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Abstract. Internet-borne threats have evolved from easy to detect de-
nial of service attacks to zero-day exploits used for targeted exfiltration
of data. Current intrusion detection systems cannot always keep-up with
zero-day attacks and it is often the case that valuable data have already
been communicated to an external party over an encrypted or plain text
connection before the intrusion is detected.
In this paper, we present a scalable approach called Network Interrogator
(NetGator) to detect network-based malware that attempts to exfiltrate
data over open ports and protocols. NetGator operates as a transparent
proxy using protocol analysis to first identify the declared client appli-
cation using known network flow signatures.Then we craft packets that
“challenge” the application by exercising functionality present in legiti-
mate applications but too complex or intricate to be present in malware.
When the application is unable to correctly solve and respond to the
challenge, NetGator flags the flow as potential malware. Our approach
is seamless and requires no interaction from the user and no changes
on the commodity application software. NetGator introduces a minimal
traffic latency (0.35 seconds on average) to normal network communica-
tion while it can expose a wide-range of existing malware threats.

1 Introduction

Targeted and sophisticated malware operates unhindered in the enterprise net-
work. Indeed, the Anti-Phishing Working Group (APWG) [1] reported that the
first six months of 2011, data-stealing malware and generic Trojans increased
from 36% of malware detected in January, 2011 to more than 45% in April,
2011. Sophisticated malware utilizes obfuscation and polymorphic techniques
that easily evade anti-virus and intrusion detection systems. A study by Cyveil-
lance[11] showed that popular anti-virus solutions only detected on average less
than 19% of zero day malware increasing only to 61.7% on the 30th day.

Once inside the host, malware can establish command and control channels
with external points of control, often controlled by a single entity called a bot-
master, and form drop points to exfiltrate data. To avoid detection, malware



utilizes legitimate and usually unfiltered ports and protocols, including popular
protocols such as HTTP, to establish these communications. Due to the volume
of network traffic, enterprises are unable to effectively monitor outbound HTTP
traffic and discern malware from legitimate clients. Current botnet detection sys-
tems focus on identifying the botnet lifecycle by looking for specific observables
associated with either known botnets or typical botnet behaviors. These ap-
proaches suffer from the fact that malware continues to evolve in sophistication
improving their ability to blend into common network behaviors.

Additionally, current systems are unable to inspect encrypted communica-
tions, such as HTTPS, leaving a major hole that malware will increasingly cap-
italize on. The use of encrypted traffic has been growing as web applications
begin utilizing HTTPS for its privacy benefits. For example, Facebook recently
announced HTTPS as an optional protocol for accessing its site. While an im-
provement for privacy, the use of HTTPS poses major technical hurdles for
current network monitoring and malware detection.

In this paper, we demonstrate the results of a novel approach called Net-
work Interrogator (NetGator) to detect and mitigate network-based malware
that (ab)uses legitimate ports and protocols to initiate outbound connections.
NetGator operates as a transparent proxy situated in the middle of all network
communications between the internal clients and external servers. Our approach
consists of two phases that are real-time and completely transparent to the user.
In the first phase, we employ a passive traffic classification module that per-
forms protocol analysis to first identify the advertised client application type
(i.e. browser, program update, etc.). We do so based on existing network signa-
tures for legitimate applications including the use of ordering of traffic headers
that sometimes characterizes the host application. The main purpose of this
first order flow classification is to determine the claimed or declared identity of
the end-point software that generated the traffic into two classes: potentially
legitimate or unknown.

As a second phase, for flows that we can successfully classify as part of po-
tentially legitimate applications inside the organization (e.g., approved browser
using HTTP(S) on port 80 or 443), Netgator attempts to further probe the end-
point application by inserting itself as part of the network communication.We do
so by issuing a challenge back to the client that exercises existing functionality of
the legitimate application. A challenge is a small, automatically generated piece
of data in the form of an encapsulated puzzle that a legitimate application can
execute and automatically respond without any human involvement. If the ap-
plication is unable to correctly solve and respond to the challenge, NetGator will
flag the source as potentially being malware and optionally sever the connection
along with reporting the offending source. Therefore, rather than attempting to
classify network traffic as either good or bad based on network (packet, flow, or
content) inspection, the second phase of NetGator focuses on validating that the
traffic stems from a legitimate application.

The proposed approach is an automated twist of the Human Interactive
Proofs mechanism (e.g., CAPTCHAs), but focused on verifying program inter-



Fig. 1. Study of 1026 samples from popular classes of zero-day malware.

nal functionality rather than humans. We call this approach Program Interactive
Challenges (PICs). We define a PIC as a challenge comprised of a request and
expected response pair which tests for existing functionality of legitimate appli-
cations. A PIC can be generated when there is an end-program state that has
a deterministic programmable network response and that state can be triggered
by communication with the server. The complexity of the PIC depends on the
complexity required to implement that state on the client side. The intuition is
that if the challenges are diverse enough and exercise complex functionality of
the legitimate applications, malware will have to either implement said function-
ality making it large or attempt to create application hooks or use the legitimate
application to “solve” the puzzle. In the former case, the malware code will in-
crease dramatically since malware has to now implement a lot of unnecessary
and complex functionality, for instance, a JavaScript parser. In the latter case,
the malware will have to farm out the traffic to the corresponding legitimate
local end-point application to solve the puzzle. In addition, the malware will
have to insert itself after the puzzle exchange while suppressing traffic from the
legitimate application. Our approach raises the bar because it forces malware
to perform additional invasive operations that would not be required without
our system. It is not enough for the malware to just link to Browser libraries
that implement communications, the malware has to also take over the HTML,
Javascript, and Flash rendering engines. Therefore, NetGator increases the at-
tack complexity for the adversary without requiring any human involvement.

We tested our system on 1026 zero-day malware samples in Windows virtual
machines. Our experiments show that the majority of malware uses popular, un-
filtered network ports to connect to remote servers for various purposes. Figure 1
shows that nearly 80% of the malware samples used HTTP/S for outbound com-
munications. Therefore, we focus on developing PICs for browsers to show the
effectiveness of our method. We can leverage HTML, Flash, Javascript, and other
common browser components to form challenges for browsers. However, our ap-
proach is more general and can be extended to generate and use PICs for other
applications (e.g., VoIP, OS updates) through analyzing the functionality sup-



ported by the application software agents. Second, most malware only includes
minimal functionality to reduce its size and avoid being detected, so it cannot
correctly respond to the challenges. For example, many malware scripts use the
“wget” command to download malicious code from external servers without com-
promising the browsers in the OS. Such scripts do not know how to respond to
the PICs for the browsers. If a large-size malware includes all the challenging
functionality for a browser or compromises the browsers in the OS, it can defeat
our solution; however, we increase the bar for attacks to succeed.

We implemented a prototype NetGator system that includes different PICs
for browsers. For non-text/html data, NetGator issues challenges when it re-
ceives the request packets from the client, which we refer call request challenges;
for text/html data, it issues challenges when it receives the response packets
from the external servers, which we call response challenges. Compared to re-
quest challenges, response challenges can reduce the overhead that might be
introduced when enacting the request challenge on each HTTP request and pre-
vent a malicious agent from downloading an executable that is disguised as an
HTML file. However, it may lower the security by allowing the malicious request
to complete even if the software agent is detected as malicious later. The ex-
perimental results demonstrate the effectiveness of PICs in identifying malware
that attempts to imitate the network connection of popular browsers. It intro-
duces an average of 353 milliseconds end-to-end latency overhead using request
challenges and 24 milliseconds using response challenges.

In summary, we make the following contributions:

– We designed a malware detection system that utilizes a two-pronged ap-
proach to identify malicious traffic. We first classify traffic using passive
inspection. For the flows that correspond to potentially legitimate applica-
tions, we “challenge” the host application by automatically crafting Program
Interactive Challenges (PICs) that exercise complex functionality present in
the legitimate application.

– We demonstrate the feasibility of our approach using HTML, Flash, Javascript,
and other common browser components to form challenges for browsers. PIC
was able to expose a wide-range of malware threats operating inside Enter-
prise networks.

– Netgator can be used in practice: it does not incur significant communication
overhead and it does not require any user interaction or changes on the
commodity application software.

2 Background

2.1 HTTP Headers & MIME Types

HTTP request and response packets contain various header elements which en-
case pertinent information about the transmission. Requests are prefaced by var-
ious headers notifying the server of what the client expects to receive. Responses



are accompanied by headers as well informing the client of what is being trans-
mitted. Each browser uses a distinct header ordering. The same browsers also
have slight differences depending on which operating system they are running.
Our passive inspection module uses these unique orderings to create signatures,
which can be used by the active challenge module to identify browers and pick
appropriate PICs to challenge the browser. Multi-purpose Internet Mail Exten-
sion(MIME) types describe the content type of the message being transmitted.
The main general MIME types are application, audio, image, text, and video.
Since the majority of most web pages have the MIME type text/HTML that can
be challenged on the response instead of the request, we can reduce the overall
network delay caused by the active challenges.

Internet Content Adaptation Protocol (ICAP) allows for the modification
and adaptation of HTTP requests and responses. All the various elements of
HTTP messages can be edited. Typical uses of the ICAP protocol include actions
such virus scanning or content filtering. The protocol relies on an ICAP client
that forwards traffic to an ICAP server, which is in charge of the adaptation
of requests/responses. In our implementation, we use the open source proxy
Squid [5] as our ICAP client and use the open source option Greasyspoon [2] as
our ICAP server. Greasyspoon allows scripts written in various languages (Java
in our system) to act on all incoming requests and responses.

3 Threat Model & System Architecture

3.1 Threat Model and Assumptions

We assume that a client machine in an enterprise network may be infected with
malicious code, and malicious code needs to “call home” and establish a back
channel communication with remote server(s). The malware does not form con-
nections immediately upon execution, but waits for an indeterminate amount of
time or a user event before initiating network connection. Moreover, we assert
that a certain subset of browser components and capabilities are necessary to
navigate the Internet and confine our challenges to these.

The sophistication of most current malware has not yet reached the level of
implementing or imitating the entire HTML, Javascript, or Flash engines and
software stacks within themselves. The code size of a sophisticated malware will
increase dramatically in order to include the functionalities for responding all
the known active challenges, and make it prone to being detected. We assume
malware that has infected a host does not wish to access the full software stack
of the legitimate application software (e.g. browsers) that natively reside on the
system in order to remain stealthy and launch attacks quickly.

NetGator utilizes a network-level transparent proxy to identify and filter out
unknown traffic. For the traffic that matches programs that have been approved
for the organization, we automatically craft active challenges to probe and verify
end-point applications. Figure 2 depicts NetGator’s system architecture. In the
network, all traffic to be inspected is routed to this proxy. If the application



Fig. 2. NetGator System Architecture and Traffic Control Flow

passes both the passive inspection and active challenge, the proxy permits the
outbound connection by forwarding the traffic to the default gateway. Connec-
tions that are either unknown or fail to pass the active test are dropped (or a
human operator can be informed depending on the site’s policy).

The network proxy consists of two major components: passive, signature-
based flow inspection and active challenges. The passive inspection module acts
as an initial filter, recognizing the known (and legitimate) category of the end-
point software applications. We do not need the exact version of the end-point
application but rathe its broader type (Browser, updater, etc.). Traffic from
unknown applications can be treated preferencially allowing in the insertion
of policies blocking, alerting, or even logging the flows that stem from such
unmapped applications. This enables our system to adapt to new applications
and network environments since new applications can be immediately recognized
and mapped thus becoming “known”. Traffic flows for which we already have
a signature are issued active challenge(s) to further verify the legitimacy of the
end-point software that generated the network traffic. The Program Interactive
Challenges (PICs) are automatically generated by the proxy in advance and can
chose from a wide variety of potential functionality based on the complexity
of the end-point software. For instance, for browsers we show more than three
different types of PICs that can be used.

To bootstrap in an enterprise network, traffic should be gathered for a period
of time to decide what applications are operating on the network. Once armed
with this information, we can utilize the passive inspection module to accom-
plish two tasks: filtering out malicious/unknown traffic and classifying known
applications. First, by knowing which applications are expected to be traversing
the network, we can drop any unknown, potentially malicious traffic as well as
known malicious traffic. Second, the ability to classify the known applications



allows us to send the corresponding active challenges to specific types of applica-
tions. We can derive passive signatures from packet header information collected
from packet sniffers such as Wireshark [7]. These signatures are representative of
the distinct HTTP header content and HTTP header ordering that each browser
possesses. However, the passive inspection module cannot provide timely filtering
or blocking in zero-day attack situations. Moreover, since network requests can
be easily altered, a request may be generated by malware masquerading as legit-
imate software. NetGator provides an active challenge mechanism to effectively
detect and mitigate these attacks.

For a known application, the NetGator proxy can obtain the type and ver-
sion of the supporting software from the passive signatures collected by the
passive inspection. The proxy maintains a table that records the corresponding
program interactive challenges (PICs) supported by each application software.
Therefore, the proxy can send one or more PICs to the application that initiates
the communication. For legitimate applications, they should be able to correctly
respond to the challenges with their embedded functionalities. For example, we
can leverage HTML, Flash, Javascript, and other common browser components
to form challenges for browsers. If the application is unable to correctly solve
and respond to the challenge, NetGator will flag the source as malicious.

Depending upon the type of requested data in the packet, the proxy can chal-
lenge either the request or the response. When challenging the network request
the proxy receives a request from an application and blocks it, while returning a
challenge as the response to the application’s request. Only if the application can
successfully solve the challenge and respond to the proxy, the proxy will forward
the original request to the default network gateway. For instance, any HTTP
request for application audio, or video data should be challenged and blocked
until the challenge is solved. Challenging the network response allows the ap-
plication’s request to pass through but inserting our challenge into the original
response from external servers and then sending it to the application. Legiti-
mate applications can solve the challenges and notify the proxy. If the proxy
cannot receive a correct answer from an application after sending the response
challenge for a pre-defined time, it marks the software agent as malicious. For
text/HTML requests, we can insert challenges into the response’s text/HTML
data. Challenging the request provides stronger security than challenging the
response, since the application cannot obtain any useful data information from
the external servers if it cannot pass the challenges. However, challenging the
response can offer a smaller network latency, since the application only needs to
solve the challenges after the response data has been received.

One of our primary design principle is to keep the system transparent to
the end-user and adaptive to new software. Our approach does not require the
user to prove or input anything, but shifts the onus of proof to the requesting
application. Moreover, since our solution only utilizes the existing functionalities
in commodity application software, we do not need to change their source code.



4 Design & Implementation

Fig. 3. Distribution of applications on port 80 of a large university network

We design and implement both the passive inspection module and the active
challenge module in NetGator, which supports both challenging at the request
and challenging at the response. Since browsers represent a vast majority of
traffic on a typical network and HTTP protocol is widely exploited by mali-
cious code, we focus on developing PICs for validating browsers. However, our
methods can easily be adopted to challenge other agents by identifying unique
functionality that they possess including ones that also utilize HTTP/S.

4.1 Passive Inspection

The passive inspection module consists of two parts: signature generation and
signature matching. First, it employs protocol analysis to first identify the ad-
vertised client application type based on its network communication signature.
This signature is derived from a distinct ordering of traffic headers found in each
client. Since different versions may support different sets of functions, it gener-
ates the signatures for different software agents with different version numbers
and saves the signature in a data set. Second, it inspects the real time traffic,
dynamically derives the signature of the user agent, and compares it with the
signature seen to identify the user agent. The signature set is used to deter-
mine the claimed identity of the end-point software that generated the packets
as known or unknown. Our passive module will drop the traffic from unknown
client programs. Known traffic (e.g., http(s) through port 80 or 443), may pass
through without being blocked or receive further inspection.

The signatures of user agents are generated automatically by observing traffic
on the network and extracting HTTP header orderings. First a packet capture
is performed on the network to gather information about which applications are
running on the network. The pcap file is then exported into an XML file from



Wireshark [7]. Once the data is in XML format, it is processed by a Python
script. This script then extracts the message header and assigns a number to each
HTTP header forming the signature. With unique signatures for each application
that exists on the network we are able to issue the proper PIC(s) for each agent.

To perform real time detection, it sniffs the packets that traverse the network
scanning for HTTP header instances that match our signature set of various
user agents. A modified version of tcpflow [6], which we call protoflow, scans the
network traffic and pass the information to our identifier program. The change
made is to write the data acquired by the capture to a space in memory which is
shared by our second piece of software called inspector. Inspector takes the strings
from the shared memory and compares the data against a collection of regular
expressions that distinguish various user agents. These regular expressions are
made up of the specific HTTP header ordering that are unique to each different
browser.

We develop a string matching algorithm to check whether the “user-agent”
string in the HTTP headers contains the name of browsers, including “Firefox”,
“Chrome”, “Safari”, “Opera”, “MSIE 8.0”, “MSIE 7.0”, “MSIE 6.0”. If yes, we
label the packet as “browser”, otherwise label it as “non-browser”. For packets
that do not provide any user-agent information, we label them as “non-labeled”.
We run the algorithm on the traffic of a large university for two hours, and
label 8,825,177 packets as “browser”, 1,143,040 packets as “non-browser”, and
110,763 packets as “non-labeled”. Figure 3 shows that traffic on port 80 (HTTP)
is mostly comprised of browsers, but other applications can communicate via
HTTP as well. The most common non-browser user agents include web-crawlers,
application updates, bots, or spiders. For example, we observe 15,506 occurrences
of web-crawlers. For those “non-browser” applications that utilize HTTP/S, we
need to develop separate PICs for each type of user agents.

4.2 Active Challenges

The active challenge module consists of a transparent proxy and an ICAP server.
The proxy redirects all network request and response traffic on ports 80 and
443 to the ICAP server which then generates and verifies PICs to the client
software. Based on the Multipurpose Internet Mail Extensions (MIME) type of
the requested data, the ICAP server either rewrites the response completely,
or simply inserts additional code into the response code. If the response is any
type of non-text/html data, the client request is blocked and a completely new
response containing only our challenge is sent back to the client. For text/html
types, the challenge code is inserted inside of the original response to reduce the
network delay.

We use Squid 3.1.8 as the proxy for rerouting HTTP and HTTPS traffic and
the ICAP server, Greasyspoon, for handling scripts on requests and responses.
To handle HTTPS traffic, Squid’s ssl-bump feature is harnessed. HTTPS traffic
leaving the host is encrypted with a single key that the proxy possesses. Once
the traffic reaches the proxy, it is decrypted and forwarded to Greasyspoon for
generating and verifying challenges. Next, the proxy re-encrypts the request with



Fig. 4. Active Request Challenge Flow

the key established with the targeted external web server. This raises the concern
that the client will never receive the external server’s certificate, thus leaving it
vulnerable to phishing sites. This can be handled by leveraging the trust of the
Netgator proxy. That server can determine if a certificate that returns from an
external site is legitimate or not. This method enables us to intercept HTTPS
requests initiated by malware where other solutions would typically fail.

To keep track of the various connections, we leverage Greasyspoon’s cache
which contains a hashmap. For each IP address and user agent pair, this hashmap
contain an entry that records whether the client passed a challenge, how many
times it has been challenged, as well as how many times it passes the challenge.
Thus, even if the malware correctly forms a user-agent string that is operational
on the infected machine, the hashmap still can reflect that an entity on the
system did not pass the challenge. The hashmap is periodically written to a log
file available for inspection.

To reduce the number of challenges, the proxy automatically passes a network
request for a page if the requesting client has passed a request for that page’s
domain. For example, if a client requests to access www.foo.com/bar and has
already proven itself while requesting www.foo.com, the proxy will let it pass
automatically. This enables us to lessen the burden from websites that trigger
many GET requests for items such as images or flash objects. The list of ”passed”
domains is periodically cleared in order to catch malware that might use one of
these sites for control communication. It is also possible to operate Netgator
without keeping these records, and thereby issues challenges to each request,
albeit with an increase in overhead.



(a) Javascript Challenge Code

(b) HTML Challenge Code

(c) Flash Challenge Code

Fig. 5. Response with various active challenges.

Challenging Network Requests When the proxy observes a request for non-
text/html data, it issues a challenge to the client. The challenge can take various
forms based on the functionality of the browser. Whichever test is administered,
the driving element behind each of them is a redirect to the original requested
URL with a hash appended to it. The only challenge that needs to contain more
than a simple redirect command is the Flash challenge, which is a Flash object,
not actual lines of code. The nature of the Flash challenge actually allows it to be
more difficult for an attacker to bypass since the Flash object is embedded in the
HTML page with Javascript, essentially combining two of our challenges into one.
To correctly pass the requested URL and hash to the Flash object, Javascript
functions are embedded and returned in the HTML code to interact with the
object and provide it with the redirect information needed. If the client is able
to correctly execute the challenge, Greasyspoon can match the new request with
an appended hash to the originally requested URL. If the hash is correct, the
request is allowed to pass; if the hash is incorrect, the request is dropped and an
error message is sent to the client. Figure 4 shows the implementation for the
request challenges.

The responsibility of Greasyspoon is to intercept the connection when it
observes a request and send back a custom crafted response to the client in order
to initiate the challenge. In order to correctly form the response, Greasyspoon
executes a Javascript, which generates the hash and then crafts the new HTML
code that will be returned to the client. A tuple of four factors is used to generate



the hash: a static, secret key known only to the proxy, the requesting client’s
IP address, the URL being requested, and the current time’s seconds value.
The Javascript calculates a hash value from this tuple using SHA1. Next, this
Javascript replaces the header and the body of the request in order to customize
the response with the hash value for the client. The header must be replaced
with a properly formed HTTP response header to signal Greasyspoon that a
response is required to be sent back to the client directly from the proxy. For
our implementation we use a standard HTTP/1.1 200 OK response HTML code
and insert a fragment of Javascript code that executes a redirect operation. The
sample response codes using Javascript, HTMl, and Flash are shown in Figure 5.

The codes for the Flash and HTML challenges both contain a redirect func-
tion to the originally requested URL with a hash concatenated to it. If the client
is able to correctly execute the challenge code, the proxy will see a separate
request with a hash appended to it. If the hash is correct, the new request is
allowed to pass through and the hashmap of Greasyspoon is updated to reflect
that a particular IP and software agent combination has passed the challenge.
The size of the request scripts each average around 280 lines of code.

Since the hash is sent back in plain text it is conceivable that an attacker could
simply parse the response for the hash and initiate the correctly formed request if
they have knowledge of our system. We can prevent this attack by encrypting the
hash with an AES Javascript implementation [3]. The new Javascript provides
the code to decrypt the hash and requires the malware to include functions for
AES decryption.

Fig. 6. Active Response Challenge Flow



Fig. 7. Example Logfile Entry.

Challenging Network Responses If the data requested is of the type text/html,
the proxy allows the request pass through. When the response comes back for
that request, a challenge code is inserted in the response. For instance, an im-
age that resides on the proxy can be embedded in a Javascript challenge code.
A Javascript write statement tells the browser to include the image via HTML
”img” tags. The proxy then looks for requested for this specific image and once
it sees one, it knows that the challenge has been completed successfully. Figure 6
shows the control flow for active response challenges.

The processing script has two parts: a request script and a response script.
Combined, there is about 300 lines of code. The request processing script first
determines if the client is expecting a text/html response or if the request is
for our specific challenge image. If the client is expecting a text/html response,
an entry of the user-agent string combined with the client IP is written into the
hashmap. The original request then goes out to the intended server. If the request
is for the challenge image, Greasyspoon searches for a corresponding entry in the
hashmap and updates it reflecting that the client has passed a challenge. Once
a response for the connection is received, the response processing script probes
for an already present entry in the hashmap for the client the response is to
be sent to. If an entry is located, it injects the HTML code with the embedded
challenge image inside the original response and sends the response back to the
client. The entry is revised to show that a challenge has been sent to the client.

The response infrastructure is also responsible for the transformation of the
hashmap into a logfile format. An example entry from the logfile is shown in
Figure 7. The operating system, application name, and application version are
all extracted from the user-agent string. It can help administrators analyze the
logs and diagnose a problem should one arise.

The reason for adapting response challenges is two-fold. First, it allows us
to reduce the overhead that might be introduced when enacting the request
challenge on each HTTP request. Moreover, blocking every data request would
impair our system’s scalability and usability. It is conceivable that on a smaller,
more confined network the system could be set up to challenge every request,
but on a larger infrastructure this would most likely be impractical. Second, it
can prevent a malicious agent from downloading an executable that is disguised
as an HTML file.



5 Experimental Evaluation

We implemented a prototype NetGator system consisting of a laptop for the
client and a Dell server for the proxy. The laptop is a Dell Latitude E6410 with
an Intel Core i7 M620 CPU at 2.67 GHz, 8GB of RAM and a Gigabit network
interface. The server is a Dell PowerEdge 1950 with two Xeon processors, 16GB
of RAM and a Gigabit network interface.

For performance testing, Firefox 3.6.17 is used as the client’s browser through-
out. To measure how efficiently the server could process the scripts that will be
executed on the client’s request, a script loops through 10,000 iterations of the
request script with the iterations per second being returned. For all the figures in
this section, we run this script 30 times and use the average value to determine
the capability of our server. The error bars show confidence interval at 95% con-
fidence. For all testing, Squid and Firefox’s caching mechanisms are completely
disabled.

5.1 Performance Analysis

To evaluate the end-to-end latency of the request challenge, we analyze various
types of challenges we create in HTTP download scenarios utilizing PlanetLab [4]
combined with our passive inspection. Different PlanetLab nodes are used from
throughout the world using all virtualized hardware. Four nodes (one from the
East Coast, one from the West Coast, and two nodes from other continents) are
utilized to perform the benchmarking. Executable files of large size (1000KB),
medium size (100KB) and small size (10KB) are hosted on each node on an
Apache web server. The client then downloads each file thirty times from each
of the nodes, both with and without the NetGator proxy. The values of end-to-
end latency are determined by the difference in the time-stamp of the packet that
starts the initial request before the challenge and the last packet that closes the
connection after downloading the file. Figure 8 shows the end-to-end latencies
with and without using Javascript, Flash, and HTML request challenges for
requesting different sizes of files.

Our experiments show that the end-to-end latency using request challenges
is almost negligible to the client. When using Javascript as the challenges, it
increases the end-to-end latency by 274 milliseconds in average for all size of
file types from four sites. The Flash request challenge has an average latency
overhead of 580 milliseconds, while the HTML request challenge introduces 206
milliseconds of latency overhead. Figure 8(d) shows that the encrypted Javascript
request challenge has only 174 milliseconds of latency overhead, which is less than
the normal Javascript challenge and HTML challenge. We see that enhancing
security by encrypting the hash may not increase the end-to-end latency.

To measure the overhead of the response challenges, we perform experiments
using a wide-range of websites throughout the country. Baselines are established
for each website by performing a simple loading of each of them without the
proxy involved. Once these baselines are established, the gateway of the client
laptop was changed to be our proxy. Each website is loaded 30 times both with



(a) Javascript Challenge End-to-End La-
tency.

(b) Flash Challenge End-to-End Latency.

(c) HTML Challenge End-to-End Latency. (d) Encrypted Javascript Challenge End-
to-End Latency.

Fig. 8. Request Challenge Overhead.

and without the response challenge. In order to establish time, the difference
between the time-stamp of the first and last packet in the stream is taken. The
results of these experiments are shown in Figure 9. We can see that the response
challenge only introduces very small latency overhead.

The request challenge results demonstrate that the overhead remains con-
stant across various file sizes; this means that in terms of percentage the overhead
gets progressively smaller as the files downloaded become larger. The response
challenge results are even smaller with an average overhead of only 24 millisec-
onds. With the minimal amount of overhead that our system introduces, it is not
perceivable to the user. All of the challenging happens without any interaction
from the user, allowing a seamless experience while maintaining the security of



Fig. 9. Response Challenge End-to-End Latency.

a network. Moreover, our proxy is exceedingly efficient in processing the scripts,
being able to handle on average approximately 1,200 request scripts per second.

For the malware testing we obtained a set of malware through a custom
crafted retrieval mechanism. This mechanism is provided malicious URLs from
Malware Domain List and Google. The samples used during testing were solely
Windows executables. During our testing to establish what percentage of mal-
ware calls out utilizing HTTP/S, we find that none of the malware which used
either protocol could overcome our challenge architecture. That sample size
equates to 817 malware samples challenged. The typical behavior of the infected
systems simply try to re-request the file it has originally sought after only to
repeatedly be returned our challenge. We do not observe any false positives in
our experiments. The level of false positives will be directly related to how many
browsers in a network utilize HTTP/S but do not contain HTML, Javascript, or
Flash engines.

6 Discussion and Limitations

We assume that malicious agents do not typically access the full software stack
of applications that reside on the infected host. We also assume that the malware
does not include its own Javascript engine. If malware is forced to implement
a full browser agent complete with Javascript/Flash functionality, this would
greatly increase the presence of the malware thus increasing its vulnerable to
detection. Based on this assumption, the malware will not be able to decode the
encrypted hash of the challenge even when the key is passed to the host. Our
testing of recent malware samples shows us that the current level of sophistica-
tion of malware does not include their own Javascript engines nor the ability to
access the full software stack of web browsers present on the system. By issuing



each piece of malware our Javascript challenge, we are able to determine that
none of the malware tested encompasses the Javascript functionality to overcome
our challenge infrastructure.

Our system can challenge either the initial request or the response when con-
sidering the trade-offs between security and performance. The request challenge
allows NetGator to sever the malware’s connection immediately to negate any
damage before it happens. This also comes with a cost of slight latency. On the
other hand, the response challenge allows the response to return to the request-
ing agent before it issues the challenge. This dramatically lowers the latency
the user experiences but also allows the original request to complete even if the
software agent is detected as malicious later. This method relies on the moni-
toring of the logs to identify compromised hosts. We could improve its security
by utilizing the information about agents that fail the challenge in the response
PIC and create a signature to block future outbound connection attempts. In-
tercepting SSL traffic causes a possible issue in the transparency to users. Our
approach to processing HTTPS traffic essentially acts in the same way a man in
the middle attack works. Browsers typically identify this behavior and report the
suspicious activity to the user. This can be mitigated by the hosts having their
organizations certificates installed on the end hosts. Without these certificates
the transparency to the users is affected.

If an attacker is aware of the presence of our system, they would likely at-
tempt to craft their communications in a way to evade our detection. An ap-
proach that they might take would be to label their communication as a simple
non-browser agent. If the agent is not one of the approved applications to trans-
mit across ports 80 or 443, then the connection would be severed. If it is an
approved application, it would be challenged in the same way that browsers are.
In an enterprise network, there would ideally be a full repertoire of challenges
to issue to the various applications that communicate across ports 80 and 443.
However, there may be a necessary application for which a challenge can not be
crafted. In order for us to create a PIC for a particular application, we require
that is has specific functionality that will have an expected response to some re-
quest. For agents that do not meet the requirements to create a PIC, a whitelist
of servers for these application to communicate with can be constructed and any
connections from these applications to other servers would be raised as suspi-
cious. Malware might also utilize a full application (a legitimate web browser)
in their communications to correctly pass our challenges. While possible, this
increases the likelyhood of being detected due to not being able to rely on their
own covert communications. Encompassing a browser’s full capabilities would
evade our detection and is a limitation of our approach.

7 Related Work

Our work is partly inspired by various automatic protocol analysis systems [20,
29], which utilize injection of messages to various applications in order to auto-
matically determine how a particular protocol is organized. Instead of injecting



messages to test a protocol, we examine a particular application software to
prove its identity.

Recent research by Gu et al. [16] is the most simliar to our approach. They
aim to detect botnet communication over IRC through a combination of user
interaction and probing for expected responses. There are two main differences
with our approach. First, we do not expect a human to be behind the communi-
cations, nor rely on one at any time to be able to solve our challenges. Second,
their paper focuses on detection of malicious botnets, while ours is concerned
with verifying the identity of legitimate end-host applications. Our approach is
beneficial in the sense that the signatures (expected responses) of botnets will
continue to grow consistently while Netgator only has to establish signatures
(challenges) for legitimate applications which will not likely change their func-
tionality over time.

Our work can be compared to techniques used by OS and application fin-
gerprinting programs such as Nmap [21]. The most popular form of real-time
browser challenges is to utilize server-side techniques that read browser config-
uration files [23, 26] (Javascript, ASP, etc.), cookie information [22], or search
for platform specific components like Flash blockers or Silverlight [12]. Another
approach is to search traffic flows for known, specific identifiers like connec-
tions to Firefox update servers [30]. Conversely, techniques like the well-known
CAPTCHA puzzles attempt to prove the existence of a human user. However,
all those methods are disruptive and not transparent to the user.

Traditionally, botnet detection and mitigation systems like BotSniffer [17]
have focused on zombies that contact Internet Relay Chat(IRC) C&C servers
or utilize IRC-style communication [9]. Unfortunately, botnets have grown in
sophistication to use Peer-to-Peer (P2P) and unstructured communication [10,
19]. In addition to the traditional techniques such as blacklisting, both signature
and anomaly-based detection, and DNS traffic analysis, BotHunter [15] proposes
using infection models to find bots, while BotMiner [14] analyzes aggregated
network traffic. Our work is a another complementary study utilizing an active
challenge technique to distinguish certain types of bots from benign applications.

Data transmission over HTTP/S is very common and consumes the bulk of
un-filtered traffic in most organizations. For analyzing packets that contain a
payload, deep packet inspection techniques are favored. Signature or anomaly
based detection is applied to these packets [10, 13, 25, 27, 8, 28]. To foil this mech-
anism, malware may use the same secure protocols that users employ to protect
themselves from malicious agents [24, 18]. Our approach only analyzes the data
content to determine the protocol being transmitted. Once the protocol type is
established, we are are concerned solely with the client behind the communica-
tions.

8 Conclusions

We study an active and in-line malware detection system, called NetGator. Our
goal is to be able to detect outbound malware flows for when malware attempts



to establish a network connection to a back-end server. Our approach is two-
pronged: the passive classification module analyzes network flows to determine
the claimed identity of the end-point software that generated the packets. It
relies on existing network program signatures to classify end-point applications
and drop the unknown requests. Next, NetGator verifies the legitimacy of the
end-point software by generating easy to generate and computed in-line Program
Interactive Challenges (PICs) based on the functional capabilities supported by
the end-point software.

Although our approach can be potentially circumvented by sophisticated tar-
geted malware, we believe that NetGator significantly increases the complexity
of the attack forcing the adversary to perform additional invasive tasks before it
can successfully communicate data. On the other hand, NetGator is fully trans-
parent to the user: our experiments demonstrate that it can examine real-time
traffic. In addition, the detection results demonstrate the effectiveness of PICs
in identifying malware that attempts to imitate the network connection of pop-
ular browsers. NetGator introduces an average of 353 milliseconds end-to-end
latency overhead using network request challenges and 24 milliseconds using
network response challenges.
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