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Abstract. Networks of decoy nodes protect cyber systems by distract-
ing and misleading adversaries. Decoy defenses can be further enhanced
by randomizing the space of node IP addresses, thus preventing an ad-
versary from identifying and blacklisting decoy nodes over time. The
decoy-based defense results in a time-varying interaction between the
adversary, who attempts to identify and target real nodes, and the sys-
tem, which deploys decoys and randomizes the address space in order to
protect the identity of the real node. In this paper, we present a game-
theoretic framework for modeling the strategic interaction between an
external adversary and a network of decoy nodes. Our framework con-
sists of two components. First, we model and study the interaction be-
tween the adversary and a single decoy node. We analyze the case where
the adversary attempts to identify decoy nodes by examining the timing
of node responses, as well as the case where the adversary identifies de-
coys via differences in protocol implementations between decoy and real
nodes. Second, we formulate games with an adversary who attempts to
find a real node in a network consisting of real and decoy nodes, where
the time to detect whether a node is real or a decoy is derived from the
equilibria of the games in first component. We derive the optimal policy
of the system to randomize the IP address space in order to avoid detec-
tion of the real node, and prove that there is a unique threshold-based
Stackelberg equilibrium for the game. Through simulation study, we find
that the game between a single decoy and an adversary mounting timing-
based attacks has a pure-strategy Nash equilibrium, while identification
of decoy nodes via protocol implementation admits only mixed-strategy
equilibria.

1 Introduction

Cyber systems are increasingly targeted by sophisticated attacks, which monitor
the system over a period of time, identify vulnerabilities, and mount efficient and
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effective attacks that are tailored to those vulnerabilities. An emerging approach
to thwarting such attacks is through a moving target defense, which proactively
varies the system protocol, operating system, and software configurations over
time, thus rendering vulnerabilities observed by the adversary obsolete before
the attack takes place.

One class of moving target defense consists of networks of virtual nodes,
which are created and managed by the system and include both real nodes that
implement services such as web servers and databases, as well as decoy nodes
whose only purpose is to mislead the adversary [18]. If the real and decoy nodes
have valid IP addresses that are visible to an external adversary, then the ad-
versary may mount attacks on decoy nodes instead of the real node, wasting the
resources of the adversary and providing information to the system regarding the
goals and capabilities of the adversary. In order to maximize the probability that
the adversary interacts with a decoy node instead of a real node, the decoy nodes
should outnumber the real nodes in the network. When the number of decoys
is large, however, the amount of memory and CPU time that can be allocated
to each decoy is constrained, thus limiting the performance and functionality of
each decoy.

While limiting the functionality of decoy nodes reduces their memory and
processing cost, it also enables the adversary to detect decoys by observing de-
viations of the timing and content of node responses from their expected values
[16]. Once a decoy node has been detected, its IP address is added to the ad-
versary’s blacklist and the decoy is not contacted again by the adversary. By
querying and blacklisting decoy nodes over a period of time, the adversary can
eventually eliminate all decoys from consideration and mount attacks on the real
node. The time required to blacklist the decoy nodes depends on the amount
of time needed to identify a node as real or a decoy, which is a function of the
resources given to each decoy.

The effectiveness of decoy-based defenses can be further improved by peri-
odically randomizing the IP address space [3]. IP randomization renders any
blacklist obsolete, effectively forcing the adversary to re-scan all network nodes.
This randomization, however, will also terminate higher-layer protocols such
as TCP on the real nodes, which depend on a stable IP address and must be
reestablished at a cost of extra latency to valid users [1]. Randomization of the IP
address space should therefore be performed based on a trade-off between the
performance degradation of valid users and the security benefit of mitigating
attacks.

The security benefit of IP randomization and decoy-based defenses depends
on the behavior of the adversary. The ability of the decoy nodes to mislead the
adversary is determined by the adversary’s strategy for detecting decoy nodes.
Similarly, frequent IP randomization increases the latency of real users and hence
is only warranted when the adversary scans a large number of nodes. Modeling
and design of address randomization in decoy-based defenses should therefore
incorporate the strategic interaction between an intelligent adversary and the
system defense. Currently, however, no such analytical approach exists.
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In this paper, we present a game-theoretic framework for modeling and design
of decoy-based moving target defenses with IP randomization. Our modeling
framework has two components, namely, the interaction between a single virtual
node (real or decoy) and an adversary attempting to determine whether the node
is real or a decoy, as well as the interaction between an adversary and a network
of virtual nodes. These two components are interrelated, since the equilibria of
the interaction games between a single virtual node and an adversary determine
the time required for an adversary to detect a decoy node, and hence the rate
at which an adversary can scan the network and identify real nodes. We make
the following specific contributions:

– We develop game-theoretic models for two mechanisms used by adver-
saries to detect decoy nodes. In the timing-based mechanism, the adver-
sary exploits the increased response times of resource-limited decoy nodes
to detect decoys. In the fingerprinting-based mechanism, the adversary ini-
tiates a communication protocol with a node and, based on the responses,
determines whether the node has fully implemented the protocol, or is a
decoy with a partial implementation of the protocol.

– In the case of timing-based detection of a single decoy, we formulate a
two-player game between an adversary who chooses the number of probe
messages to send and a system that chooses the response time of the
decoy subject to resource constraints. The utility of the system is equal to
the total time spent by the adversary to query the network. We develop
an efficient iterative procedure that converges to a mixed-strategy Nash
equilibrium of the game.

– We present a game-theoretic model of decoy detection via protocol finger-
printing, in which we introduce protocol finite state machines as a mod-
eling methodology for decoy detection. Under our approach, the system
decides which states to implement, while the adversary attempts to drive
the protocol to a state that has not been implemented in order to de-
tect the decoy. We introduce algorithms for computing Nash equilibria of
this interaction, which determine the optimal number of high- and low-
interaction decoy nodes to be deployed.

– At the network level, we formulate a two-player Stackelberg game, in which
the system (leader) chooses an IP address randomization policy, and the
adversary (follower) chooses a rate at which to scan nodes after observing
the randomization policy. We prove that the unique Stackelberg equilib-
rium of the game is achieved when both players follow threshold-based
strategies. For the attacker, the trade-off is between the cost of scanning
and the benefit of identifying and attacking the real node.

– We investigate the performance of the system under our framework through
simulation study. For the timing-based game, we find that a pure strat-
egy Nash equilibrium exists in all considered cases. For the fingerprinting
game, we compute a mixed-strategy equilibrium, implying that at equilib-
rium the system should contain both high-interaction nodes that imple-
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ment the full protocol and low-interaction nodes that only implement a
subset of protocol states.

The paper is organized as follows. We discuss related work in Section 2. The
system and adversary models are presented in Section 3. Our game-theoretic
formulation for the interaction between the adversary and a single decoy node
is given in Section 4. The interaction between an adversary scanning the decoy
network and the system deciding when to randomize is considered in Section 5.
Simulation results are contained in Section 6. Section 7 concludes the paper.

2 Related Work

Moving target defense is currently an active area of research aimed at prevent-
ing adversaries from gathering system information and launching attacks against
specific vulnerabilities [13]. Moving target defense mechanisms in the literature
include software diversity [9] and memory address layout randomization [10].
These approaches are distinct from decoy generation and IP address randomiza-
tion and hence are orthogonal from our line of work.

Decoy networks are typically created using network virtualization packages
such as honeyd [17]. Empirical studies on detection of decoys have focused on
protocol fingerprinting, by identifying differences between the protocols simu-
lated by decoys and the actual protocol specifications, including differences in
IP fragmentation and implementation of TCP [11, 22]. Decoy nodes can also be
detected due to their longer response times, caused by lack of memory, CPU,
and bandwidth resources [16]. The existing studies on decoy networks, however,
have focused on empirical evaluation of specific vulnerabilities of widely-used de-
coy systems, rather than a broader analytical framework for design of dynamic
decoy networks.

IP address space randomization has been proposed as a defense against scan-
ning worms [3, 1]. In [21], a framework for deciding when to randomize the IP
address space in the presence of hitlist worms, based on a given estimate of
whether the system is in a secure or insecure state, was proposed. A decision-
theoretic approach to IP randomization in decoy networks was recently presented
in [8], but this approach was concerned with the optimal system response to a
given adversary strategy rather than the interaction between an intelligent adver-
sary and the system. Furthermore, the work of [8] only considered timing-based
attacks on decoy networks, and did not consider fingerprinting attacks.

Game-theoretic techniques have been used to model and mitigate a variety of
network security threats [2]. A dynamic game-theoretic approach to designing a
moving target defense configuration to maximize the uncertainty of the adversary
was proposed in [26]. The method of [26], however, does not consider the timing of
changes in the attack surface, and hence is complementary to our approach. The
FlipIt game was formulated in [24] to model the timing of host takeover attacks;
the FlipIt game does not, however, consider the presence of decoy resources.

In [6], platform randomization was formulated as a game, in which the goal
of the system is to maximize the time until the platform is compromised by
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choosing a probability distribution over the space of available platforms. A game-
theoretic approach to stochastic routing, in which packets are proactively allo-
cated among multiple paths to minimize predictability, was proposed in [4]. In
[12], game-theoretic methods for spatiotemporal address space randomization
were introduced. While these approaches consider metrics such as time to com-
promise the system that are intuitively similar to our approach, the formulations
are fundamentally different and hence the resulting algorithms are not directly
applicable to our problem. To the best of our knowledge, game-theoretic ap-
proaches for decoy-based moving-target defenses are not present in the existing
literature.

3 Model and Preliminaries

In this section, we present the models of the virtual network and the adversary.

3.1 Virtual Network Model

We consider a network consisting of n virtual nodes, including one real node
and (n− 1) decoy nodes. Let π =

(

1− 1
n

)

denote the fraction of nodes that are
decoys. Decoy and real nodes have valid IP addresses that are chosen at random
from a space of M ≫ n addresses, and hence decoy and real nodes cannot
be distinguished based on the IP address. The assumption M ≫ n ensures
that there is sufficient entropy in the IP address space for randomization to be
effective. Decoy nodes are further classified as either high-interaction decoys,
which implement the full operating system including application-layer services
such as HTTP and FTP servers and SQL databases, and low-interaction decoys,
which implement only partial versions of network and transport layer protocols
such as IP, TCP, UDP, and ICMP [18].

Decoy nodes respond to messages from nodes outside the network. The de-
coy responses are determined by a configuration assigned to each decoy. Each
possible configuration represents a different device (e.g., printer, PC, or server)
and operating system that can be simulated by the decoy. Decoy nodes in the
same network may have different configurations. Due to limited computation
resources assigned to them, decoys will have longer communication delays than
real nodes. The additional delay depends on the system CPU time and mem-
ory allocated to the decoy. Decoy node configurations can be randomized using
software obfuscation techniques [15].

Based on models of service-oriented networks such as web servers, we assume
that real nodes receive connection requests from valid users according to an
M/G/1 queuing model [5]. Under this model, the service time of each incoming
user is identically distributed and independent of both the service times of the
other users and the number of users currently in the queue.

Since valid users have knowledge of the IP address of the real node, connec-
tions to decoy nodes are assumed to originate from errors or adversarial scanning.
Decoy nodes will respond to suspicious, possibly adversarial queries in order to
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distract the adversary and delay the adversary from identifying and targeting
the real node.

The virtual network is managed by a hypervisor, which creates, configures,
and removes decoy nodes [7]. The hypervisor is assumed to be trusted and im-
mune to compromise by the adversary. In addition to managing the decoy nodes,
the hypervisor also assigns IP addresses to the nodes. In particular, the hypervi-
sor can assign a new, uniformly random IP address to each node at any time. By
choosing the new IP addresses to be independent of the previous IP addresses,
the hypervisor prevents the adversary from targeting a node over a period of time
based on its IP address. All IP addresses are assumed to be randomized simul-
taneously; generalizations to randomization policies that only update a subset
of IP addresses at each time step are a direction for future work. Any commu-
nication sessions between valid users and the real node will be terminated when
randomization occurs. Upon termination, the server sends the updated IP ad-
dress to each authorized client. Each valid user must then reconnect to the real
node, incurring an additional latency that depends on the connection migration
protocol [23].

3.2 Adversary Model

We consider an external adversary with knowledge of the IP address space. The
goal of the adversary is to determine the IP address of the real node in order
to mount further targeted attacks. The adversary is assumed to know the set
of possible IP addresses, if necessary by compromising firewalls or proxies, and
attempts to identify the real node by sending query messages to IP addresses
within this space. Based on the response characteristics, the adversary can eval-
uate whether a node is real or a decoy based on either timing analysis or protocol
fingerprinting, as described below.

In timing-based blacklisting of nodes, an adversary exploits the response
timing differences between real nodes and decoys. Since the decoy nodes have
fewer CPU and memory resources than the real node, their response times will
be longer. This longer delay can be used for detection. We assume that the
adversary knows the response time distribution of a typical real node, which can
be compared with response times of possible decoys for detection.

Protocol fingerprinting exploits the fact that the decoy nodes do not actually
implement an operating system, but instead simulate an operating system using
a prespecified configuration. As a result, differences between the decoys’ behavior
and the ideal behavior of the operating system allow the adversary to identify the
decoy. Typical fingerprints include protocol versions, such as the sequence and
acknowledgment numbers in TCP packets, the TCP options that are enabled,
and the maximum segment size [25].

4 Modeling Interaction with Single Decoy

In this section, we provide a game-theoretic formulation for the interaction be-
tween the adversary and a single decoy node. We present a game-theoretic for-



7

mulation for two attack types. First, we consider an adversary who attempts to
identify decoy nodes through timing analysis. We then model detection based
on fingerprinting techniques.

4.1 Timing-Based Decoy Detection Game

In timing-based detection, the adversary sends a sequence of probe packets (such
as ICMP echo messages) and observes the delays of the responses from the
node [16]. Let Zk denote the delay of the response to the k-th probe packet.
Based on the response times, the adversary decides whether the node is real or
a decoy.

We let H1 denote the event that the response is from a real node and H0 de-
note the event that the response is from a decoy. The response times are assumed
to be independent and exponentially distributed [16] with mean µ1 = 1/λ1 for
real nodes and µ0 = 1/λ0 for decoys, where λ1 and λ0 represent the response
rates of the real and decoy nodes, respectively. Note that the exponential re-
sponse time is for a single query, while the M/G/1 assumption of Section 3.1
concerns the total length of a session between a valid user and the real node.
The number of queries made by the adversary is denoted Q.

The adversary’s utility function consists of three components, namely, the
amount of time spent querying the node, the probability of falsely identifying a
decoy as the real node (false positive), and the probability of falsely identifying
the real node as a decoy (false negative). We let PFP and PFN denote the
probabilities of false positive and false negative, respectively. The expected time
spent querying is equal to (πµ0 + (1 − π)µ1)Q, where π denotes the fraction of
decoy nodes.

The action space of the adversary consists of the number of times Q that
the virtual node is queried, so that Q ∈ Z≥0. We assume that the adversary
makes the same number of queries Q to each node, corresponding to a pre-
designed, non-adaptive scanning strategy that does not consider feedback from
past interactions. The system’s action space consists of the mean of the decoy
response time µ0 ∈ [0,∞).

The payoff of the adversary is equal to the total time required to scan the
entire network. The expected utility of the adversary is given by

UA(Q,µ0) = −(πµ0 + (1− π)µ1)Q

− πcFPPFP (Q,µ0)− (1 − π)cFNPFN (Q,µ0), (1)

where cFP and cFN denote the delays arising from false positive and false neg-
ative, respectively. The first term of (1) is the expected time to query a node.
The second term is the additional time spent querying decoy nodes after a false
positive occurs, which causes the adversary to attempt additional, time-intensive
attacks on the decoys. The third term is the additional time spent querying de-
coy nodes after a false negative, when an adversary mistakes a real node for a
decoy and scanning the rest of the network.
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The cost of a given response rate is the additional delay experienced by the
real nodes. Assuming that requests to the real node occur at rate θ and the
network has a total capacity of c with variance σ2, which is determined by the
bandwidth, CPU, and memory constraints of the physical device, this delay is

equal to g(µ0) =
σ2θ

2(1−θ/(c−1/µ0))
+ 1

c−1/µ0

, based on the assumption that the real

node is an M/G/1 system [20, Ch. 8.5] (the M/G/1 assumption follows from
the assumption of a single real node; generalization to M/G/m networks with
m real nodes is a direction of future work). The payoff of the system is equal to

US(Q,µ0) = (µ0π + (1− π)µ1)Q + πcFPPFP (Q,µ0)

+ (1 − π)cFNPFN (Q,µ0)− g(µ0). (2)

The utility of the system is the total time spent by the adversary scanning the
network, which increase the security of the real node.

In what follows, we introduce an algorithm for computing the Nash equi-
librium of the timing-based interaction game. We first introduce a two-player
zero-sum game with equivalent Nash equilibrium strategies. We then prove con-
cavity of the utility functions of each player, implying that a unique equilibrium
exists that can be computed using fictitious play.

Proposition 1. Define the utility function

ŨA(Q,µ0) = −πµ0Q− (1− π)µ1Q− πcFPPFP (Q,µ0)

− (1 − π)cFNPFN (Q,µ0) + g(µ0). (3)

Then a pair of strategies (Q∗, µ∗
0) is a Nash equilibrium for the two-player game

between a player 1 with utility function ŨA and a player 2 with utility function

US if and only if it is the Nash equilibrium of a two-player game where player 1

has utility function UA and player 2 has utility function US.

Proof. Let (Q∗, µ∗
0) be a Nash equilibrium for the game with utility functions ŨA,

US . The fact that µ
∗
0 is a best response to Q∗ for the game with utility functions

UA and US follows trivially from the fact that US is the system’s utility function
in both cases. If Q∗ satisfies ŨA(Q

∗, µ∗
0) ≥ ŨA(Q,µ∗

0) for all Q > 0, then

ŨA(Q
∗, µ∗

0) + g(µ∗
0) ≥ ŨA(Q,µ∗

0) + g(µ∗
0),

and hence UA(Q
∗, µ∗

0) ≥ UA(Q,µ∗
0), since UA(Q,µ0) = ŨA(Q,µ0)+ g(µ0) for all

(Q,µ0). Thus Q
∗ is the best response to µ∗

0 under utility function UA. The proof
of the converse is similar.

By Proposition 1, it suffices to find a Nash equilibrium of the equivalent
zero-sum game with adversary and system utilities ŨA and US , respectively. As
a first step, we prove two lemmas regarding the structure of ŨA and US.

Lemma 1. Let ǫ > 0. Then there exists Q̂ and a convex function f̂ : R → R

such that |f̂(Q)− ŨA(Q,µ0)| < ǫ for all Q > Q̂.
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Proof. Define f(Q) = −(πµ0+(1−π)µ1)Q−cFPPFP (Q,µ0)−cFNPFN (Q,µ0)+
g(µ0). The first two terms are linear in Q and hence convex, while the last
term does not depend on Q. In computing the probability of false positive, we
first observe that the maximum-likelihood decision rule for the adversary is to
decide that the node is real if µ1cFPP1(Z1, . . . , ZQ) > µ0cFNP0(Z1, . . . , ZQ) and
that the node is a decoy otherwise. Under the exponential assumption, this is
equivalent to

Q log
λ1

λ0
− (λ1 − λ0)

Q
∑

j=1

Zj > log
µ0cFN

µ1cFP
.

Hence the probability of false positive is equal to

PFP (Q) = Pr



Q log
λ1

λ0
− (λ1 − λ0)

Q
∑

j=1

Zj > log
µ0cFN

µ1cFP

∣

∣H0



 .

Rearranging terms yields

PFP (Q) = Pr

(

Z <
logλ1 − logλ0

λ1 − λ0
−

log µ0cFN

µ1cFP

Q(λ1 − λ0)

∣

∣H0

)

,

where Z = 1
Q

∑Q
j=1 Zj .

By the Central Limit Theorem, Z can be approximated by an N(µ0, µ
2
0/Q)-

Gaussian random variable for Q sufficiently large. Letting x = log λ1−log λ0

λ1−λ0

, the

probability of false positive is equal to Pr(X <
√
Q(xλ0 − 1)) where X is an

N(0, 1)-Gaussian random variable, so that

PFP =
1√
2π

∫

√
Q(xλ0−1)

−∞
exp

(

−x2

2

)

dx.

Differentiating with respect to Q yields

xλ0 − 1√
2π

1

2
√
Q

exp

(

−Q(xλ0 − 1)2

2

)

,

which is increasing in Q since xλ0 < 1. Hence the probability of false positive can
be approximated by a convex function for Q sufficiently large. The derivation
for the probability of false negative is similar.

Approximate concavity of UA implies that the best response of the adversary
can be computed by enumerating the values of UA(Q,µ0) for Q < Q̂, and using
convex optimization to find the optimal value when Q ≥ Q̂.

The following lemma establishes concavity of the system utility function US

as a function of µ0 for a given T . The concavity of US enables efficient compu-
tation of the Nash equilibrium.

Lemma 2. The function US is concave as a function of µ0.
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Proof. It suffices to show that each term of US in Eq. (2) is concave. The first
term of US is linear in µ0 and therefore concave. The second derivative test
implies that g(µ0) is convex as a function of µ0, and hence −g(µ0) is concave. By
the analysis of Lemma 1, in proving the concavity of the false positive probability,

it is enough to show that Pr
(

X < x
√
Q

µ0

−
√
T
)

is concave as a function of µ0.

The derivative of x
µ0

with respect to µ0 is equal to

1
µ0

(

µ0

µ1

− 1
)

− (logµ0 − logµ1)
(

1
µ1

)

(

µ0

µ1

− 1
)2 ,

which is decreasing in µ0. Hence the derivative of the false positive probability
is equal to

1
µ0

(

µ0

µ1

− 1
)

− (logµ0 − logµ1)
(

1
µ1

)

(

µ0

µ1

− 1
)2 exp



−

(

x
√
Q

µ0

−√
Q
)

2





2

,

which is monotonically decreasing in µ0 and hence concave.

Fictitious play can be used to find the Nash equilibrium of the interaction
between the adversary and the network. The algorithm to do so proceeds in
iterations. At each iteration m, there are probability distributions pmA and pmS
defined by the prior interactions between the system and adversary. The system
chooses µ0 in order to maximize EpA

(US(µ0)) =
∑

Q pmA (Q)US(Q,µ0), while

the adversary chooses Q to maximize Epm

S
(UA(Q)) =

∫∞
0 pmS (µ0)UA(Q,µ0) dµ0.

The strategies of the system and adversary at each iteration can be computed
efficiently due to the concavity of US and the approximate convexity of UA.
Convergence is implied by the following proposition.

Proposition 2. The fictitious play procedure converges to a mixed-strategy Nash

equilibrium.

Proof. Since the utility functions satisfy ŨA(Q,µ0)+US(Q,µ0) = 0, the iterative
procedure implies converge to a mixed-strategy Nash equilibrium [19, pg. 297].
Furthermore, by Proposition 1, the mixed-strategy equilibrium is also an NE for
the game with utility functions UA and US .

4.2 Fingerprinting-Based Decoy Detection Game

Operating system fingerprinting techniques aim to differentiate between real and
decoy nodes by exploiting differences between the simulated protocols of the
decoy and the true protocol specifications. In order to quantify the strategies
of the adversary and the system, we model the protocol to be simulated (e.g.,
TCP) as a finite state machine F , defined by a set of states S, a set of inputs
I, and a set of outputs O. The transition function δ : I × S → S determines the
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next state of the system as a function of the input and current state, while the
output is determined by a function f : I × S → O. We write F = (S, I, O, δ, f).

The real and decoy protocols are defined by finite state machines FR =
(SR, IR, OR, δR, fR) and FD = (SD, ID, OD, δD, fD). The goal of the decoy pro-
tocol is to emulate the real system while minimizing the number of states re-
quired. Under this model, the adversary chooses a state s ∈ SR and attempts to
determine whether that state is implemented correctly in the decoy, i.e., whether
the output o corresponding to an input i satisfies o = fR(s, i). In order to reach
state s, the adversary must send a sequence of ds inputs, where ds denotes the
minimum number of state transitions required to reach the state s from the
initial state s0.

The system’s action space is defined by the set of states SD, while the ad-
versary’s action space is the set s that the adversary attempts to reach. The
choice of s will determine the sequence of messages sent by the adversary. The
adversary’s utility function is therefore given by

UA(s, SD) = −dS − cFPPFP (s, SD)− cFNPFN (s, SD).

We note that the real node implements the state s correctly for all s ∈ SR, and
hence the probability of false negative is zero. Furthermore, we assume that the
decoy returns the correct output at state s with probability 1 if s ∈ SD and
returns the correct output with probability 0 otherwise. Hence the adversary’s
utility function is

UA(s, SD) = −ds − 1(s ∈ SD)cFP , (4)

where 1(·) denotes the indicator function.
For the system, the utility function is equal to the total time spent by the

adversary querying a decoy node, minus the memory cost of the decoys. This
utility is equal to

US(s, SD) = ds + 1(s ∈ SD)cFP − cD(SD), (5)

where cD(SD) is the cost of implementing a set of states. In order to avoid
state space explosion for the system, we restrict the defender to strategies that
implement all states within k steps of the initial state, where k ∈ {0, . . . , |SD|}.
Intuitively, a strategy that implements a state s ∈ SD but does not implement a
state s′ ∈ SD with ds′ < ds may be suboptimal, because the protocol may reach
state s before state s′, thus enabling the adversary to identify the decoy in fewer
steps.

A fictitious play algorithm for computing a mixed-strategy equilibrium is
as follows. Probability distributions πm

A and πm
S , which represent the empirical

frequency of each strategy of the adversary and system up to iteration m, are
maintained. At the m-th iteration, the strategies k∗ = argmaxEπm

A
(k) and

s∗ = argmax {Eπm

S
(s)} are computed and the corresponding entries of πm+1

A

and πm+1
S are incremented. Since there is an equivalent zero-sum game with

adversary utility function ŨA(s) = ds + 1(s ∈ SD)cFP − cD(SD), the empirical
frequencies of each player converge to the mixed strategy equilibrium [19].



12

5 Characterization of Optimal IP Address Randomization

Strategy by Network

In this section, we present a game-theoretic formulation for the interaction be-
tween the virtual network, which decides when to randomize the IP address
space, and the adversary, which decides the scanning strategy. The optimal ran-
domization policy of the network and the probability of detecting the real node
at equilibrium are derived.

5.1 Game Formulation

We consider a game in which the adversary chooses a scanning strategy, de-
termined by the number of simultaneous connections α. The parameter α is
bounded above by αmax, which is chosen by the hypervisor to limit the total
number of connections and hence avoid overutilization of the system CPU. The
adversary incurs a cost ω for maintaining each connection with a node. The
number of nodes scanned by the adversary per unit time, denoted ∆, is given
by ∆ = α

τ , where τ is the time required to scan each node. The parameter τ
depends on the detection method employed by the adversary, and is equal to
the Nash equilibrium detection time of Section 4.1 if timing-based detection is
used or the Nash equilibrium detection time of Section 4.2 if fingerprint-based
detection is used.

At each time t, the system decides whether to randomize the IP address
space; we let t = 0 denote the time when the previous randomization took place.
Let R denote the time when randomization occurs. The system incurs two costs
of randomization, namely, the probability that the adversary detects the real
node and the number of connections that are terminated due to randomization.
Since the real and decoy nodes cannot be distinguished based on IP addresses
alone, the probability of detection at time t is equal to the fraction of nodes that
are scanned up to time t, ∆t

n .
The cost resulting from terminating connections is equal to the delay β re-

sulting from migrating each connection to the real node’s new IP address; TCP
migration mechanisms typically have cost that is linear in the number of con-
nections [23]. The cost of breaking real connections is therefore equal to βY (t),
where Y (t) is equal to the number of connections to the real node, so that the
utility function of the system is given by US(α,R) = −E

(

α
τnR+ βY (R)

)

.
For the adversary, the utility is equal to the detection probability, minus

the cost of maintaining each connection, for a utility function of UA(α,R) =
E
(

α
τnR− ωα

)

. The resulting game has Stackelberg structure, since the system
first chooses the randomization policy, and the adversary then chooses a scanning
rate based on the randomization policy.

5.2 Optimal Strategy of the System

The information set of the system is equal to the current number of valid sessions
Y (t) and the fraction of decoy nodes scanned by the adversary D(t) at time t.
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The goal of the system is to choose a randomization time R in order to minimize
its cost function, which can be expressed as the optimization problem

minimize E(D(R) + βY (R))
R

(6)

where R is a random variable. The randomization policy can be viewed as a
mapping from the information space (Y (t), D(t)) at time t to a {0, 1} variable,
with 1 corresponding to randomizing at time t and 0 corresponding to not ran-
domizing at time t. Define Lt to be the number of decoy nodes that have been
scanned during the time interval [0, t].

The number of active sessions Y (t) follows an M/G/1 queuing model with
known arrival rate ζ and average service time 1/φ. We let 1/φt denote the
expected time for the next session with the real node to terminate, given that a
time t has elapsed since the last termination. In what follows, we assume that φt

is monotonically increasing in t; this is consistent with the M/M/1 and M/D/1
queuing models. The following theorem, which generalizes [8, Theorem 1] from
an M/M/1 to an M/G/1 queuing model, describes the optimal strategy of the
system.

Theorem 1. The optimal policy of the system is to randomize immediately at

time t if and only if Lt = n, Y (t) = 0, or ∆
n φ + βζφ − β > 0, and to wait

otherwise.

Proof. In an optimal stopping problem of the form (6), the optimal policy is to
randomize at a time t satisfying

D(t) + βY (t) = sup {E(D(t′) + βY (t′)|D(t), Y (t)) : t′ ≥ t}.

If Lt = n, then the address space must be randomized to avoid detection of the
real node. If Y (t) = 0, then it is optimal to randomize since D(t) is increasing
as a function of t.

Suppose that Lt < n and Y (t) > 0. Let ξ1, ξ2, . . . denote the times when
connections terminate. We prove by induction that, for each l, t′ ∈ [ξl−1, ξl]
implies that E(D(t′) + βY (t′)|Y (t)) > D(t) + βY (t). First, consider l = 1,
with ξ0 = t. Then if t′ ∈ [ξ0, ξ1), D(t′) + βY (t′) > D(t) + βY (t), since D is
nondecreasing in time and no connections have terminated since time t. At time
ξ1, we have that

E(D(ξ1) + βY (ξ1)|Y (t)) =
∆

n
E(ξ1) (7)

+β(Y (t) + ζE(ξ1)− 1) (8)

=

(

∆

n
+ βζ

)

φ+ βY (t)− β (9)

and so E(D(ξ1) + βY (ξ1)|Y (t)) < D(t) + βY (t) iff ∆
n φ+ βζφ − β > 0.
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Now, suppose that the result holds up to (l − 1). By a similar argument,
E(D(ξl−1) + βY (ξl−1)|Y (t)) < E(D(t′) + βY (t′)|Y (t)) for all t′ ∈ [ξl−1, ξl). The
condition

E(D(ξl−1) + βY (ξl−1)|Y (t)) < E(D(ξl) + βY (ξl)|Y (t))

holds iff ∆
n φ+ βζφ− β > 0.

This result implies that a threshold-based policy is optimal for randomization
over a broad class of real node dynamics.

5.3 Optimal Strategy of the Adversary

The optimal scanning rate is the solution to

maximize E(D(R)− ωα)
s.t. α ∈ [0, αmax]

(10)

which is a trade-off between the probability of identifying the real node and the
adversary’s cost of bandwidth.

The scanning rate is assumed to be constant and chosen based on the ran-
domization policy of the system.

Since the scanning process is random, the detection probability at the time
of randomization, D(R), is equal to the fraction of the network scanned at time
R, α

τnR. Based on Theorem 1, the detection probability is given as

D(R) =

{

α
τnT0,

(

α
τn + βζ

)

φ < β
0, else

(11)

where T0 is the time for the number of connections to go to 0. Hence the value
of α that maximizes D(R) is α = βτn− βζ. The overall utility of the adversary
is equal to β(τn − ζ)(τn)E(T0)− ω(βτn− βζ).

Proposition 3. Let α∗ = min {αmax, βτn
(

1
φ − 1

ζ

)

}. Then the unique Stackel-

berg equilibrium of the network interaction game is for the adversary to choose

α based on

α =

{

α∗, E(T0)− ωτn > 0
0, else

(12)

Proof. The proof follows from Theorem 1 and the fact that the adversary’s utility
is negative unless the condition E(T0)− ωτn holds.

Proposition 3 indicates that the adversary follows a threshold decision rule,
in which the adversary scans the system at the rate α∗ if the expected time
before randomization, T0, exceeds the expected time to scan the entire network,
τn. The adversary can determine the optimal scanning rate over a period of time
by initially scanning at a low rate and incrementally increasing the rate until
randomization occurs, signifying that the threshold scanning rate α∗ has been
found.
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6 Simulation Study

A numerical study was performed using Matlab, consisting of three components.
First, we studied the timing-based detection game of Section 4.1. Second, we
considered the fingerprinting-based detection game of Section 4.2. Third, we
analyzed the network-level interaction of Section 5.

For the timing-based detection game, we considered a network of 100 nodes,
with 1 real node and 99 decoy nodes. The real nodes were assumed to have
mean response time of 1, while the response time of the decoys varied in the
range [1, 1.25]. The parameter α, representing the amount of real traffic, was
set equal to 0, while the capacity c of the virtual network was equal to 1. The
trade-off parameter γ took values from 1 to 5, while the number of queries by
the adversary ranged from T = 1 to T = 50.

We observed that the timing-based detection game converged to a pure-
strategy Nash equilibrium in each simulated case. Figure 1(a) shows the mean
response time of the decoy nodes as a function of the trade-off parameter, γ. As
the cost of delays to the real nodes increases, the response time of the decoys
increases as well. For lower values of γ, it is optimal for the real and decoy nodes
to have the same response time.

For detection via system fingerprinting, we considered a state machine of
diameter 4, consistent with the simplified TCP state machine of [14], implying
that there are 5 possible strategies in the game of Section 4.2. We considered a
cost of 0.2 for the system and adversary, so that the normalized cost of imple-
menting the entire state machine was equal to 1. Figure 1(b) shows a histogram
representing the mixed strategy of the system. The mixed strategy indicates that
roughly half of the decoy nodes should implement only the first level of states
in the state diagram, while the remaining half should implement the entire state
machine, for this particular choice of the parameter values. This suggests an op-
timal allocation of half high-interaction and half low-interaction decoys, leading
to a resource-expensive strategy.

In studying the network-level interaction between the system and adversary,
we considered a network of n = 100 virtual nodes with detection time τ = 5 based
on the previous simulation results. The trade-off parameter β = 0.1. The real
node was assumed to serve users according to an M/M/1 process with arrival rate
ζ = 0.4 and service rate φ = 2. The cost of each connection to the adversary was
set at ω = 2. Figure 1(c) shows the probability of detection for the adversary as
a function of the number of simultaneous connections initiated by the adversary.
The probability of detection increases linearly until the threshold is reached;
beyond the threshold, the system randomizes as soon as the scanning begins
and the probability of detection is 0. Furthermore, as the rate of connection
requests to the real node, quantified by the parameter ζ, increases, the cost
of randomization for the real node increases, leading to longer waiting times
between randomization and higher probability of detection.

As shown in Figure 1(d), the number of dropped connections due to ran-
domization is zero when ζ is small, since the optimal strategy for the system
is to wait until all connections terminate. As ζ approaches the capacity of the
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Fig. 1. Numerical results based on our proposed game-theoretic framework. (a) The
timing-based detection game of Section 4.1 converged to a pure-strategy equilibrium
in all experimental studies. The pure strategy of the system is shown as a function of
the trade-off parameter, γ. A larger value of γ results in a slower response rate due to
increased delay to the real nodes. (b) Histogram of the mixed strategy of the system
for the fingerprinting game of Section 4.2 using the TCP state machine. The optimal
strategy is to implement only the initial states of the protocol and the entire protocol
with roughly equal probability. (c) Detection probability as a function of the number of
simultaneous connections by the adversary. The detection probability increases before
dropping to zero when the randomization threshold is reached. (d) Number of dropped
connections when the number of adversary connections α = 5. The number of dropped
connections is initially zero, as the adversary scanning rate is below threshold, and
then increases as the rate of connection to the real node approaches the capacity of the
real node.
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real node, the number of dropped connections increases. The effectiveness of the
decoy, described by the time τ required to detect the decoy, enables the system
to operate for larger values of ζ (i.e., higher activity by the real nodes) without
dropping connections.

7 Conclusion

We studied the problem of IP randomization in decoy-based moving target de-
fense by formulating a game-theoretic framework. We considered two aspects
of the design of decoy networks. First, we presented an analytical approach
to modeling detection of nodes via timing-based analysis and protocol finger-
printing and identified decoy design strategies as equilibria of two-player games.
For the fingerprinting attack, our approach was based on a finite state machine
model of the protocol being fingerprinted, in which the adversary attempts to
identify states of the protocol that the system has not implemented. Second,
we formulated the interaction between an adversary scanning a virtual network
and the hypervisor determining when to randomize the IP address space as a
two-player Stackelberg game between the system and adversary. We proved that
there exists a unique Stackelberg equilibrium to the interaction game in which
the system randomizes only if the scanning rate crosses a specific threshold.
Simulation study results showed that the timing-based game consistently has
a pure-strategy Nash equilibrium with value that depends on the trade-off be-
tween detection probability and cost, while the fingerprinting game has a mixed
strategy equilibrium, suggesting that networks should consist of a mixture of
high- and low-interaction decoys.

While our current approach incorporates the equilibria of the single-node in-
teraction games as parameters in the network-level game, a direction of future
work will be to compute joint strategies at both the individual node and network
level simultaneously. An additional direction of future work will be to investi-
gate dynamic game structures, in which the utilities of the players, as well as
parameters such as the number of nodes and the system resource constraints,
change over time. We will also investigate “soft blacklisting” techniques, in which
an adversary adaptively increases the delays when responding to requests from
suspected adversaries, at both the real and decoy nodes. Finally, modeling the
ability of decoys to gather information on the goals and capabilities of the ad-
versary is a direction of future work.
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