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Abstract—Sophisticated adversaries usually initiate their at-
tacks with a reconnaissance phase to discover exploitable vul-
nerabilities on the targeted networks and systems. To mitigate
the effectiveness of persistent reconnaissance attacks, we de-
velop a defensive mechanism that dynamically mutates network
topology with a large number of decoys to invalidate the
attacker’s knowledge from network scanning. We combine the
IP randomization technique with decoy techniques and solve two
challenges, namely, service availability to legitimate users and
service security against unauthorized users. First, our solution
can minimize the probability of the real servers being identified
and compromised by unauthorized users through deploying a
large number of decoy nodes, which change their IP addresses
along with the real servers to prolong the scanning time of the
attackers. Second, our solution can ensure seamless connection
migration so that all existing communication connections between
the legitimate users and the servers are always kept alive even
after the servers migrate to different IP addresses multiple
times. We implement a virtual machine based system prototype
and evaluate it using state-of-the-art scanning techniques. Both
theoretical analysis and experimental results show that our
solution can effectively mitigate network reconnaissance attacks
without sacrificing service availability.

I. INTRODUCTION

In advanced persistent threat (APT), well-resourced and
trained adversaries typically initiate the attacks with thor-
ough reconnaissance to gather intelligence about the targeted
networks and systems. Once a vulnerability is identified,
the adversary can proceed to mount customized exploits to
compromise the system. This attacking strategy has been
working well due to the static nature of the current network
configurations.

In recent years, researchers have proposed to mitigate
reconnaissance attacks by dynamically shifting the network
attack surface [1] including IP and MAC addresses, open ports,
and network topology [2], [3], [4]. In general, by proactively
changing the host IP addresses and the network topology,
the entire network can be made unpredictable so that the
vulnerabilities discovered by an attacker in an early stage
become obsolete and useless. However, all those IP random-
ization based solutions face two challenges. First, though the
size of available IP address pool is large, due to the small
number of alive IP addresses at one time, the attackers may
still complete scanning the entire targeted network quickly and
compromise the targeted system before the next round of IP
randomization. For instance, ZMap is capable of surveying
the entire IPv4 address space within 45 minutes from a

single machine [5]. Second, when the servers change their
IP addresses, existing active connections may be disrupted,
since high-layer protocols such as TCP or UDP depend on
a stationary IP address [6]. Therefore, it is a challenge to
seamlessly migrate all existing network connections to the new
IP addresses with a minimal migration time.

In this paper, we develop a decoy-enhanced seamless
network address randomization mechanism called DESIR to
defeat network reconnaissance attacks and ensure service
availability. First, we fortify the IP randomization technique
with a large number of decoys to protect the servers against
reconnaissance attacks. Besides the real servers, we deploy a
number of decoy nodes [7] that will change their IP addresses
along with the real servers. Decoys have been widely used
to distract attacker’s attention from the real system; however,
APT attacks may eventually identify the decoy nodes based
on their response time and fingerprint analysis after interacting
with the decoys [8], [9]. In our solution, in addition to
deploying a large number of decoys, we randomly shuffle
the IP address space of the target network including both the
real servers and the decoys. Therefore, though the attacker
may create a blacklist of decoy IP addresses through recon-
naissance, this blacklist becomes invalid after the next round
of IP randomization, and the attacker has to start over the
reconnaissance process. In other words, we combine both IP
randomization technique and decoy technique to effectively
defeat persistent reconnaissance attacks, though neither of
them can achieve this goal by itself only.

Second, we develop a seamless network connection migra-
tion mechanism to keep alive the existing connections between
legitimate users and the servers even after the servers change
their IP addresses multiple times. The basic idea is to separate
the connection’s transport identification from its network iden-
tification so that the dynamic changes of network addresses are
transparent to the transport layer and the application layer. We
introduce a pair of internal addresses to identify the transport
endpoints and another pair of external addresses to identify
the network endpoints. The internal address remains consistent
during the life of the connect session and the external address
is changed as the server migrates. Moreover, we guarantee
that the legitimate users can always locate the servers and
initiate service requests by using a trusted authentication
server. Whenever a server changes its IP address, it will notify
the updated IP address to the authentication server. When a



client wants to connect to the real server, it first authenticates
itself to the authentication server, which then sends the server’s
current IP address to the client.

We evaluate the effectiveness of our decoy-enhanced IP
randomization mechanism through both theoretical analysis
and real prototype implementation. Our theoretical analysis
shows that decoy-enhanced IP randomization can effectively
prolong the attacker’s scanning time. Suppose one real server
is protected by n IP addresses, where n− 1 IP addresses are
occupied by decoy nodes. When the attacker is not aware
of our defense mechanism, it may only scan the entire IP
address space once either sequentially or randomly. In this
scenario, our IP randomization technique can increase the
average number of probes from 0.5n to 0.63n. When the
attacker knows that the real system is protected by our defense
system, it may scan the entire IP address space multiple times,
and it will increase the average number of probes from 0.5 to
n. More importantly, the attacker has to spend tremendously
more time to distinguish the decoys from the real system, and
there is high probability that the attacker will be trapped into
one decoy instead of the real server.

We implement a virtual machine (VM)-based prototype
that integrates decoy-enhanced IP address randomization with
seamless connection migration. The experimental results show
that the overheads for both decoy deployment and IP ran-
domization are reasonably low and can defeat the practical
scanning attacks using tools such as Nmap [10] or ZMap [5].

In summary, we make the following contributions:
• We propose a decoy-enhanced seamless network address

randomization framework for constructing dynamically
mutable networks to thwart persistent reconnaissance
attacks against targeted servers.

• Our solution supports seamless connection migration with
network address randomization. It has good scalability to
seamlessly migrate a large number of network connec-
tions after the servers change their IP addresses multiple
times.

• We implement a VM-based prototype. The experimental
results show that the system overhead is small and our
system can effectively defeat persistent reconnaissance
attacks.

II. THREAT MODEL AND ASSUMPTIONS

An adversary may undertake various scanning strategies
with abundant resources. When the adversary believes that the
IP address space layout is fixed, it may scan the IP address
space of the targeted network either linearly or randomly and
probe each IP address only once. After the first round of quick
probing, the adversary may collect further information and
exploit vulnerabilities against those alive IP addresses. Alter-
natively, when the adversary realizes that IP randomization
mechanism has been deployed to protect the real servers, it
may randomly probe an IP address and immediately exploit
potential vulnerabilities against it if it believes the IP address
belongs to an alive server. Note in this scenario the adversary
may probe the same IP address more than one time.

This paper focuses on defeating persistent reconnaissance
attacks, so we do not consider insiders that deliberately
disclose the current server IP address to attackers. Also,
we assume the adversaries are not in the same subnet with
legitimate users, so that they cannot obtain the server IP
addresses through packet eavesdropping. We assume secret
keys are shared between the legitimate users and the servers.
We assume the protected network consists of a large number
of IP addresses to accommodate decoy nodes. This can be
satisfied in private IPv4 networks and IPv6 networks. The
main purpose of deploying decoys is to prolong the attacker’s
scanning time, and we have no interests on attracting and
profiling attacks. The adversary may compromise a decoy node
and misuse it to attack the real servers or the other decoy
nodes.

III. SYSTEM ARCHITECTURE

Figure 1 shows the system architecture of DESIR, which
is composed of four major components, namely, an authen-
tication server, a protected server pool, a decoy bed, and
a randomization controller. The authentication server grants
service access to the client after successfully authenticating the
client’s credentials. The server pool contains all the servers that
need to be protected. The decoy bed controls a large number
of decoys. A centralized randomization controller is responsi-
ble for controlling the entire network address randomization
process among both the real servers and the decoys.
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Fig. 1: System Architecture

A. Authentication Server

The authentication server consists of an authentication
module and an address update module. As shown in Figure 1,
the client needs to first provide its security credential to the
authentication server before accessing the server. The authen-
tication module verifies the client’s identity after checking
the credential database. Once the client is authenticated, the
authentication server sends the server’s current IP address to



the client. Otherwise, the access request is denied. Next, the
client proceeds to connect to the server using the obtained
server IP address. Whenever the server migrates to a new IP
address due to network address randomization, it immediately
informs the authentication server, whose address update mod-
ule will update the server address database that stores all the
real servers’ most updated IP addresses.

B. Randomization Controller

The randomization controller is responsible for coordinating
the dynamic mutation of the target network, such as deter-
mining the size of the server farm, assigning IP addresses to
the server farm, and setting the frequency of shuffling the IP
address space, etc. It consists of three modules: a decision
engine, a configuration generator, and a migration console.
The decision engine determines the frequency to randomize
the network addresses and chooses the algorithm for generat-
ing new network configurations. The configuration generator
focuses on generating the new network configurations for both
the real servers and the decoys. It has two main functions.
First, it controls the overall topology of the network, such
as the deployment of virtual routers and switches. Second, it
guarantees that there is no interference in the IP address as-
signment. The migration console is responsible for distributing
the new configurations to the servers and the decoy subsystem.
After receiving the new configurations, the real servers update
their network addresses and notify the connecting clients about
the network migration.

C. Decoy Bed

The decoy bed generates a number of decoy servers, which
share the same IP address space with the protected real servers.
It contains a communication module and a decoy genera-
tor. The communication module receives new configuration
settings from the randomization controller, which determines
the overall architecture of the decoy network, including the
decoys’ IP addresses and MAC addresses as well as the
installed or emulated operating systems and applications.
According to the new configuration, the decoy generator
regenerates the decoy network. Our system is flexible to deploy
both high-interaction and low-interaction honeypots as decoys
depending on the system’s resources and the configurations
sent from the controller. Originally, honeypots are deployed
to attract attackers and learn their attacking strategies; while
the honeypots in our system are used mainly to confuse the
attackers and prolong their scanning time.

D. Protected Server

The real server includes one migration module that com-
municates with the counterparts on the authenticated users
to achieve a seamless connection migration when the server
moves to a new IP address. To minimize service disruption
caused by network address randomization, we develop a
seamless connection migration mechanism that leverages the
virtual network address translation concept [11] to maintain all
existing connections alive after the server migrates to different

addresses multiple times. Therefore, the normal users do not
need to re-initiate new service requests as the IP randomization
is performed.

Since transport layer protocols depend on stationary IP
address and port number, an end-to-end transport socket con-
nection will be broken if one or both connection endpoints
change their network addresses. Accordingly, we separate
the transport identification of a connection from its network
identification to enable transparent connection mobility. We
introduce a pair of internal addresses to identify the transport
endpoints and another pair of external physical addresses to
identify the network endpoints. The internal address is set to
be the address when the connection is initially established
and remains consistent during the life of the connection. The
external address can change as the server migrates. By separat-
ing the transport endpoint identity from the network endpoint
identity, the transport layer protocols get the illusion that
the network endpoints never move. Our seamless migration
scheme consists of three major components:

• connection interception: It creates an initial internal-
external address mapping and replaces the external phys-
ical address provided by the application with the internal
address. As a result, the transport protocol stacks on
both the client and the server perceive a connection
identified by the internal addresses. Since the identity
of the transport endpoint is detached from the network
endpoint, the movement of the physical host is transparent
to the transport layer or higher layer protocols.

• connection translation: A connection is only ready to
be migrated after being intercepted. However, the actual
traffic is routed through the network using the external
address. To allow network packets flowing through in-
ternal connections, the connection translation component
intercepts packets in the network layer and translates the
internal addresses in the packet headers to or from the
external addresses for outgoing packets and incoming
packets, respectively.

• connection migration: It coordinates the moving of an
endpoint associated with active connections to another
place. The process involves first suspending an active
connection at one location and later resuming it at an-
other. To suspend a connection, the migration module
on the moving endpoint saves the current state including
the internal-external address mapping and notifies the
endpoint on the other endpoint about this event. When
a connection is resumed, the migration module updates
its address mapping and notifies the other endpoint the
new external address. Meanwhile, the migration module
inserts appropriate translation rules into the network
stack.

IV. IMPLEMENTATION

We implement a DESIR prototype using virtual machines
on one host computer. Figure 2 shows the detailed imple-
mentation architecture. The entire system is integrated on a
single host machine running Ubuntu 14.04 with support for



Kernel-based Virtual Machine (KVM) enabled. The computer
features eight core Intel(R) Core(TM) i7-4712HQ CPU and
16 GB memory. Five virtual machines are created on top of
the KVM hypervisor, serving as decoy bed, a real server, an
authentication server, a client, and an attacker, respectively.
Each VM is allocated one host CPU and 2 GB memory. The
decoy bed VM is running Ubuntu 12.04; while the other VMs
are installed Fedora 15 with Linux kernel version 2.6.38.
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Fig. 2: Prototype Implementation

A. Authentication Server

The authentication server maintains a credential database
for all legitimate users and a server address database. In
our prototype, the authentication module uses password-based
authentication and sends its decision back to the client in an
encrypted message. The server address database is updated
by a daemon named AS-Updated without any manual inter-
vention. AS-Updated listens on a randomly generated port for
address update messages from a daemon named svmmd on
the migrating server. Once receiving the message, AS-updated
randomly generates a new port number and notify it to svmmd.
Then it starts to listen on the newly generated port for future
updates. All the exchanged messages are encrypted using a
shared secure key.

B. Three-layered Decoy Bed

We implement a specially designed decoy bed that can in-
tegrate a large number of low-interaction and high-interaction
honeypots on a single host. Specifically, three levels of decoys
are incorporated into the decoy bed: virtual machine level,
operating system level and process level. The VM-level decoys
are virtual machines with fully functional operating systems
and applications. The OS-level decoys run in Linux Containers
(LXC) [12]. Each container in the same VM shares the same
OS kernel but has its own user level space. We employ OS
container for the following reasons. First, it is lightweight,
resource-friendly, and thus highly scalable. Multiple OS in-
stances or applications can run simultaneously on a single

host without incurring excessive CPU and memory overhead.
Second, it supports resource and security isolation. A compro-
mised container does not affect the remaining containers. In
the prototype, we use containers to hold both high-interaction
honeypots and low-interaction honeypots (e.g., honeyd [13])
that run as a process in the container.

Honeybed VM serves as the base layer on which virtual
decoys are deployed. We use Honeyd for setting up and
emulating virtual hosts. However, we do not deploy Hon-
eyd directly on Honeybed. Instead we create multiple Linux
containers (LXC) in Honeybed and deploy Honeyd in the
containers. By default, a bridge lxcbr0 is created after
booting up the host. A dnsmasq instance is run listening
on lxcbr0 and provides DNS and DHCP services to the
containers. Since we want to have a full control of the entire
network configuration, we do not use lxcbr0 and dnsmasq.
Instead we create a network bridge br0 and attach it to
the eth0 interface of Honeybed. Furthermore, we change
the IP address assignment scheme of the Honeyd container
to be static by modifying the LXC configuration file. The
configuration of Honeyd in each Linux container is managed
by a centralized randomization controller on the KVM host.

C. Seamless Connection Migration

We discuss how a transport connection can be seamlessly
migrated and elaborate on the implementation details of the
three key components.

1) Connection Interception: For the stateful TCP-based
protocols, we intercept the system calls for connection setup
from the application layer to the transport layer. Those sys-
tem calls include socket, accept, connect, close,
getsockname and getpeername. The address mapping
together with other states about the internal connection are
saved for suspending and resuming the connection later.
When the connection is closed, its associated address map-
ping states are cleaned up. We intercept those system calls
at INET sock layer instead of BSD socket layer to avoid
dealing with userspace objects such as socket descriptors,
which requires routines that are not exported by the Linux
kernel. We replace the corresponding kernel functions with
our customized versions, which can make the movement of
network endpoints imperceptible to the transport protocols by
separating the transport identification of a connection from its
network identification.

To migrate UDP-based connections, we intercept
getsockname and getpeername system calls to
hide the changes of the external physical addresses from
the applications. However, this solely cannot support the
migration of servers providing UDP-based services. Due
to the lack of the connection establishment process, the
initial internal-external address mapping cannot be created.
So it is impossible to insert Netfilter translation rules and
maintains the “connections” alive. Since most UDP-based
applications involve extensive data exchange, besides the
command channel, we can intercept potential separate data
channels to retrieve necessary information for constructing



the address mapping. Specifically, we intercept the related
socket system calls including send/sendto/sendmsg
and recv/recvfrom/recvmsg by instrumenting the
underlying INET sock layer functions inet_sendmsg and
inet_recvmsg. By examining the binding sockets and
the sending/receiving message headers, we can identify the
addresses of both the local host and the remote peer and then
create the initial address mapping. For UDP sockets binding
to INADDR_ANY, we perform route lookup to find the packet
source address based on the destination address.

2) Connection Translation: Netfilter enables packet fil-
tering, network address translation (NAT) and other packet
mangling. The most popular implementation of Netfilter in
Linux is iptables, which matches each packet against a chain
of rules, each consisting of a matching criteria and a target
that specifies what to do with the packet once it matches the
criteria. iptables organizes rules into four tables: the nat table,
the mangle table, the filter table, and the raw table.

The actual traffic is routed through the intermediate network
using the external physical address of the migrating endpoint.
To ensure smooth packet flow, the internal connection needs
to be translated to and from the external connection for
outgoing and incoming traffic, respectively. We use the nat
table for network address translation. For outgoing packets,
we perform destination address translation (DNAT) on the
OUTPUT chain and source address translation (SNAT) on
the POSTROUTING chain. For incoming packets, we perform
DNAT on the PREROUTING chain and SNAT on the INPUT
chain. We also use the mangle table to block any connection
attempt to the server’s internal address. As a result, the server
cannot be accessed through its old addresses after migrating
to a new address. When the connection is being resumed after
the migration, we instrument the server side PREROUTING
chain to discard all packets destined to the old server address
simply by adding a rule on the PREROUTING chain with the
DROP target. Since the mangle table rules are applied ahead
of the nat table rules, the address translation is not affected
so that the migrated connection can still be maintained.

3) Connection Migration: Two daemon threads running in
the kernel space of both endpoints negotiate with each other
about the migration based on a set of predefined control
protocol. The communication ports are synchronously random-
ized between the daemons. To avoid information leakage, the
protocol messages exchanged between the two daemons are
encrypted using a shared secret key. The migration involves
suspending the connection at one location and resuming it later
at another one. To suspend a connection, the daemon within
the migrating endpoint needs to clean up the internal-external
address mapping and destroy the virtual interface. To resume a
connection, the daemons need to update the address mappings
and recreate a new virtual interface on the moving endpoint.

In case that multiple clients connect to a server at different
times, we create a virtual network interface on the server
side for each connection. Each virtual interface’s IP address
is set to be the server IP when the connection is initially
established and is kept consistent as the server migrates.

Since the granularity of creating the virtual interface is per
connection, if two applications initiate a connection separately
when the server is at different locations, these two connections
will be associated with different virtual interfaces. Therefore,
we can ensure that multiple connections created by different
applications at different times can be kept alive after a number
rounds of migrations.

4) Removing Migration Residues: Besides IP address and
port number, adversaries may perform a correlation between
two hosts using other network layer information such as
MAC address or application layer information such as SSL
certificates. Thus, we should be careful to remove all the
potential migration residues that may be exploited by the
adversaries. For instance, in addition to the IP address, it is
not difficult to update the MAC address that has been loaded
from NIC device to RAM memory.

When an attacker uses Nmap to scan two IP addresses
used by the same host, it can discover that an SSL certificate
remains the same before and after the address change, so it
can use this correlation information to defeat the IP address
randomization. It happens because sshd does not automatically
change its key pairs when the server moves to a new IP
address. We solve this problem by refreshing the sshd key pairs
without breaking the existing connections. After regenerating
new rsa1, rsa and dsa keys using “ssh-keygen” command and
restarting sshd service, a set of different keys will be set for
the new IP address, and the existing ssh connections won’t be
impacted.

D. Randomization Controller

The controller is implemented on the hypervisor. The
decision engine proactively shuffles the IP address space,
and the configuration generator generates the new Honeyd
configurations according to the shuffled address space. Then,
the migration console distributes the new addresses and con-
figurations to the protected servers and the decoy bed. In
our implementation, the messages sent by the controller are
encrypted using a shared secret key between the controller and
the server/decoy bed.

A daemon named HoneyConfigd is created in each Linux
container running Honeyd. HoneyConfigd listens on a ran-
domly generated port for the new Honeyd configuration sent
from the migration console. Upon receiving the new config-
uration file, HoneyConfigd invokes a script to terminate the
existing Honeyd process and restart a new one with the new
configuration. A daemon named svmmd is created on each
server. Svmmd listens on a randomly generated port for the
server’s new IP address from the randomization controller’s
migration console. Once svmmd receives the new address,
it informs the authentication server using the AS-Updated
daemon and invokes the migration module to migrate the
server.

V. SECURITY ANALYSIS

We first perform a theoretic analysis on the effectiveness
of our decoy-enhanced IP randomization against persistent



reconnaissance attacks, and then we discuss the potential
attacks towards our system and the countermeasures.

We analyze the expected number of probes for adversaries
to identify the real server with and without the knowledge of
the deployment of our defense system, respectively. For both
cases, we suppose the IP address space is n and there is only
one real server.

Scanning without knowing IP Randomization defense.
After scanning an IP address in static networks, the adversary
typically won’t scan it again. Therefore, it can be considered
as a sampling without replacement problem [14]. When the
IP address space is static, the probability to identify the real
server after m probes is

n− 1

n
· n− 2

n− 1
· · · n− (m− 1)

n−m︸ ︷︷ ︸
Pr[firstm−1 probes fail]

· 1

n− (m− 1)
=

1

n

where m ≤ n. Therefore, the expected number of probes
required is

n∑
m=1

m · 1
n
=

1

n
·

n∑
m=1

m =
n+ 1

2

Now Let us see the impacts of IP randomization on the
adversary’s success probability. In this case we assume the
adversary is not aware of the deployment of our defense
mechanism. The best we can do is to randomize the IP address
space after each probe of one IP address, so we can maximize
the probability that adversary fails each single probe equals
to n−1

n . In this case, the probability that the target server is
identified after exactly m probes is

(
n− 1

n
)m−1 · 1

n

Therefore, the expected number of probes is
n∑

m=1

m · (n− 1

n
)m−1 · 1

n
+ n · (n− 1

n
)n

which approaches (1 − 1
e )n ≈ 0.63n even for a small IP

address space of 64. We see that IP randomization can at most
prolong 26% more scanning time than a static setting.

Scanning with the knowledge of IP Randomization
defense. Since the adversary knows that the real server may
be protected by IP randomization technique, it may randomly
probes an IP address from the IP address pool. It can be
considered as a sampling with replacement problem [14]. In
other words, a single IP address may be scanned twice for
one round of random scanning. In this case, the number of
probes performed by the the adversary is a geometric random
variable with probability p = 1/n. Therefore, the expected
number of probes is 1/p = n. Similar result has been presented
in [15] when analyzing the effectiveness of address space
layout randomization (ASLR) against buffer overflow attacks.

In summary, IP randomization can reduce the effectiveness
of scanning attacks and forces the attacker to spend 26% more
efforts when it is not aware of the IP randomization protection

and 100% more efforts when it knows the deployment of
IP randomization protection. The explanation of this counter-
intuitive results is that the adversary only scans each IP address
at most once for a static network and may scan some IP
addresses twice or each more times for a dynamic network.
On the other side, to make the IP randomization scheme useful
against reconnaissance attacks, we should have a large IP
address space available to protect the real server. We can also
randomize the m port numbers on n IP addresses and thus
increase the scanning space from n to m ∗ n. Note this is
only the expected number of probes to be able to scan the
real server. Since we have deployed a number of decoys, the
attacker has to spend more time to distinguish a decoy from
the real server, and this time delay depends on the fidelity of
the decoys simulating the real servers. In other words, high-
interaction decoys may trap the attacker for a long time, but
it may demand more system resources.

Our framework contains several communication channels
for client authentication and migration control. The external
adversaries cannot obtain the server IP addresses through
eavesdropping attacks, since all exchanged messages are pro-
tected with a secret key shared by two endpoints. Our current
system cannot prevent an attacker locating in the same network
as a normal client from eavesdropping the messages between
the client and servers and steal the server’s most updated IP
addresses. One potential solution is to add a layer of proxy
nodes between the client and the server, so that the attacker
can only know the IP address of the proxy node, whose IP
address may also be changed periodically. We consider this
extension as a future work.

VI. PERFORMANCE EVALUATION

We measure the performance overhead incurred by network
address migration and its breakdown for both TCP and UDP
based connections, and they are shown in Table I. We separate
the applications by if they support constant data transfer.
For applications such as udpchat and ssh, they provide live
sessions to execute commands remotely, and they don’t need to
support constant data transfer. In contrast, ftps is an extension
to the traditional ftp file transfer service with support for
Transport Layer Security (TLS) and Secure Socket Layer
(SSL). sftp is a secure file transfer service based on Secure
Shell protocol (SSH) version 2.0. Both services are TCP-
based. Alternatively, tftp is a simple, lock-step, file transfer
service based on UDP.

TABLE I: Microbenchmarks

Application Name Protocol Const. data transfer
Secure Shell ssh TCP No

FTP over SSL ftps TCP Yes
Secure File Transfer sftp TCP Yes

UDP-based chat udpchat UDP No
Trivial File Transfer tftp UDP Yes



A. System Overhead

We use sftp, ftps and tftp to transfer a 1 GB file and measure
the extra transfer delay when migrating the connections with
different migration frequency. Figure 3 shows the relative
performance with respect to the number of migrations.

The performance degradation increases linearly as the num-
ber of migrations increases. For sftp and ftps, migration incurs
1% to 9% overhead. For tftp, the overhead is much larger
ranging from 5% to 15%. This is due to the difference in
implementation for UDP-based applications. To construct the
internal-external address mapping for connection migration,
the UDP message sending and receiving process is intercepted.
For TCP-based file transfers, the mapping is only created
during the connection setup process, and the data traffic is
not intercepted.
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Fig. 3: Delay overhead of various migration frequency

Table II shows a breakdown of the time overhead for each
migration, which involves suspending and then resuming a
connection. Connection suspension includes cleaning up the
internal-external address mapping and destroying the virtual
interface. To resume a connection, we need to update the
mapping and recreate a new virtual interface. As we can
see, the average connection restoration time is 30 ms for
almost all tested applications except ftp. For ftp, the connection
restoration time is 57 ms. This is mainly because an ftp session
maintains both a control connection and a data connection.
Virtual interface-related operations and the transfer control
messages incur 12% and 18% overhead, respectively. The local
processing related to updating and cleaning up the address
mapping incurs 70% of the overhead. Because it requires
invoking the userspace iptables program from the kernel space,
which involves two expensive context switches.

We use Netperf [16] to measure our system’s impacts
on network latency and throughput and compare the perfor-
mance under three different system configurations: Vanilla,
Vanilla+Virt and Migration. Vanilla represents a stock Linux
with Netfilter firewall rules loaded on boot. Vanilla+Virt
represents the system with both Netfilter and migration module
loaded, where the connections are not migrated but the socket
system calls are intercepted. Migration represents the system
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Fig. 5: Latency overhead

with both Netfilter and migration module loaded and all
connections are migrated.

We run the Netperf client on one client VM and the Netperf
server on the server VM. The throughput experiment uses
the bulk data transfer mode TCP STREAM and measures the
achieved throughput when sending data as fast as possible
from the server to the client. The latency experiment uses the
request/response mode TCP RR and measures the transaction
rate in unit time. The message sizes range from 8 bytes to
1024 bytes and each measurement takes 60 seconds. Figure 4
and Figure 5 show the network throughput and latency for
the three system configurations. Compared to the Vanilla
system, there is almost no performance overhead for the
Vanilla+Virt system; while the Migration system incurs 2%
to 7% overhead for a single migration. Therefore, we can
see that the socket system call interception incurs negligible
performance overhead and the majority of the overhead is
caused by the connection translation process.



TABLE II: Migration time breakdown

Application Connection suspension (ms) Connection restoration (ms)
Delete mapping Destroy vif Message communication Update mapping Recreate vif Message communication

ssh 4.64 1.99 1.93 20.74 3.46 4.58
sftp 4.87 2.26 2.15 20.96 3.52 4.82
ftps 10.55 4.59 4.72 40.05 7.23 9.28

udpchat 3.91 2.28 1.82 19.65 3.39 3.86
tftp 4.38 1.59 2.02 20.91 3.66 4.07

B. System Scalability

We also study the scalability of DESIR when maintaining
and migrating a large number of TCP connections simulta-
neously. Table III shows the connection handling time and
the memory consumption. The average connection restoration
time is 35 ms and remains constant. The memory overhead
includes two parts: the virtual interface and the internal-
external address mapping, both of which are proportional
to the number of migrated connections. Furthermore, virtual
interface accounts for over 90% of the memory consumption,
each incurring 1.06 KB. As we can see, the memory con-
sumption is acceptable (i.e. 5.2 MB) even when migrating
5000 connections.

C. Migration Frequency

We perform study on the maximal migration frequency for
applications listed in Table I. For a connection with no constant
data transfer, the highest migration frequency we can achieve
is 30 ms per round. When there is ongoing data transfer, we
can migrate 2 s per round. Because, to migrate a connection,
we need to suspend the process owning the connection and
reset the network interface IP which will temporarily suspend
the transfer. The kernel network stack also needs a warm-up
time before resuming the original data transfer. Moreover, the
applications may perceive that the data transfer gets stalled
too long time and reset the connection if we migrate too fast.

Our address randomization can be finished in 2 s, which is
short enough to defeat most scanning attacks. For a class C
network consisting of a real host and 253 Honeyd decoys, we
use Nmap [10] to scan the network with the insane timing
template, which by default is the fastest provided by Nmap.
In this setting, Nmap waits 5 ms between scans and stops
querying a node when the response time exceeds 250 ms.
When performing ping sweep and port scan only, it takes on
average 4.5 s to scan a host. If the service version detection
and OS version detection are turned on, the average scanning
time per host is 10.1 s. We also use ZMap [5] to perform
a TCP SYN scan of the network. When scanning the lowest
1024 ports as Nmap does, Zmap can finish in 0.5 s. However, it
only checks the aliveness of raw IP addresses without probing
other information such as service version and OS version
which is essential for the attacker to identify vulnerabilities.

VII. RELATED WORK

Network address randomization aims at creating dynamic
networks that change network properties including network

protocols and addresses. Network address space randomization
(NASR) implements IP address hopping based on DHCP
updates to defend against hitlist worms [17]. DyNAT [18],
[19] offers a protocol obfuscation approach that randomizes
parts of network packet headers to mitigate scanning attacks.
DynaBone [20] and Revere [21] introduce dynamic routing
by creating a resilient overlay network on top of the Internet
or multiple inner virtual overlay networks inside of a larger
outer virtual overlay network, respectively. Corbett et al. intro-
duces diversity in network protocol stack to counter jamming
attacks [22]. Recently, software-defined networking (SDN)
is being adopted to introduce dynamics into the network.
Jafarian et al. use an OpenFlow random host mutation to
protect a network from scanning attacks [4]. However, such
NASR related techniques cause service disruption to active
connections and thus hinder service availability to legitimate
users.

A honeypot [23] can be viewed as a network decoy that is
usually confined in a managed environment. Honeypots can be
classified into two categories by their level of interaction with
the adversaries: low-interaction and high-interaction. Low-
interaction honeypots only emulate portions of a real host and
offer minimal interaction with the attacker (e.g., honeyd [13],
HoneyBOT [24], Dionaea [25]). High-interaction honeypots
deploy real operating systems and applications with which the
attacker interacts extensively (e.g., Honeynet [26], Sebek [27],
Argos [28]). The recent deployment of honeypot framework
mostly takes a hybrid approach involving both low-interaction
and high-interaction honeypots [29], [30]. All these honeypot
deployments aim to attract the attackers so as to learn about
their attacking strategies; while we mainly use honeypots to
entrap the attackers and prolong their scanning time.

Live VM migration refers to the process of migrating a
running virtual machine (VM) or application from a physical
machine to another without disconnecting the client. Many
state-of-the-art VM managers have included support for live
virtual machine migration, including Xen [31], VMware ESX
[32] and KVM [33]. Typically they use a pre-copy approach to
iteratively copy memory pages from source host to destination
host. Moreover, network state transfer requires the source and
destination hosts to be in the same subnet and the migration
should be fast to prevent network connection timeout. In
contrast, our migration does not require transmitting the disk
and memory states. The source host and the destination host
can also lie in different subnets. Furthermore, our solution
allows much longer connection timeout during migration.



TABLE III: Connection migration overhead

Total number of
connections

Total suspension
time (s)

Suspension time
per connection (ms)

Total restoration
time (s)

Restoration time
per connection(ms)

Memory consumption (KB)
Virtual interface Address mapping

10 0.14 13.77 0.35 35.31 10.63 0.86
50 0.69 13.81 1.83 36.65 53.13 4.30

100 1.45 14.51 3.74 37.43 106.25 8.59
500 7.33 14.67 17.37 34.74 531.25 42.97
5000 73.5 14.7 174.1 34.82 5315 429.8

VIII. CONCLUSION

We propose a defense framework for constructing a dynam-
ically mutable network with a number of decoys to protect the
real servers against scanning attacks. Our solution can ensure
seamless connection migration with IP address randomization.
Moreover, with the deployment of a decoy bed, we can guar-
antee both service availability and service security of the real
servers. We implement a VM-based prototype, which shows
that our system has good scalability and flexibility, where
the protected servers can be migrated with high frequency
and multiple connections can be migrated simultaneously with
acceptable network and system performance overhead.
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