
A Study of Personal Information in Human-chosen
Passwords and Its Security Implications

Yue Li∗, Haining Wang†, Kun Sun∗
∗Department of Computer Science, College of William and Mary

{yli,ksun}@cs.wm.edu
†Department of Electrical and Computer Engineering, University of Delaware

hnw@udel.edu

Abstract—Though not recommended, Internet users often
include parts of personal information in their passwords for
easy memorization. However, the use of personal information
in passwords and its security implications have not yet been
studied systematically in the past. In this paper, we first dissect
user passwords from a leaked dataset to investigate how and
to what extent user personal information resides in a password.
In particular, we extract the most popular password structures
expressed by personal information and show the usage of personal
information. Then we introduce a new metric called Coverage
to quantify the correlation between passwords and personal
information. Afterwards, based on our analysis, we extend the
Probabilistic Context-Free Grammars (PCFG) method to be
semantics-rich and propose Personal-PCFG to crack passwords
by generating personalized guesses. Through offline and online
attack scenarios, we demonstrate that Personal-PCFG cracks
passwords much faster than PCFG and makes online attacks
much easier to succeed.

I. INTRODUCTION

Text-based passwords still remain a dominating and ir-
replaceable authentication method in the foreseeable future.
Although people have proposed different authentication mech-
anisms, no alternative can bring all the benefits of passwords
without introducing any extra burden to users [1]. However,
passwords have long been criticized as one of the weakest links
in authentication. Due to human-memorability requirement,
user passwords are usually far from true random strings [2]–
[6]. In other words, human users are prone to choosing weak
passwords simply because they are easy to remember. As a
result, most passwords are chosen within only a small portion
of the entire password space, being vulnerable to brute-force
and dictionary attacks.

To increase password security, online authentication sys-
tems start to enforce stricter password policies. Meanwhile,
many websites deploy password strength meters to help users
choose secure passwords. However, these meters are proved to
be ad-hoc and inconsistent [7], [8]. To better assess the strength
of passwords, we need to have a deeper understanding on how
users construct their passwords. If an attacker knows exactly
how users create their passwords, guessing their passwords
will become much easier. Meanwhile, if a user is aware of the
potential vulnerability induced by a commonly used password
creation method, the user can avoid using the same method
for creating passwords.

Toward this end, researchers have made significant efforts
to unveil the structures of passwords. Traditional dictionary

attacks on passwords have shown that users tend to use simple
dictionary words to construct their passwords [9]. Language is
also vital since users tend to use their first languages when
constructing passwords [2]. Besides, passwords are mostly
phonetically memorable [4] even though they are not simple
dictionary words. It is also indicated that users may use
keyboard and date strings in their passwords [5], [10], [11].
However, most studies discover only superficial password
patterns, and the semantic-rich composition of passwords is
still mysterious to be fully uncovered. Fortunately, an enlight-
ening work investigates how users generate their passwords by
learning the semantic patterns in passwords [12].

In this paper, we study password semantics from a different
perspectivethe use of personal information. We utilize a leaked
password dataset, which contains personal information, from
a Chinese website for this study. We first measure the usage
of personal information in password creation and present
interesting observations. We are able to obtain the most popular
password structures with personal information embedded. We
also observe that males and females behave differently when
using personal information in password creation. Next, we
introduce a new metric called Coverage to accurately quan-
tify the correlation between personal information and user
password. Since it considers both the length and continuation
of personal information in a password, Coverage is a useful
metric to measure the strength of a password. Our quantifi-
cation results using the Coverage metric confirm our direct
measurement results on the dataset, showing the efficacy of
Coverage. Moreover, Coverage is easy to be integrated with
existing tools, such as password strength meters for creating a
more secure password.

To demonstrate the security vulnerability induced by using
personal information in passwords, we propose a semantics-
rich Probabilistic Context-Free Grammars (PCFG) method
called Personal-PCFG, which extends PCFG [13] by consider-
ing those symbols linked to personal information in password
structures. Personal-PCFG is able to crack passwords much
faster than PCFG. It also makes an online attack more feasible
by drastically increasing the guess success rate. Finally, we
discuss potential solutions to defend against semantics-aware
attacks like Personal-PCFG.

Our study is based on a dataset collected from a Chinese
website. Although measurement results could be different
with other datasets, our observations still shed some light on
how personal information is used in passwords. As long as
memorability plays an important role in password creation, the



correlation between personal information and user password
remains, regardless of which language users speak. We believe
that our work on personal information quantification, password
cracking, and password protection could be applicable to any
other text-based password datasets from different websites.

The remainder of this paper is organized as follows.
Section II measures how personal information resides in
user passwords and shows the gender difference in password
creation. Section III introduces the new metric, Coverage,
to accurately quantify the correlation between personal
information and user password. Section IV details Personal-
PCFG and shows cracking results compared with the original
PCFG. Section V discusses limitations and potential defenses.
Section VI surveys related work, and finally Section VII
concludes this paper.

II. PERSONAL INFORMATION IN PASSWORDS

Intuitively, people tend to create passwords based on their
personal information because human beings are limited by
their memory capacities and random passwords are much
harder to remember. We show that users’ personal information
plays an important role in human-chosen password genera-
tion by dissecting passwords in a mid-sized leaked password
dataset. Understanding the usage of personal information in
passwords and its security implications can help us to further
enhance password security. To start, we introduce the dataset
used throughout this study.

A. 12306 Dataset

A number of password datasets have been exposed to the
public in recent years, usually containing several thousands
to millions of real passwords. As a result, there are several
password measurement or password cracking studies based on
analyzing those datasets [2], [10]. In this paper, a dataset called
12306 is used to illustrate how personal information is involved
in password creation.

1) Introduction to Dataset: At the end of year 2014, a
Chinese dataset is leaked to the public by anonymous attackers.
It is reported that the dataset is collected by trying usernames
and passwords from other leaked datasets online. We call this
dataset 12306 because all passwords are from the website
www.12306.cn, which is the official site of the online railway
ticket reservation system in China. There is no data available
on the exact number of users of the 12306 website; however,
we infer at least tens of millions of registered users in the
system since it is the only official website for the entire
Chinese railway system.

The 12306 dataset contains more than 130,000 Chinese
passwords. Having witnessed so many leaked large datasets,
the size of the 12306 dataset is considered medium. What
makes it special is that together with plaintext passwords, the
dataset also includes several types of user personal informa-
tion, such as a user’s name and the government-issued unique
ID number (similar to the U.S. Social Security Number). As
the website requires a real ID number to register and people
must provide real personal information to book a ticket, we
consider the information in this dataset to be reliable.

TABLE I: Most Frequent Passwords.

Rank Password Amount Percentage
1 123456 389 0.296%
2 a123456 280 0.213%
3 123456a 165 0.125%
4 5201314 160 0.121%
5 111111 156 0.118%
6 woaini1314 134 0.101%
7 qq123456 98 0.074%
8 123123 97 0.073%
9 000000 96 0.073%

10 1qaz2wsx 92 0.070%

2) Basic Analysis: We first conduct a simple analysis to
reveal some general characteristics of the 12306 dataset. For
data consistency, we remove users whose ID number is not 18-
digit long. These users may have used other IDs (e.g., passport
number) to register on the system and count for 0.2% of the
whole dataset. The dataset contains 131,389 passwords for
analysis after being cleansed. Note that various websites may
have different password creation policies. For instance, with a
strict password policy, users may apply mangling rules (e.g.,
abc − > @bc or abc1) to their passwords to fulfill the policy
requirement [14]. Since the 12306 website has changed its
password policy after the password leak, we do not know the
exact password policy when the dataset was first compromised.
However, from the leaked dataset, we infer that the password
policy is quite simple—all passwords cannot be shorter than
six symbols. There is no restriction on what type of symbols
can be used. Therefore, users are not required to apply any
mangling rules to their passwords.

The average length of passwords in the 12306 dataset
is 8.44. The most common passwords in the 12306 dataset
are listed in Table I. The dominating passwords are trivial
passwords (e.g., 123456, a123456, etc.), keyboard passwords
(e.g., 1qaz2wsx, 1q2w3e4r, etc.), and “iloveyou” passwords.
Both “5201314” and “woaini1314” mean “I love you forever”
in Chinese. The most commonly used Chinese passwords are
similar to a previous study [10]; however, the 12306 dataset
is much more sparse. The most popular password “123456”
counts for less than 0.3% of all passwords while the number
is 2.17% in [10]. We believe that the password sparsity is
due to the importance of the website; users are less prone to
use trivial passwords like “123456” and there are fewer sybil
accounts because a real ID number is needed for registration.

Similar to [10], we measure the resistance to guessing of
the 12306 dataset in terms of various metrics including the
worst-case security bit representation (H∞), the guesswork
bit representation (G̃), the α-guesswork bit representations
(G̃0.25 and G̃0.5), and the β-success rates (λ5 and λ10).
The result is shown in Table II. We found that users of
12306 avoid using extremely guessable passwords such as
“123456” because 12306 has a substantially higher worst-case
security and the β-success rate for β = 5 and 10. We believe
users have certain password security concerns when creating
passwords for critical service systems like 12306. However,
their concern seems to be limited by avoiding only extremely
easy passwords. As indicated by values of alpha-guesswork,
the overall password sparsity of the 12306 dataset is no higher



TABLE II: Resistance to guessing

H∞ G̃ λ5 λ10 G̃0.25 G̃0.5

8.4 16.85 0.25% 0.44% 16.65 16.8

TABLE III: Most Frequent Password Struc-
tures.

Rank Structure Amount Percentage
1 D7 10,893 8.290%
2 D8 9,442 7.186%
3 D6 9,084 6.913%
4 L2D7 5,065 3.854%
5 L3D6 4,820 3.668%
6 L1D7 4,770 3.630%
7 L2D6 4,261 3.243%
8 L3D7 3,883 2.955%
9 D9 3,590 2.732%
10 L2D8 3,362 2.558%

“D” represents digits and “L” represents English
letters. The number indicates the segment length.
For example, L2D7 means the password contains
2 letters followed by 7 digits.

than previously studied datasets.

We also study the basic structures of the passwords in
12306. The most popular password structures are shown in
Table III. Similar to a previous study [10], our results again
show that Chinese users prefer digits in their passwords as
opposed to letters like English-speaking users. The top five
structures all have a significant portion of digits, and at most
2 or 3 letters are appended in front. The reason behind this
may be that Chinese characters are logogram-based, and digits
seem to be the best alternative when creating a password.

In summary, the 12306 dataset is a Chinese password
dataset that has general Chinese password characteristics.
Users have certain security concerns by choosing less trivial
passwords. However, the overall sparsity of the 12306 dataset
is no higher than previously studied datasets.

B. Personal Information

The 12306 dataset not only contains user passwords but
also multiple types of personal information listed in Table IV.

Note that the government-issued ID number is a unique 18-
digit number, which includes personal information itself. Digits
1-6 represent the birthplace of the owner, digits 7-14 represent
the birthdate of the owner, and digit 17 represents the gender of
the owner—odd means male and even means female. We take
out the 8-digit birthdate and treat it separately since birthdate
is very important personal information in password creation.
Therefore, we finally have six types of personal information:
name, birthdate, email address, cell phone number, account
name, and ID number (birthdate excluded).

1) New Password Representation: To better illustrate how
personal information correlates to user passwords, we de-
velop a new representation of a password by adding more
semantic symbols besides the conventional “D”, “L” and “S”
symbols, which stand for digit, letter, and special symbol,

TABLE IV: Personal Information.

Type Description
Name User’s Chinese name
Email address User’s registered email address
Cell phone User’s registered cell phone number
Account name The username used to log in the system
ID number Government issued ID number

respectively. We try to match parts of a user’s password to the
six types of personal information, and express the password
with these personal information. For example, a password
“alice1987abc” can be represented as [Name][Birthdate]L3,
instead of L3D4L3 as in a traditional representation. The
matched personal information is denoted by corresponding
tags—[Name] and [Birthdate] in this example; for segments
that are not matched, we still use “D”, “L”, and “S” to describe
the symbol types.

We believe that representations like [Name][Birthdate]L3

are better than L5D4L3 since they more accurately describe the
composition of a user password with more detailed semantic
information. Using this representation, we apply the following
matching method to the entire 12306 dataset to see how these
personal information tags appear in password structures.

2) Matching Method: We propose a matching method to
locate personal information in a user password. The basic idea
is that we first generate all substrings of the password and
sort them in descending length order. Then we match these
substrings from the longest to the shortest to all types of
personal information. If a match is found, the match function
is recursively applied over the remaining password segments
until no further match is found. We require that a segment
should be at least 2-symbol long to be matched. The segments
that are not matched to any personal information will then be
labeled using the traditional “LDS” tags.

We describe the methods for matching each type of the
personal information as follows. For the Chinese names, we
convert them into Pinyin form, which is alphabetic repre-
sentation of Chinese characters. Then we compare password
segments to 10 possible permutations of a name, such as
lastname+firstname and last initial+firstname. If the segment
is exactly the same as one of the permutations, we consider
it a match. For birthdate, we list 17 possible permutations
and compare a password segment with these permutations. If
the segment is the same as any permutation, we consider it a
match. For account name, email address, cell phone number,
and ID number, we further constrain the length of a segment to
be at least 3 to avoid mismatching by coincidence. Besides, as
people tend to memorize a sequence of numbers by dividing
into 3-digit groups, we believe that a match of at least 3 is
likely to be a real match.

Note that for a password segment, it may match multiple
types of personal information. In such cases, all possible
matches are counted in the results.

3) Matching Results: After applying the matching method
to 12306 dataset, we find that 78,975 out of 131,389 (60.1%) of
the passwords contain at least one of the six types of personal



TABLE V: Most Frequent Password Structures.

Rank Structure Amount Percentage
1 [ACCT] 6,820 5.190%
2 D7 6,224 4.737%
3 [NAME][BD] 5,410 4.117%
4 [BD] 4,470 3.402%
5 D6 4,326 3.292%
6 [EMAIL] 3,807 2.897%
7 D8 3,745 2.850%
8 L1D7 2,829 2.153%
9 [NAME]D7 2,504 1.905%

10 [ACCT][BD] 2,191 1.667%

TABLE VI: Personal Information Usage.

Rank Information Type Amount Percentage
1 Birthdate 31,674 24.10%
2 Account Name 31,017 23.60%
3 Name 29,377 22.35%
4 Email 16,642 12.66%
5 ID Number 3,937 2.996%
6 Cell Phone 3,582 2.726%

information. Apparently, personal information is frequently
used in password creation. We believe that the ratio could be
even higher if we know more personal information of users.
We present the top 10 password structures in Table V and the
usage of personal information in passwords in Table VI. As
mentioned above, a password segment may match multiple
types of personal information, and we count all of these
matches. Therefore, the sum of the percentages is larger
than 60.1%. Within 131,389 passwords, we obtain 153,895
password structures. Based on Tables V and VI, we can see
that people largely rely on personal information when creat-
ing passwords. Among the 6 types of personal information,
birthdate, account name, and name are most popular with
over 20% occurrence rate. 12.66% users include email in their
passwords. However, only few percentage of people include
their cellphone and ID number in their passwords (less than
3%).

4) Gender Password Preference: As the user ID number
in our dataset actually contains gender information (i.e., the
second-to-last digit in the ID number represents gender), we
compare the password structures between males and females
to see if there is any difference in password preference. Since
the dataset is biased in gender with 9,856 females and 121,533
males, we randomly select 9,856 males and compare with
females.

The average password lengths for males and females are
8.41 and 8.51 characters, respectively, which shows that gender
does not greatly affect the length of passwords. We then
apply the matching method to each gender. We observe that
61.0% of male passwords contain personal information while
only 54.1% of female passwords contain personal information.
We list the top 10 structures for each gender in Table VII
and personal information usage in Table VIII. These results
demonstrate that male users are more likely to include personal
information in their passwords than female users. Additionally,
we have two other interesting observations. First, the total

TABLE VII: Most Frequent Structures in Different Genders.

Rank Male Female
Structure Percentage Structure Percentage

1 [ACCT] 4.647% D6 3.909%
2 D7 4.325% [ACCT] 3.729%
3 [NAME][BD] 3.594% D7 3.172%
4 [BD] 3.080% D8 2.453%
5 D6 2.645% [EMAIL] 2.372%
6 [EMAIL] 2.541% [NAME][BD] 2.309%
7 D8 2.158% [BD] 1.968%
8 L1D7 2.088% L2D6 1.518%
9 [NAME]D7 1.749% L1D7 1.267%

10 [ACCT][BD] 1.557% L2D7 1.240%
NA TOTAL 28.384% TOTAL 23.937%

TABLE VIII: Most Frequent Personal Information in Different
Genders.

Rank Male Female
Information Type Percentage Information Type Percentage

1 [BD] 24.56% [ACCT] 22.59%
2 [ACCT] 23.70% [BD] 20.56%
3 [NAME] 23.31% [NAME] 12.94%
4 [EMAIL] 12.10% [EMAIL] 13.62%
5 [ID] 2.698% [CELL] 2.982%
6 [CELL] 2.506% [ID] 2.739%

number of password structures for females is 1,756, which
is 10.3% more than that of males. Besides, 28.38% of males’
passwords fall into the top 10 structures while only 23.94%
of females’ passwords fall into the top 10 structures. Thus,
passwords created by males are denser and more predictable.
Second, males and females vary significantly in the use of
name information. 23.32% passwords of males contain their
names. By contrast, only 12.94% of females’ passwords con-
tain their names. We notice that name is the main difference
in personal information usage between males and females.

In summary, passwords of males are generally composed
of more personal information, especially the name of a user. In
addition, the password diversity for males is lower. Our analy-
sis indicates that the passwords of males are more vulnerable to
cracking than those of females. At least from the perspective
of personal-information-related attacks, our observations are
different from the conclusion drawn in [15] that males have
slightly stronger passwords than females.

III. CORRELATION QUANTIFICATION

While the statistical numbers above show the correlation
between each type of personal information and passwords, they
cannot accurately measure the degree of personal information
involvement in an individual password. Thus, we introduce
a novel metric—Coverage—to quantify the involvement of
personal information in the creation of an individual password
in an accurate and systematic fashion.

A. Coverage

The value of Coverage ranges from 0 to 1. A larger
Coverage implies a stronger correlation, and Coverage “0”
means no personal information is included in a password and
Coverage “1” means the entire password is perfectly matched



with one type of personal information. While Coverage is
mainly used for measuring an individual password, the average
Coverage also reflects the degree of correlation in a set of
passwords. In the following, we describe the algorithm to
compute Coverage and elaborate the key features of Coverage.

To compute Coverage, we take password and personal
information in terms of strings as input and use a sliding
window approach to conducting the computation. We maintain
a dynamic-sized window sliding from the beginning to the end
of the password. The initial size of the window is 2. If the
segment covered by the window matches to a certain type of
personal information, we enlarge the window size by 1. Then
we try again to match the segment in the larger window to
personal information. If a match is found, we further enlarge
the window size until a mismatch happens. At this point, we
reset the window size to the initial value 2 and slide the
window to the password symbol that causes the mismatch in
the previous window. Meanwhile, we maintain an array called
tag array with the same length as the password to record the
length of each matched password segment. After we slide the
window through the entire password string, the tag array is
used to compute the value of Coverage—the sum of squares
of matched password segment length divided by the square of
password length. Mathematically we have

CV G =

n∑
i=1

(
l2i
L2

), (1)

where n denotes the number of matched password segments,
li denotes the length of the corresponding matched password
segment, and L is the length of the password. Note that a match
is found if at least a 2-symbol-long password segment matches
to a substring of certain personal information. We then show an
example to compute Coverage for a user password. Alice, who
was born on August 16, 1988, has a password “alice816!!”. We
apply the coverage computing algorithm on Alice. After sliding
the window thoroughly, the tag array is [5,5,5,5,5,3,3,3,0,0].
The first five elements in the array, i.e., {5,5,5,5,5}, indicate
that the first 5 password symbols match certain type of personal
information (name in this case). The following three elements
in the array, i.e., {3,3,3}, indicate that the 3 symbols match
certain type of personal information (birthdate in this case).
The last two elements in the array, i.e., {0,0}, indicate that
the last 2 symbols have no match. Based on Equation 1, the
coverage is computed as CV G =

∑2
i=1

l2i
L2 = 52+32

102 = 0.34.

Coverage is independent of password datasets. As long as
we can build a complete string list of personal information,
Coverage can accurately quantify the correlation between a
user’s password and its personal information. For personal
information segments with the same length, Coverage stresses
the continuation of matching. A continuous match is stronger
than fragmented matches. That is to say, for a given password
of length L, a matched segment of length l (l ≤ L) has a
stronger correlation to personal information than two matched
segments of length l1 and l2 with l = l1 + l2. For example,
a matched segment of length 6 is expected to have a stronger
correlation than 2 matched segments of length 3. This feature
of Coverage is desirable because multiple shorter segments
(i.e., originated from different types of personal information)
are usually harder to guess and may involve a wrong match
due to coincidence. Since it is difficult to differentiate a real

Fig. 1: Coverage distribution - 12306.

match from a coincidental match, we would like to minimize
the effect of wrong matches by taking squares of the matched
segments to compute Coverage in favor of a continuous match.

B. Coverage Results on 12306

We compute the Coverage value for each user in the 12306
dataset and show the result as a cumulative distribution func-
tion in Figure 1. To easily understand the value of Coverage,
we discuss a few examples to illustrate the implication of
a roughly 0.2 Coverage. Suppose we have a 10-symbol-long
password. One matched segment with length 5 will yield 0.25
Coverage. Two matched segments with length 3 (i.e., in total
6 symbols are matched to personal information) yield 0.18
Coverage. Moreover, 5 matched segments with length 2 (i.e.,
all symbols are matched but in a fragmented fashion) yield 0.2
Coverage. Apparently, Coverage of 0.2 indicates a fairly high
correlation between personal information and a password.

The median value for a user’s Coverage is 0.186, which im-
plies that a significant portion of user passwords have relatively
high correlation to personal information. Furthermore, Around
10.5% of users have Coverage of 1, which means that 10.5%
of passwords are perfectly matched to exactly one type of
personal information. On the other hand, around 9.9% of users
have zero Coverage, implying no use of personal information
in their passwords.

The average Coverage for the entire 12306 dataset is
0.309. We also compute the average Coverages for male and
female groups, since we observe that male users are more
likely to include personal information in their passwords in
Section II-B4. The average Coverage for the male group is
0.314, and the average Coverage for the female group is 0.269.
It complies with our previous observation and indicates that
the correlation for male users is higher than that of female
users. Conversely, it also shows that Coverage works very well
to quantify the correlation between passwords and personal
information.

C. Coverage Usage

Coverage could be very useful for constructing password
strength meters, which have been reported as mostly ad-
hoc [7]. Most meters give scores based on password structure
and length or blacklist commonly used passwords (e.g., the
notorious “password”). There are also meters that perform
simple social profile analysis, such as rejecting a password



when it contains the user’s name or the account name.
However, these simple analysis mechanisms can be easily
mangled, while the password remains weak. Using the metric
of Coverage, password strength meters can be improved to
more accurately measure the strength of a password. Moreover,
it is straightforward to implement Coverage as a part of the
strength measurement (only a few lines of Javascript should
do). More importantly, since users cannot easily defeat the
Coverage measurement through simple mangling methods,
they are forced to select more secure passwords.

Coverage can also be integrated into existing tools to
enhance their capabilities. There are several Markov model
based tools that predict the next symbol when a user creates
a password [14], [16]. These tools rank the probability of the
next symbol based on the Markov model learned from dic-
tionaries or leaked datasets, and then show the most probable
predictions. Since most users would be surprised to find that
the next symbol in their mind matches the tool’s output exactly,
they may switch to choose a more unpredictable symbol.
Coverage helps to determine whether personal information
prediction ranks high enough in probability to remind a user of
avoiding the use of personal information in password creation.

IV. PERSONAL-PCFG

After investigating the correlation between personal infor-
mation and user passwords through measurement and quan-
tification, we further study their potential usage to crack pass-
words from an attacker’s point of view. Based on the PCFG
approach [13], we develop Personal-PCFG as an individual-
oriented password cracker that can generate personalized
guesses towards a targeted user by exploiting the already
known personal information.

A. Attack Scenarios

We assume that the attacker knows a certain amount of
personal information about the targets. The attacker can be
an evil neighbor, a curious friend, a jealous husband, a black-
mailer, or even a company that buys personal information from
other companies. Under these conditions, targeted personal
information is rather easy to obtain by knowing the victim
personally or searching online, especially on social networking
sites (SNS) [17], [18]. Personal-PCFG can be used in both
offline and online attacks.

In traditional offline password attacks, attackers usually
steal hashed passwords from victim systems, and then try to
find out the unhashed values of these passwords. As a secure
hash function cannot be simply reversed, the most popular
attacking strategy is to guess and verify passwords by brute
force. Each guess is verified by hashing a password (salt needs
to be added) from a password dictionary and comparing the
result to the hashed values in the leaked password database.
High-probability password guesses can usually match many
hashed values in the password database and thus are expected
to be tried first. For offline attacks, Personal-PCFG is much
faster in guessing the correct password than conventional
methods, since it can generate high-probability personalized
passwords and verify them first.

For an online attack, since the attacker does not even have
a hashed password database, he or she instead tries to log in

directly to the real systems by guessing the passwords. It is
more difficult to succeed in online attacks than offline attacks
because online service systems usually have restrictions on
login attempts for a given period of time. If the attempt quota
has been reached without inputting a correct password, the
account may be locked for some time or even permanently
unless certain actions are taken (e.g., call the service provider).
Therefore, online attacks require accurate guesses, which can
be achieved by integrating personal information. Personal-
PCFG is able to crack around 1 out of 20 passwords within
only 5 guesses.

B. A Revisit of PCFG

Personal-PCFG is based on the basic idea of PCFG [13]
and provides an extension to further improve its efficiency.
Before we introduce Personal-PCFG, we briefly revisit princi-
ples of PCFG. PCFG pre-processes passwords and generates
base password structures such as “L5D3S1” for each of the
passwords. Starting from high-probability structures, the PCFG
method substitutes the “D” and “S” segments using segments
of the same length learned from the training set. These substi-
tute segments are ranked by probability of occurrence learned
from the training set. Therefore, high probability segments
will be tried first. One base structure may have a number of
substitutions, for example, “L5D3S1” can have “L5123!” and
“L5691!” as its substitutions. These new representations are
called pre-terminal structures. No “L” segment is currently
substituted since the space of alpha strings is too large to
learn from the training set. Next, these pre-terminals are
ranked from high probability to low probability. Finally “L”
segments are substituted using a dictionary to generate actual
guesses. Since PCFG can generate statistically high probability
passwords first, it can significantly reduce the guessing number
of traditional dictionary attacks.

C. Personal-PCFG

Personal-PCFG leverages the basic idea of PCFG. Besides
“L”, “D”, and “S” symbols in PCFG, we add more semantic
symbols including “B” for birthdate, “N” for name, “E” for
email address, “A” for account name, “C” for cell phone
number, and “I” for ID number. Richer semantics makes
Personal-PCFG more accurate in guessing passwords. To
make Personal-PCFG work, an additional personal information
matching phase and an adaptive-substitution phase are added
to the original PCFG method. Therefore, Personal-PCFG has 4
phases in total and the output of each phase will be fed to the
next phase as input. The output of the last phase is the actual
guesses for trying. We now describe each phase in detail along
with simple examples.

1) Personal Information Matching: Given a password
string, we first match the entire password or a substring of the
password to its personal information. The matching algorithm
is similar to that in Section II-B2. However, this time we also
record the length of the matching segment. We replace the
matched segments in the password with corresponding symbols
and mark the symbols with length. Unmatched segments
remain unchanged. For instance, we assume Alice was born
in August 16, 1988 and her password is “helloalice816!”. The
matching phase will replace “alice” with “N5” and “816” with



“B3”. The leftover “hello” is kept unchanged. Therefore the
outcome of this phase is “helloN5B3!”.

2) Password Pre-processing: This phase is similar to the
pre-processing routine of the original PCFG; however, based
on the output of the personal information matching phase, the
segments already matched to personal information will not be
processed. For instance, the sample structure “helloN5B3!”
will be updated to “L5N5B3S1” in this phase. Now the
password is fully described by semantic symbols of Personal-
PCFG, and the output in this phase provides base structures
for Personal-PCFG.

3) Guess Generation: Similar to the original PCFG, we re-
place “D” and “S” symbols with actual strings learned from the
training set in descending probability order. “L” symbols are
replaced with words from a dictionary. Similar to PCFG [13],
we output the results on the fly so we do not need to wait for
all the possible guesses being calculated and sorted. Note that
we have not replaced any symbols for personal information
so the guesses are still not actual guesses. We do not handle
personal information in this step, since personal information
for each user is different and personal information symbols
can only be substituted until the target is specific. Therefore,
in this phase our base structures only generate pre-terminals,
which are partial guesses that contain part of actual guesses
and part of Personal-PCFG semantic symbols. For instance,
the example “L5N5B3S1” is instantiated to “helloN5B3!” if
“hello” is the first 5-symbol-long string in the input dictionary
and “!” has the highest probability of occurrence among 1
symbol special character in the training set. Note that for
“L” segments, each word of the same length has the same
probability. The probability of “hello” is simply 1

N , in which N
is the total number of words of length 5 in the input dictionary.

4) Adaptive Substitution: In the original PCFG, the output
of guess generation can be applied to any target user. However,
in Personal-PCFG, the guesses will be further instantiated
with personal information, which are specific to only one
target user. Each personal information symbol is replaced by
corresponding personal information of the same length. If there
are multiple candidates of the same length, all of them will be
included for trial. In our example “helloN5B3!”, “N5” will be
directly replaced by “alice”. However, since “B3” has many
candidate segments and any length 3 substring of “19880816”
may be a candidate, the guesses include all substrings, such
as “helloalice198!”, “helloalice988!”, . . ., “helloalice816!”. We
then try these candidate guesses one by one until we find out
that one candidate matches exactly the password of Alice. Note
that instead of having multiple candidates, not all personal
information segments can be replaced because same length
segments may not always be available. For instance, a pre-
terminal structure “helloN6B3!” is not suitable for Alice since
her name is at most 5 symbols long. In this case, no guesses
from this structure should be generated for Alice.

D. Cracking Results

We compare the performance of Personal-PCFG and the
original PCFG using the 12306 dataset, which has 131,389
users. We use half of the dataset as the training set, and
the other half as the testing set. For the “L” segments,
both methods need to use a dictionary, which is critical

Fig. 2: PCFG vs. Personal-PCFG (Offline).

for password cracking. To eliminate the effect of an unfair
dictionary selection, we use “perfect” dictionaries in both
methods. Perfect dictionaries are dictionaries we collected
directly from the testing set, so that any string in the dictionary
is useful and any letter segments in the passwords must appear
in the dictionary. Thus, a perfect dictionary is a guarantee
to find correct alpha strings efficiently. In our study, both
PCFG perfect dictionary and Personal-PCFG perfect dictionary
contain 15,000 to 17,000 entries.

We use individual number of guesses to measure the
effectiveness of Personal-PCFG and compare with PCFG.
The individual number of guesses is defined as the number
of password guesses generated for cracking each individual
account, e.g., 10 guess trials for each individual account, which
is independent of the password dataset size. In Personal-PCFG,
the aggregated individual number of guesses (i.e., the total
number of guesses) is linearly dependent on the password
dataset size. By contrast, in conventional cracking strategy
like PCFG, each guess is applied to the entire user base and
thus the individual number of guesses equals the total number
of guesses. Regardless of such discrepancy between Personal-
PCFG and conventional cracking methods, the performance
bottleneck of password cracking lies in the large number of
hash operations. Due to the salt mechanism, the total number
of hashes is bounded by G · N for both Personal-PCFG and
other password crackers, where G is the individual number of
guesses and N is the size of the dataset.

Given different individual number of guesses, we compute
the percentage of those cracked passwords in the entire pass-
word trial set. Figure 2 shows the comparison result of the
original PCFG and Personal-PCFG in an offline attack. Both
methods have a quick start because they always try high prob-
ability guesses first. Figure 2 clearly indicates that Personal-
PCFG can crack passwords much faster than PCFG does. For
example, with a moderate size of 500,000 guesses, Personal-
PCFG achieves a similar success rate that can be reached
with more than 200 million guesses by the original PCFG.
Moreover, Personal-PCFG is able to cover a larger password
space than PCFG because personal information provides rich
personalized strings that may not appear in the dictionaries or
training set.

Personal-PCFG not only improves the cracking efficiency
in offline attacks, but also increases the guessing success rate
in online attacks. Online attacks are only able to try a small
number of guesses in a certain time period due to the system



Fig. 3: PCFG vs. Personal-PCFG (Online).

constraints on the login attempts. Thus, we limit the number of
guesses to be at most 100 for each target account. We present
the results in Figure 3, illustrating that Personal-PCFG is able
to crack 309% to 634% more passwords than the original
PCFG. We then show several representative guessing numbers
in Figure 4. For a typical system that allows 5 attempts to input
the correct passwords, Personal-PCFG is able to crack 4.8% of
passwords within only 5 guesses. Meanwhile, the percentage
is just 0.9% for the original PCFG, and it takes around 2,000
more guesses for PCFG to reach a success rate of 4.8%. Thus,
Personal-PCFG is more efficient to crack the passwords within
a small number of guesses.

Therefore, Personal-PCFG substantially outperforms PCFG
in both online and offline attacks, due to the integration
of personal information into password guessing. The extra
requirement of Personal-PCFG on personal information can
be satisfied by knowing the victim personally or searching on
social networking sites (SNS).

V. DISCUSSION

A. Limitations

Only a single dataset is used in this study. Most users of
the 12306 website are Chinese, and the numbers of males and
females are not balanced. Thus, there might be cultural, lan-
guage, and gender biases on the analytical results. Moreover,
the effectiveness of the Coverage metric and Personal-PCFG
is merely validated on a single website. However, the publicly
available password datasets leaked with personal information
are very rare. To extend this work, we plan to derive personal
information from multiple leaked password datasets in the
future.

B. Potential Defenses

Using a password manager can mitigate this problem as
users do not need to remember individual site passwords. In the
semi-automatic creation of those site passwords, much more
randomness is introduced and much less personal information
is involved. However, the master password of a user still
remains vulnerable to Personal-PCFG.

One easy way to mitigate personal information correlation
in password creation is to mentally distort a password by users
themselves. Applying simple distortion on existing passwords
can easily break personal information integrity and continu-
ation. Such distortion can be selected by users as simple as

Fig. 4: Representative Points (Online).

adding an extra symbol (e.g., letter, number, or special char-
acter) between each pair of existing password letters/numbers.
We have observed that this simple distortion is able to signifi-
cantly reduce the value of Coverage (i.e., the personal informa-
tion correlation in a password), and Personal-PCFG becomes
ineffective. Even if an attacker knows that users distort their
passwords, it is still hard to successfully crack a password due
to the diverse ways of distortion and the increasing difficulty
of learning a personal information pattern in passwords. There
are also other solutions to mitigate personal information in
user passwords, such as personal-information-aware password
meters mentioned in Section III-C. However, the efficacy of
these defense methods need to be fully validated through
rigorous security analysis and a user study, which is left as
our future work.

VI. RELATED WORK

Researchers have done brilliant work on measuring real-
life passwords. In one of the earliest works [9], Morris and
Thompson found that passwords are quite simple and thus
are vulnerable to dictionary attacks. Malone et al. [3] studied
the distribution of passwords on several large leaked datasets
and found that user passwords fit Zipf distribution well. Gaw
and Felton [19] showed how users manage their passwords.
Mazurek et al. [15] measured 25,000 passwords from a
university and revealed correlation between demographic or
other factors, such as gender and field of study. Bonneau [2]
studied language effect on user passwords from over 70 million
passwords. Through measuring the guessability of 4-digit
PINs on over 1,100 banking customers [20], Bonneau et al.
found that birthdate appears extensively in 4-digit PINs. Li et
al. [10] conducted a large-scale measurement study on Chinese
passwords, in which over 100 million real-life passwords are
studied and differences between passwords in Chinese and
other languages are presented.

There are several works investigating specific aspects of
passwords. Yan et al. [6] and Kuo et al. [21] investigated
mnemonic-based passwords. Veras et al. [5] showed the im-
portance of date in passwords. Das et al. [22] studied how
users mangle one password for different sites. Schweitzer et
al. [11] studied the keyboard pattern in passwords. Besides the
password itself, research has been done on human habits and
psychology towards password security [23].



It has been shown that NIST entropy cannot accurately
describe the security of passwords [24]. The α-guesswork and
the β-success rate used by Bonneau et al [2], [20] are consid-
ered to be more accurate metrics to measure password database
strength. These metrics are also used by other researchers [10].

Password cracking has been studied for more than three
decades. Attackers usually attempt to recover passwords from
a hashed password database. Though reversing hash function
is infeasible, early works found that passwords are vulnerable
to dictionary attacks [9]. However, in recent years as password
policies become more strict, simple dictionary passwords are
less common. Narayanan and Shmatikov [4] used the Markov
model to generate guesses based on the fact that passwords
need to be phonetically similar to users’ native languages.
In 2009, Weir et al. [13] leveraged Probabilistic Context-Free
Grammars (PCFG) to crack passwords. Veras et al. [12] tried to
use semantic patterns in passwords. OMEN+ [25] improves the
Markov model [4] to crack passwords. It even includes experi-
ments to prove usefulness of personal information in password
cracking. However, their experiments are in a much smaller
scope based on the Markov model, and the improvement is
limited.

There has been research on protecting passwords by en-
forcing users to select more secure passwords, among which
password strength meters seem to be one effective method.
Castelluccia et al [26] proposed to use the Markov model as
in [4] to measure the security of user passwords. Meanwhile,
commercial password meters adopted by popular websites
have proved inconsistent [7]. There are works focusing on
providing feedback to users using trained leaked passwords
or dictionaries [14], [16].

VII. CONCLUSION

In this paper, we conduct a comprehensive quantitative
study on how user personal information resides in human-
chosen passwords. To the best of our knowledge, we are the
first to systematically analyze personal information in pass-
words. We have some interesting and quantitative discovery,
such as that 3.42% of users in the 12306 dataset use birthdate
in passwords, and male users are more likely to include their
name in passwords than female users. We then introduce a
new metric, Coverage, to accurately quantify the correlation
between personal information and a password. Our Coverage-
based quantification results further confirm our disclosure on
the serious involvement of personal information in password
creation, which makes a user password more vulnerable to a
targeted password cracking. We develop Personal-PCFG based
on PCFG but consider more semantic symbols for cracking
a password. Personal-PCFG generates personalized password
guesses by integrating user personal information into the
guesses. Our experimental results demonstrate that Personal-
PCFG is significantly faster than PCFG in password cracking
and eases the feasibility of mounting online attacks. Finally,
we discuss the limitation of this work and solutions to prevent
weak passwords that include personal information.
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