconnects all USEFED(t + 8t) + Y, 5|Le,Yi). Based on the above analysis,
currently communicating with the real node, leading to %(D(t+5t)|Lt Y) = D’(t)—i- L3t

' | ==. Furthermore, fordt suf-
cost proportional to the number of connecﬂdﬁsln.wh.at ficiently small, E(Y; &Y, L) — ¥ = (A — w)3t. Hence we
follows, we assume that the number of connectidnss have
defined by an M/M/1 queuing process, where connections
form with rateA and are served with rate. The selection E(D(t+ 0t) + BYiiatlLt, Y1) — (D(t) + BY;yat) =
of the next randomization time can therefore be formulated L¢ ot
) ; — + (A —w)ot
as the optimal stopping problem nt
- and it is therefore optimal to wait for at least tind if
E(D(R Y 2
L

where 8 > 0 is a parameter used to describe the trade-off 10 analyze the case whete<nand3 >nf(w—A), we
between detection probability and performance. let A(t) denote the arrival process of connections to the real

We first describe how the hypervisor estima@g) in po_de and leS(t) denote a Poisson process with ratehat
order to solve (2). Since any connection to a decoy nodg independent oA(t). We therefore have
likely comes fro_m an adversary, and since the decoy nodes EMY — Y [%) > E(A( —t) —S(t' —t))
record information on when they have been scanned, the - /

L =A—-w)(t' —1),
number of distinct nodes that have been scanned up to
time t, denotedL; is known to the hypervisor. Hence thewhich implies that
probability that a_rando_m r_lode,_including the real node, has E(YM)-Y% _ d
been scanned prior to timés estimated a&t. Furthermore, T 2 gie(w v
since the rate at which nodes are scanned prior to tiise _ . ,
L the expected number of nodes that are scanned prior 394 hencé&(Yy) is convex as a function cgt/ThusE(D(t )+
timet’ >t is equal toE(Ly |L;) = %t’. The solution to (2) is FYv|Li, %) attains its minimum either o =t or at the
boundary point whereYy = 0, i.e., at timeT.(Y;). The

given by the following theorem. . ! L
Theorem 1:Let Te(y) denote the expected time to Waitexpected probability of detection at this time is equal to

i L
for the number of connections to the real node to reach E(D(Te)|L, %) = —Te(¥).
zero, given that the current number of connectiong iShe nt

optimal randomization strategy for (2) is to randomize thehys, it is optimal to randomize at tinteif L; < n, % >

IP address space at timef one of the following conditions nB(w—A), andD(t) + BY; < "—}Tc(Yt) as desired -
. ’ — n ] .
holds: Theorem 1 states that the optimal IP randomization strat-
1) Li=n egy for the hypervisor is the following. First, if the numhoér
2) % >nB(w-2), andb + gy, < LTl o connections is 0, then the hypervisor randomizes the asldres
3) =0. space immediately, as there is no cost to randomization

Proof: If Ly =n, then all virtual nodes have beenat that point. If the rate of scanning by the adversary is
scanned and hence the IP address space must be randomgsficiently low, then the hypervisor should wait until all
to prevent targeting the real node. We first prove that i€onnections to the real node have finished. Otherwise, the
Y; =0, then it is optimal to randomize the address spacéypervisor should randomize immediately.

We then consider the case whéfe> 0, and prove thatitis  In what follows, we characterize the resulting system per-
never optimal to randomize unleé'fsz nB(w—A). Finally, formance by analyzing the time between IP randomizations,



the probability that the real node is detected, and the egdec whent + BY; < % % which is equivalent tc{%rb — B) Y; >

n )
number of connections that are disrupted. %. If érb < B, then the condition never holds and the space
A. Analysis of Detection Probability and Resource Cost ;’s;irédgmmed whet =0, leading to the results of Lemmas

We begin with an analysis of the expected time between otherwise R is reached whei; =0 or Y; > a, i.e.,
address randomizations. We state our results as two lemmas,
which depend on the average scanning rate of the adversary. R=inf{t: ¥ ¢ (0,a)}.
As a preliminary, we lefT’ =inf{t'—t: Y, =Y —1} and . v . v
T = E(T'). We letA £ % denote the scanning rate of g€t To = inf{t: ¥ =0} and7a = inf{t: ¥ =a}. We have
adversary. E(R) = E(min{1p,Ta})
Lemma 3:If the scanning raté satisfiesA < nB(w—A) < min{E(1o),E(1a)}
and the number of connections to the real node has reached o
its stationary distribution, then the expected time betwee = min{1,E(Yo), Tr(a—E(Y0))}

randomizations of the address spac&(R) = w’\%b/\ - min{rb A | T¢ (a— A )}
Proof: If the scanning rate satisfies < nB(w—A), w—A w—A

then by Theorem 1, the hypervisor will not randomize the\s 3 result E(D(R)) is given by

address space uni = 0. HenceE(R) = 1,E(Yp) since we

have assumed that connections to the real node follow 8 p(R)) = éE(R) < émin{rb A T (a— A )}
M/M/1 queuing process. Furthermore, if we assume that the n - n Ww—A’ w—A
connectio/(l process of the real node is in steady-state, the”FinaIIy, the expected valug(Yg) is derived as follows.
E(Yo) = o5+ _ B Define 1, = min{t: ¥, >a} and 10 = min{t: Y, =0}. By

The following lemma describes the expected number 6feorem 1R= min{To, Ta}. Hence
connections broken and the probability of detection under
the slow-scanning assumption. E(Yr) =0-Pr(R=1p)+a-Pr(R=T1a,).

Lemma 4:If the scanning rateA satisfiesA < nB(w —
A), then the expected number of connections lost due to
randomization is 0 and the probability of detectiorfige.. Pr(R=1a) = /oo Pr(Ys > aR=t)Pr(R=t) dt

Proof: By Theorem 1, IP randomization will not take =0 o

I%,upposing that the system is in steady-state, we have

place until; =0, and hence 0 connections are lost. The — /oo Pr(Y > al%; = 0UY; > a)Pr(R=t) dt
probability of detection is given by t=0 N N
® Th
L A A A = Pr(R=t) dt
E(D(R))_E(—R)_—E(R)_— A oot )

n n nw-—A T
giving the desired result. n T+ Th
_In the case wheré > n3(w—A), the following proposi- The expected number of disconnected sessiBifig) is
tion describes the time between randomizations, profbilitherefore given bya-"2—. u
that the real node is identified, and the expected number of TotTa
dropped connections. VI. SIMULATION STUDY

Proposition 3: If the scanning rat& satisfiesh > nB(w— In this section, we present a simulation study using Matlab.

A), then the following hold. If &1, — B < 0, then the Our simulations addressed the adversary’s querying psoces
derivations ofE(R), E(D(R)), andE(Yg) in Lemmas 3 and described in Section IV, as well as the IP address random-
4 hold. Otherwise, defina= 4 (A1, —B) . We have ization by the hypervisor in Section V. The setup of our
T\ A threat model is motivated by the NMAP software tool [2],
E(R) < min{—, |:Tf (a— —)} } (3) which performs automated scanning of a network in order
w-A w-A/], to identify node configurations, including whether a viftua
and the probability of detection is bounded by node is real or a decoy.
A ) A We consider a network wittN = 100 nodes, including
E(D(R)) < = mm{ { £ (a— —)} } (4) one real node and 99 decoys. Each real node was assumed
n w—A . . )
to have an exponential response time with mean 100ms. The
Furthermore, the expected number of broken connectionsrisean response times of the decoys varied from 120ms to

w—A’

given by 200ms; these parameters are based on the empirical study
E(Yr) =a Ta , of [9], which indicates that the response time of a decoy
To+Ta node to a ping request is 20% to 50% greater than the
wheret, = 5, p(i), T = p(0), and p(-) is the stationary response time of a real node in the same network. It was
distribution of Y. assumed that determining that a node is a decoy via semantic

Proof: Theorem 1 implies that, it > nB(w—A), then analysis required 120 seconds. Connections arrived at the
the IP address space is randomized either w¥iea O or real node according to an M/M/1 process with an average of
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Fig. 1. Simulation results for network & = 100 nodes, with one real node and 99 decoys. Real nodes hare regponse time 100ms, while response
time of decoys varies from 120 to 200ms. (a) Time for the agbasrto identify whether a node is real or fake, either ushg decision rule of Section
IV or a rule where a node is a decoy if the response time excaeittiseshold of 500ms. The detection time is decreasing indifierence between
real and decoy response times. (b) Probability that theradme correctly identifies a node as real. While the decisida of Section IV requires more
queries per node, it results in higher detection probgbi{it) Probability that the adversary has scanned the red¢ as a function of time, based on the
scanning rate of the adversary (determined by paramptésterisks indicate the time at which randomization oscgd) Number of dropped connections
when randomization occurs. When the adversary employs leehgcanning rate, the network randomizes at a higher fais, ihcreasing the number of
connections that must be dropped and restored after ramgdtiam. (e) Effect of network size on the adversary’s prdbgtof identifying the real node. A
larger number of decoys decreases the probability of ifieation and allows the hypervisor to wait longer before @mniing (randomization times shown
as asterisks). (f) Expected time between IP randomizatia function of the trade-off. If more weight is assigned to the cost of dropped connestion
(higher B), then the hypervisor will wait longer before randomizirgdditionally, a higher scanning results in shorter delajobe randomization.

one new connection per second, and 1.1 existing connectiaimee. At r = 4, the adversary does not wait between scans,
terminated per second. and stops querying a node when the response time exceeds
To evaluate the time required to determine whether 500ms. Atr =5, the adversary does not wait between scans,
node is a decoy, we considered two querying strategies layd stops querying a hode when the response time exceeds
the adversary. The first strategy, based on Proposition 200ms.
terminates when tha posteriori probability that the node  The time required for the adversary to query each node
is real leaves a predetermined rangm,py). We chose and differentiate between real and decoy nodes is illiesirat
pL = 6.7x10 % and py = 0.037, ensuring that the probability in Figure 1(a). When the response time of the decoy nodes
of classifying a real node as fake is no more tha®b0and is 120ms, compared to 100ms for the real nodes, it takes
the probability of classifying a fake node as real is no moréhe adversary 14 seconds on average to distinguish between
than 025. In the second strategy, the adversary stops makiagreal and decoy node using the strategy of Proposition 1.
queries either when the posterioriprobability that the node As the response time of the decoys diverges from the real
is real leaves the range,, pu), or when the response time node response time, however, the time required to diminish
of a query exceeds 500ms. decreases. When the adversary times out after waiting 500ms
In order to analyze the hypervisor's randomization behaver a response, the detection time is reduced, at the cost of
ior, we simulated an adversary scanning the virtual netwoikcreasing the probability of error.
based on NMAP fingerprinting rules. In NMAP, the scanning Figure 1(b) shows the probability that a real node is
rate varies according to a parametet {0,1,...,5}. Each correctly identified as a real node, as a function of the
value ofr represents a different scanning rate, wite- 0  response time of the decoy nodes. The optimal detection
a slow scanning rate in order to avoid intrusion detectiostrategy of Proposition 1 consistently provides a proligbil
systems and =5 representing a rapid scanning rate.rAt  of correctness close to 1, at the cost of increased time to
0, the adversary waits for 300 seconds (5 minutes) betwegnery each node. Imposing a timeout of 500ms, on the
scanning nodes, greatly increasing the time to identify thether hand, results in a low correctness probability when th
real node. Whenr = 1, the adversary waits 15 seconds irresponse times of the real and decoy nodes are similar. The
between scans, while= 2 represents a waiting time of4d detection probability of this strategy converges to 1 beeau
seconds between scans. When- 3, there is no waiting when the average response time of the decoy is longer than



that of a real node, most responses that exceed the 500detection probability and expected time of detection fa th
limit will be from decoy nodes. case where the response times are exponentially distdbute
The ability of the adversary to scan the entire virtual We then developed a design framework in which the hy-
network and identify the real node is examined in Figur@ervisor, which controls the virtual network, receivestts
1(c). Each curve represents a different value of the pammefrom the decoy nodes, including which decoy nodes have
r, which determines the delay between scans and the tirbeen scanned by the adversary. We formulated the decision
allocated to each node. When=0 andr = 1, the adversary of when to randomize as an optimal stopping problem and
introduces delays between scans to avoid detection, isicrederived the optimal policy for the hypervisor. We then
ing the time required between IP randomizations. In thesenalyzed probability of identifying the real node before
cases, the hypervisor waits until all connections to thélval randomization, the expected number of lost connectiorss, an
node have terminated (condition 1 of Theorem 1) beforthe expected time between randomizations as a function of
randomizing the address space. Aincreases, the rate of the network parameters. Our results were further illustrat
scanning and hence the probability of identifying the redhrough simulation study, which was based on the NMAP
node at each timeincreases. Whene {4,5}, the hypervisor network scanning tool.
must randomize frequently in order to prevent the adversary In future work, we will extend our framework to consider
from finding the real node. design parameters other than the time of IP randomization,
The effect of randomization on the system performanceuch as the number of decoys and the CPU and memory
is shown in Figure 1(d). When = 0,1,2, the adversary’s resources allocated to each decoy. We will also explorerothe
scanning rate is sufficiently low that the hypervisor canmff decoy detection methods for the adversary, such as detectio
to wait until there are zero connections before randomifased on protocol implementations, using our framework.
ing. For the cases = 3,4,5 shown, the hypervisor must
randomize before all connections are concluded (condition

2 of Theorem 1) thus disrupting the performance of valid[l] J. Rowe, K. Levitt, T. Demir, and R. Erbacher, “Artificialiversity
’ as maneuvers in a control-theoretic moving target deférideying
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