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Abstract

Protecting commodity systems that run commercial operating systems (OS) without significantly
degrading performance or usability still remains an open problem. To make matters worse, the overall
system security depends on desktop applications with complex code-bases that perform multiple and
inter-dependent tasks often dictated by Internet-borne code. Recent research has indicated the need for
context-dependent trustworthy environments where the user can segregate different activities to lower
risk and safeguard private information.

In this paper, we introduce a new BIOS-assisted mechanism to enable secure instantiation and man-
agement of trusted execution environments, tailored to separate security-sensitive activities from un-
trusted ones. A key characteristic of our system is usability: the capability to quickly and securely
switch between operating environments in a single physical machine without the need for any special-
ized hardware or extensive code modifications. Our goal was to eliminate any mutable, non-BIOS code
sharing while reusing existing hardware features. We demonstrate that, even if the untrusted OS becomes
compromised, there is no potential for exfiltration or inference attack against data in the trusted OS. To
safeguard against OS spoofing attacks, we require the user to physically set a hardware switch, an action
that cannot be reproduced by software. In addition, we provide visible indication to the user about the
current environment leveraging one of the front panel Light Emitting Diodes (LEDs). Using our proto-
type implementation, we measured the switching process to be approximately six seconds on average.
This quick and user-friendly switching process empowers the user to frequently and seamlessly alternate
between trusted and untrusted environments.

1 Introduction
Nowadays, desktop computers are being employed for multiple tasks ranging from pleasure to business:

web browsing, online gaming, and social web portals are examples in the former category; online banking,
shopping, and business emails belong in the latter. Unfortunately, modern software has a large and complex
code base that typically contains a number of vulnerabilities [1]. To make matters worse, modern desktop
applications usually operate on foreign content that is received over the network. Current operating system
(OS) environments offer user- and process-level isolation for different activities; however, these levels of
isolation can be easily bypassed by malware through privilege escalation or by other attacking techniques.
Researchers have pointed out the need for trustworthy environments where, based on context and require-
ments, the user can segregate different activities in an effort to lower risk by reducing the attack space and
data exposure.

To this end, there is an ongoing effort to employ virtual machine monitors (VMMs, also referred to as hy-
pervisors) to isolate different activities and applications [2, 3, 4, 5, 6, 7, 8, 9]. As long as the virtual machine
monitor is not compromised and there is no exposed path or covert channel between the different environ-
ments, applications in different VMs remain isolated. However, their widespread adoption has attracted
the attention of attackers towards VMM vulnerabilities [10] and the number and nature of attacks [11, 12]
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against the hypervisors are poised to grow. Researchers have noticed this problem and have begun to improve
hypervisor security [8, 13, 14].

An alternative to software isolation is hardware isolation: in many military and civilian installations users
have to use multiple physically-isolated computers, merely switching controls and displays. Although at-
tractive in terms of isolation, hardware increases the operational and maintenance cost because it requires
more space, cooling, and energy. It is inflexible and cannot support the current need for a range of trusted
environments. Moreover, it is inconvenient for users to switch between two computers to finish their tasks.
Multi-boot supports the installation of multiple OSes on the same machine and uses a boot loader to choose
between the OSes. Unfortunately, it is time consuming to shutdown one OS and boot up another. For in-
stance, Lockdown [15] combines a hypervisor with ACPI S4 Sleep (also known as hibernation or Suspend
to Disk) to provide a secure environment for sensitive applications. However, the switching latency in many
cases is more than 40 seconds, rendering the system difficult to use in practice.

In this paper, we attempt to tackle the secure OS isolation problem without using a hypervisor or any
mutable shared code. We design a firmware-assisted system called SecureSwitch, which allows users to
switch between a trusted and an untrusted operating system on the same physical machine with a short
switching time. The basic input/output system (BIOS) is the only trusted computing base that ensures the
resource isolation between the two OSes and enforces a trusted path for switching between the two OSes.
The attack surface in our system is significantly smaller than hypervisor- or software-based systems; we can
protect the integrity of the BIOS code by using a hardware lock [16] to set the BIOS code as read-only, or by
using TPM to verify the integrity of the BIOS code. Furthermore, our system guarantees a strong resource
isolation between the trusted and untrusted OSes. If the untrusted OS has been compromised, it still cannot
read, write, or execute any of the data and applications in the trusted OS.

Overall, our system can ensure isolation on the following computer components:

• Memory Isolation: All OS environments run in separate Dual In-line Memory Modules (DIMM).
A physical-level memory isolation is ensured by the BIOS because only the BIOS can initialize and
enable the DIMMs. No software can initialize or enable DIMMs after the system boots up.

• CPU Isolation: The different operating systems never run concurrently. When one OS is switched off,
all CPU state is saved and flushed. We use ACPI S3 sleep mode to help achieve CPU suspend/restore.

• Hard Disk Isolation: Each OS can have its own dedicated encrypted hard disk. We use RAM disk to
save the temporary sensitive data in the trusted OS. The untrusted OS cannot access the RAM disk in
the trusted OS due to the memory isolation.

• Other I/O Isolation: When one OS is switched off, all contents maintained by the device drivers (e.g,
graphic card, network card) are saved and the devices are then powered off. This guarantees that the
untrusted OS cannot steal any sensitive data from the I/O devices.

A trusted path ensures users that they really are working with the operation system they intend to use. We
must ensure a trusted path to prevent Spoofing Trusted OS attacks that deceive users into a fake trusted OS
environment when the users switch from the untrusted OS to the trusted OS. For instance, a sophisticated
adversary may fake an S3 sleep in the untrusted OS by manipulating the hardware (e.g., shutting down the
monitor) and then deceiving the user with a fake trusted OS environment, which is controlled by the untrusted
OS. Because the BIOS is the only component that we can trust to enforce the trusted path, we use the power
button and power LED to ensure and indicate the user that the system enters the BIOS after one OS has been
truly suspended. Then, the BIOS will wake up one OS according to a system variable that indicates which
OS should be woken. The system variable can only be manually changed by the user; it cannot be changed
by any software.

We harness the Advanced Configuration and Power Interface (ACPI) [17] S3 sleep mode to help achieve
a short OS switching latency. Because two OSes are maintained in RAM memory at the same time, the
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switching latency is only about six seconds, which is much faster than switching between two OSes on a
multi-boot computer or switching using ACPI S4 mode [15]. It is slower than the hypervisor-based solutions;
however, we don’t need to worry about the potential vulnerabilities in the hypervisor. Moreover, our system
can be used as a complementary approach to existing hypervisor- and OS-protection solutions.

In summary, we make the following contributions within this paper:

• Secure OS switching without using any mutable software layer. Our system depends on the BIOS and
some hardware properties to enforce a discernible trusted path when switching between the two OSes.
The trusted path can prevent the dangerous Spoofing Trusted OS attacks. Our solution requires no
modification of the commodity OS.

• No data leakage between two environments. The resource isolation enforced by the BIOS prevents
data leakage from the trusted OS to the untrusted OS.

• Fast Switching Time. We implemented a prototype of the secure switching system using commodity
hardware and both commercial and open source OSes (Microsoft Windows and Linux). Our system
can switch between the two OSes in approximately six seconds.

2 Background
2.1 ACPI Sleeping States

The Advanced Configuration and Power Interface (ACPI) establishes industry-standard interfaces that en-
able OS-directed configuration, power management, and thermal management of computer platforms [17].
ACPI defines four global states: G0, G1, G2, and G3. G0 is the working state wherein a machine is fully run-
ning. G1 is the sleeping state that achieves different levels of power saving. G2 is called “Soft Off,” wherein
the computer consumes only a minimal amount of power. In G3, the computer is completely shutdown; aside
for the real-time clock, the power consumption is zero.

G1 is subdivided into four sleeping states: S1, S2, S3, and S4. From S1 to S4, the power saving increases,
but the wakeup time also increases. In S3, all system context (i.e., CPU, chipset, cache) aside from the RAM
is lost. S3 is also referred to as Standby or Suspend to RAM. In S4, all main memory content is saved to
non-volatile memory, such as a hard drive, and the machine (including RAM) is powered off. S4 is also
referred to as Hibernation or Suspend to Disk. In both S3 and S4, all of the devices may be powered off.

Not every machine or operating system supports all of the ACPI states. For instance, neither S1 or S2
is used by Windows. S3 and S4, however, are supported by all Linux 2.4 and 2.6 series kernels and recent
Windows distributions (XP, Vista, 7). Our SecureSwitch uses S3 operations provided by the operating system
to help save the system context and later restore it. This dramatically saves our developing efforts.

2.2 BIOS, UEFI and Coreboot
The BIOS is an indispensable component for all computers. The main function of the BIOS is to initialize

the hardware, including processor, main memory, chipset, hard disk, and other necessary IO devices. BIOS
code is normally stored on a non-volatile ROM chip on the motherboard. In recent years, a new generation
of BIOS, referred to as Unified Extensible Firmware Interface (UEFI) [18], has become increasingly popular
in the market. UEFI is a specification that defines the new software interface between OS and firmware. One
purpose of UEFI is to ease the development by switching to the protected mode in a very early stage and
writing most of the code in C language. A portion of the Intel UEFI framework (named Tiano Core) is open
source; however, the main function of the UEFI (to initialize the hardware) is still closed source.

Coreboot [19] (formerly known as LinuxBIOS) is an open-source project aimed at replacing the propri-
etary BIOS (firmware) in most of today’s computers. It performs a small amount of hardware initialization
and then executes a so-called payload. Similar to the UEFI-based BIOS, Coreboot also switches to protected
mode in a very early stage and is written mostly in C language. Our prototype implementation is based on
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Coreboot V4. We chose to use Coreboot rather than UEFI since Coreboot has done all of the work of hard-
ware initialization, whereas we would need to implement UEFI firmware from scratch, including obtaining
all of the data sheets for our motherboard.

2.3 SMM
System Management Mode (SMM) is a separate CPU mode from the protected mode and real address

mode. It provides a transparent mechanism for implementing platform-specific system-control functions,
such as power management and system security. SMM is primarily targeted for use by the basic input-output
system (BIOS) and specialized low-level device drivers.

SMM is entered via the system management interrupt(SMI), when the SMM interrupt pin (SMI#) is
asserted by motherboard hardware, chipset, or system software. At the next instruction boundary, the micro-
processor saves its entire state in a separate address space known as system management RAM (SMRAM)
and enters SMM to execute a special SMM handler. The SMRAM can be made inaccessible from other CPU
operating modes; therefore, it can act as trusted storage, sealed from access by any device or even the CPU
(while not in SMM mode). The program executes the RSM instruction to exit SMM. Our system includes
an SMM handler to monitor the hard disk isolation between two OSes.

2.4 DQS Settings and DIMM MASK
There are many different types of RAM, and one of the most popular ones is the Double Data Rate

Synchronous Dynamic Random Access Memory (DDR SDRAM). One feature of these DDR memories is
that they include a special electrical signal referred to as “data strobes” (DQS). For proper memory reads
to occur, the DQS must be properly timed to align with the data valid window of the data (DQ) lines. The
data valid window refers to the specific period of time when the DRAM chip drives (i.e., makes active) the
DQ lines for the memory controller to read its data. If the DQS signal is not properly aligned, the memory
access will fail. For DDR1, the parameters of DQS can be automatically set by the hardware. For DDR2 and
DDR3, the DQS settings should be programmed by the BIOS [20]. We use DDR2 memory in our system.

A motherboard usually has more than one DIMM slot. Our system assigns one DIMM to one OS. When
one OS is running, the BIOS will only enable the DIMM assigned to that OS with the corresponding DQS
settings. BIOS uses a variable named “DIMM MASK” to control which DIMMs should be enabled.

3 Threat Model and Assumptions
Our system operates under the assumption that an adversary can subvert the untrusted OS using any

known or zero-day attacks on software applications, device drivers, user-installed code, or operating system.
We assume that the attacker cannot access the physical machine or launch local physical attacks, such as
removing a hard disk or a memory DIMM.

An adversary may launch various attacks against the trusted OS after compromising the untrusted OS. A
data exfiltration attack aims at stealing sensitive data from the trusted OS. Furthermore, the adversary may
attempt to modify the code of trusted OS and compromise its integrity. In a Spoofing Trusted OS attack,
a sophisticated attacker can create a fake trusted OS environment, which is fully controlled by the attacker,
and deceive the user into performing sensitive transactions there. An attacker can perform a denial-of-service
(DoS) attack against the trusted OS by crashing the untrusted OS; however, since such attacks can be easily
detected and resolved, we do not prevent DoS attacks against our system.

We assume that the trusted OS can be trusted when the BIOS boots it up, but this does not mean that
the trusted OS is bug-free. In other words, the trusted OS may be compromised from network attacks using
vulnerabilities within the OS or the applications. There are several mechanisms to alleviate these network
attacks [21, 22, 23]; however, they lie beyond the scope of this paper.

We assume that the BIOS code, including the option ROMs on devices (e.g., video cards), does not contain
vulnerabilities and can be trusted. The operating system must support ACPI S3 sleeping mode, which has
been widely supported by modern OSes, such as Linux and Windows. Our system does not require hardware
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virtualization support (e.g, Intel VT-x or AMD-V).

4 SecureSwitch Framework
Figure 1 illustrates the overall architecture of the SecureSwitch system. Two OSes are loaded into the

RAM at the same time. Commercial OSes that support ACPI S3 can be installed and executed without any
changes. Instead of relying on a hypervisor, we modify the BIOS to control the loading, switching, and
isolation between the two OSes.

Trusted OS BIOS (SMM)CPU
App1 App2 App3 Untrusted OSApp1 App2 App3

Memory Hard DiskVGA NIC Other I/O Devices
Figure 1: Architecture of SecureSwitch System

Secure Switching consists of two stages: OS loading stage and OS switching stage. In the OS loading
stage, the BIOS loads two OSes into separated physical memory space. The trusted OS should be loaded
first and the untrusted OS second. In the OS switching stage, the system can suspend one OS and then wake
up another. In particular, it must guarantee a trusted path against the spoofing trusted OS attack when the
system switches from the untrusted OS to the trusted OS.

The system must guarantee a thorough isolation between the two OSes. Usually one OS is not aware of
the other co-existing OS in the memory. Even if the untrusted OS has been compromised and can detect the
coexisting trusted OS on the same computer, it still cannot access any data or execute any code on the trusted
OS.

4.1 Secure Switching
Figure 2 shows the state machine for loading and switching between two operating systems in the system.

Two variables are maintained to denote the system states. In each parenthesis, the first number records which
OS is running in the system (1 for the trusted OS and 0 for the untrusted OS); the second number records if
the untrusted OS has been loaded into the system.

(0,0) (1,0) (0,1)Load OS1 Load OS2 (1,1) Switch to OS1Switch to OS2 OS2 sleep/wakeup
OS1 Sleep/wakeupOS1 Shutdown

OS2 ShutdownPower Off OS1 sleep/wakeupOS1 Shutdown
Figure 2: State Machine for OS Switching.
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When the machine is powered off, the system state is (0,0). After the system is powered on, the BIOS
always boots up the trusted OS (OS1) first. The BIOS constrains the trusted OS to use only part of the
physical RAM. The trusted OS can be shut down or can perform sleep/wakeup. (1,0) means the trused OS
has been loaded and is running now, but the untrusted OS has not been loaded. When loading the untrusted
OS(OS2), the BIOS first suspends the trusted OS, and then boots up the untrusted OS into the nonallocated
physical RAM, which has no overlap with the memory used by the trusted OS. (0,1) means both OSes have
been loaded into the memory while the untrusted OS is running and the trusted OS is suspended. If a user
wants to switch from the untrusted to the trusted OS, the untrusted OS will be suspended first and then the
system will wake up the trusted OS. At this time, the system state is (1,1). Similarly, the user can switch
back from the trusted OS to the untrusted OS. To save power energy, the system still supports the normal OS
sleep/wakeup.

4.1.1 Stateful vs. Stateless Trusted OS
When the system switches into the trusted OS, there are two options for restoring the OS context: Stateless

mode and Stateful mode. In the stateless mode, each time when the system switches into the trusted OS, it
starts from a pristine state. A copy of the trusted OS in its pristine state is maintained either on the hard disk
or in a reserved memory area. In the stateful mode, when the trusted OS is switched in, it resumes from the
system context wherein it was last switched out. All states of the trusted OS should be saved in the memory
or on the hard disk.

The stateless mode does not save any system state when the trusted OS is switched out. It can mitigate the
impacts of network attacks since the trusted OS will start from a pristine state that has not been compromised.
The drawback is that the user loses the system context, so it cannot resume previous sessions or tasks within
the trusted OS. Moreover, an adversary may easily fake a trusted OS environment if it knows the pristine
state of the OS. In a stateful mode, since all of the system states are saved and can be restored, a user may
resume sessions and tasks within the trusted OS. However, when the trusted OS has been continuously used
for a long time, the risk of being compromised from network attacks increases.

4.1.2 Trusted Path
In our system, a trusted path is the mechanism that ensures users that they really are working with the

operation system they intend to use. Our system must ensure a trusted path to prevent Spoof Trusted OS
attacks, which deceive users into a fake trusted OS environment when the users switch from the untrusted
OS to the trusted OS.

The secure switching consists of two sequential steps: OS Suspend and OS Wakeup. In x86 architecture,
the suspend step is performed entirely by the operating system without involving the BIOS; the wakeup step
is initiated by the BIOS and then handed over to the OS. Because the BIOS is the only component that we
can trust to enforce the trusted path, we must guarantee the OS has been truly suspended so that the BIOS
will be triggered. Otherwise, an attacker may launch a spoofing trusted OS attack by faking a suspend of the
untrusted OS (e.g., power off the monitor) that totally circumvents the BIOS and then deceiving the user into
a fake trusted OS. The untrusted OS can create such a fake trusted OS environment by installing a virtual
machine similar to the trusted OS [24].

It is critical to protect the integrity of the system variable that is used by the BIOS to decide which OS
should be woken up. Otherwise, when a user wants to switch from the untrusted OS to the trusted OS, an
attacker may launch another spoof trusted OS attack by manipulating the system variable to make the BIOS
wake up the untrusted OS and then deceiving the user into a fake trusted OS environment. In our system, the
system variable is controlled by a physical jumper, which can only be manually set by the local user. The
design details are described in Section 5.2.1.
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4.2 Secure Isolation
The system must guarantee a strong isolation between the two OSes to protect the confidentiality and

integrity of the information on the trusted OS. According to the von Neumann architecture, we must enforce
the resource isolation on major computer components, including CPU, memory, and I/O devices.

4.2.1 CPU Isolation
When one OS is running directly on a physical machine, it has full control of the CPU. Therefore, the

CPU contexts of the trusted OS should be completely isolated from that of the untrusted OS. In particular,
no data information should be left in CPU caches or registers after one OS has been switched out.

CPU isolation can be enforced in three steps: saving the current CPU context, clearing the CPU context,
and loading the new CPU context. For example, when one OS is switching off, the cache is flushed back to
the main memory. When one OS is switching in, the cache is empty. The content of CPU registers should
also be saved separately for each OS and isolated from the other OS.

4.2.2 Memory Isolation
It is critical to completely separate the RAM between the two OSes so that the untrusted OS cannot access

the memory allocated to the trusted OS. A hypervisor can control and restrict the RAM access requests from
the OSes. Without a hypervisor, our system includes a hardware solution to achieve memory isolation. The
BIOS allocates non-overlapping physical memory spaces for two OSes and enforces constrained memory
access for each OS with a specific hardware configuration (DQS and DIMM Mask) that can only be set by
the BIOS. The OS cannot change the hardware settings to enable access to the other OS’s physical memory.
Details regarding this are included in Section 5.3.2.

4.2.3 I/O Device Isolation
Typical I/O devices include hard disk, keyboard, mouse, network card (NIC), graphics card (VGA), etc.

The running OS has full control of these I/O devices. For devices with its own volatile memory (e.g., NIC,
VGA), we must guarantee that the untrusted OS cannot obtain any information remaining within the volatile
memory (e.g., pixel data in the VGA buffer) after the trusted OS has been suspended. When a stateful trusted
OS is switched out, the device buffer should be saved in the RAM or hard disk and then flushed. when a
stateless trusted OS is switched out, the device buffer is simply flushed.

For I/O devices with non-volatile memory (e.g., USB, hard disk), the system must guarantee that the
untrusted OS cannot obtain any sensitive data information from the I/O devices used by the trusted OS. One
possible solution is to encrypt/decrypt the hard disk when the trusted OS is suspended/woken. However,
this method will increase the OS switching time due to costly encryption/decryption operations. Another
solution is to use two hard disks for two OSes separately, and use BIOS(SMM) to ensure the isolation. For
temporary sensitive data, it is secure to save them in RAM disk, since the untrusted OS cannot access the
trusted OS’s memory. Details can be found in Section 5.3.3.

5 System Design
We combine the BIOS and the standard ACPI S3 mode to enforce resource isolation between the two

OSes. BIOS is the control center and the only trusted computing base to enforce a trusted path during
the OS switching process. Our system uses ACPI S3 to support both secure switching and the normal OS
sleep/wakeup. The BIOS uses two system variables to control the OS loading and switching process. An OS
flag indicates which OS (and corresponding resources) should be started; a Boot flag indicates whether the
untrusted OS has been loaded into the memory.

5.1 Loading Two OSes
In the OS loading stage, the system loads both OSes in the RAM. To enforce RAM isolation and hard

disk isolation, our system requires the motherboard have at least two DIMMs and support two hard disks,
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and it assigns one DIMM and one hard disk to each OS. When the computer boots up from a power-off state,
the BIOS first loads the trusted OS using only one DIMM. Because BIOS is responsible for detecting and
initializing the memory controller, it can enable and report only half of the RAM to each OS. Similary, the
BIOS only enables and reports one hard disk for each OS.

After the system is powered on, the BIOS always boots up the trusted OS first. To load the untrusted OS,
the trusted OS should be suspended in S3 sleep. Then, the BIOS tries to wake up the untrusted OS when
the OS flag is set to 0. However, the untrusted OS has not been loaded into the RAM at this time. To solve
this problem, we use a Boot flag to indicate whether the untrusted OS has been loaded. When the system is
powered on, the Boot flag is reset to 0 to reflect that the untrusted OS has not been loaded. When the BIOS
detects that it is trying to wake up an untrusted OS that has not been loaded, it will load the untrusted OS
and then set the Boot flag to 1.

One major drawback of this method is that the granularity for memory allocation is the size of DIMM.
When one OS is running, only a portion of the RAM in the system can be used. We consider this the price
of enhancing system security and plan to improve it in the future work.

5.2 Switching Between Two OSes
OS switching is conducted by both the operating system and the BIOS. After both OSes have been loaded

into the memory, the switching is done by putting the currently-running OS into ACPI S3 sleep mode and
then waking up the other OS from ACPI S3 sleep mode. We use ACPI S3 sleep/wakeup because it has
defined functionalities to save the CPU context and hardware devices’ states. In ACPI S3 sleep mode, the
CPU stops executing any instruction, and the CPU context is not maintained. The operating system will
flush all dirty cache to RAM. The RAM context is maintained by placing the memory into a low-power self-
refresh state. Only those devices that reference power resources are in the ON state. All the other devices
(e.g., VGA, NIC) are in the D3 (OFF) state while their states are saved by the OS or the device drivers.

BIOS Untrusted OS(running)OS Flag
Power Button (1) SuspendTrusted OS(ACPI S3 sleep)Trusted OS(ACPI S3 sleep) Untrusted OS(ACPI S3 sleep)Trusted OS(running) Untrusted OS(ACPI S3 sleep)

(3) press button (4) read OS Flag (5) hardware configurationCPU, RAM, Hard Disk(6) wake up trusted OS (7) wake up(2) Manually set physical jumper 
Figure 3: Switching Flow from Untrusted OS to Trusted OS.

Figure 3 shows the control flow when the system is switching from the untrusted OS to the trusted OS. The
user first suspends the untrusted OS, which is responsible for saving the CPU context and hardware devices’
states. Afterwards, both OSes stay in the ACPI sleep mode. The user manually sets a physical jumper to
indicate the BIOS that the trusted OS should be woken up next. In other words, the physical jumper controls
the value of the OS flag. The user then presses the power button to wake up the system. This step is critical
to make the system enter the BIOS first to enforce a trusted path.

The BIOS can distinguish OS S3 wakeup from OS booting using some register in the southbridge. In the
south bridge VT8237R [25], the three bits of “Sleep Type” in the Power Management Control register is set
to 001 for S3 sleep. After the BIOS reads the OS flag and decides to wake up the trusted OS, it programs the
initial boot configuration of the CPU (e.g., the MSR and MTRR registers), initializes the cache controller,
enables the memory controller, and jumps to the waking vector. Then, the BIOS forwards the system control
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to the trusted OS, which OS continues to perform the ACPI S3 wakeup and recover its CPU context and
device states.

5.2.1 OS Flag Integrity
We must ensure the integrity of the OS flag to prevent Spoofing Trusted OS attacks. One challenge is to

find a safe place to save the flag. First, we cannot simply save it in the RAM because the BIOS who needs the
OS flag to enable the memory DIMM(s) cannot read the flag from RAM before the RAM has been enabled.
Second, we cannot save the OS flag in the CMOS either, since the untrusted OS can manipulate the OS flag
stored in the CMOS as the BIOS does. However, we can save the Boot flag in the CMOS. Because the Boot
flag records if the untrusted OS has been loaded into the memory, the adversary can gain nothing aside from
rebooting the untrusted OS by modifying the Boot flag.

Our system uses a physical jumper to control the value of the OS flag. This jumper can only be physically
set by the local user, while the BIOS and the OS can only read it. In our system prototype, we uses the
standard parallel port to control the OS flag. In the D-Type 25-Pin Parallel Port Connector, the Pin Number
15 is used to signal an Error to the computer. The Status Port (base address +1) is a read-only port where
Bit 3 reports the Error events. When the user connects Pin 15 (Error) and Pin 25 (the ground pin) with a
jumper, the bit 3 of the Status port equals 0 and the BIOS will always wake up the trusted OS. When the
user disconnects the two pins, the bit 3 of Status port equals to 1 and the BIOS will always wake up the
untrusted OS. Our system uses parallel port connector due to its simplicity and availability on the prototype
motherboard; many other hardware bits or devices can serve the same purpose in a computer.

5.2.2 Trusted Path Enforcement
Our system can enforce a trusted path when switching from the untrusted OS to the trusted OS. Besides

protecting the integrity of the OS flag, because the BIOS is the only component that we can trust to enforce
the trusted path, our system must ensure the BIOS is entered in the OS wakeup stage. Otherwise, an adversary
could fake both the untrusted OS sleep and the trusted OS wakeup that totally bypass the BIOS. Our system
uses system power LED to make sure the untrusted OS has been suspended. The power LED shows current
system mode: it lights up when the OS is running, and it blinks (or changes to another color) when the
system is in sleep mode. Because the power LED is hardware-controlled, the user can trust it to reveal if the
untrusted OS has been suspended or not. Moreover, the system uses the power button to ensure the system
enters the BIOS first. When the user presses the power button, the system will enter the BIOS first, no matter
it boots up from scratch or wakes up from S3 sleep mode. Next, the BIOS is responsible for ensuring the
trusted path to wake up the trusted OS.

Because the physical jumper indicates which OS is running and it is read-only, the user can use it to detect
the spoofing trusted OS attacks when the system seems running a trusted OS environment but the jumper
indicates an untrusted OS environment.

5.3 Enforcing System Isolation
Our system depends on the BIOS and the ACPI S3 mode of the trusted OS to enforce resource isolation

between the two OSes. Most modern OSes (e.g., Linux and Windows XP) support ACPI S3 suspend/wakeup
mechanisms, which is used to enforce the isolation on CPU and I/O devices (e.g., VGA and NIC). This
dramatically lessens our need to save/recover the CPU context and devices’ states. The BIOS must be
customized to enforce isolation on RAM and hard disk, which cannot be thoroughly isolated by the OS
alone. In the following, we first introduce the isolation capability of the ACPI S3 on CPU, NIC, and video
devices. We then present the mechanisms using the BIOS and the OS to enforce the isolation of RAM and
the hard drive.
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5.3.1 ACPI Enforced Isolation
CPU Isolation: According to ACPI standards [17], the CPU context will be lost during the S3 sleep, and

the untrusted OS cannot get any CPU context information of the trusted OS. The OS is responsible for saving
and restoring the CPU context. The trusted OS always follows the standard and saves the CPU context. In
the untrusted OS, an attacker has only two options: either saving the CPU context or not saving it. If the
attacker modifies the OS to avoid saving the CPU context, the untrusted OS cannot be resumed and this
becomes a DoS attack.

NIC Isolation: In S3 sleep, most of the devices are put into D3 (a no-power state for devices) state, during
which the contexts for these devices are lost. Thus, there is no information leakage during the switching from
the trusted OS to the untrusted OS. According to ACPI specifications, a network card may provide Wake-on-
LAN (WOL) functions to wake up the computer when the card stays in D0 or D3 power state. Our system
only supports the network card in D3 state to wake up the computer, since the device in D0 state keeps its
context that may be misused by the attacker. Fortunately, most of the current network cards support WOL at
the D3 state [26].

Video Device Isolation: In S3 sleep, the content in the video buffer is lost. The ACPI specification does
not require the BIOS to reprogram the video hardware or to save the video buffer, so the BIOS does not
know how to wake up the video card from an unprogrammed state. One easy way around this is to execute
code from the video option ROM in the same way as the system BIOS does. vbetool [27] is one such small
application that executes code from the video option ROM. It can run in the user space but may introduce
some time delay in S3 sleep and wakeup.

5.3.2 Memory Isolation
Memory isolation is physically enforced by the BIOS. According to the OS flag, the BIOS knows which

OS is going to be booted or woken up, and it then initializes or wakes up the corresponding DIMM for that
OS. The other DIMM remains uninitialized or un-configured (though it may still maintain its data content).
Our system uses DDR2 memory.

DDR2 memory requires the BIOS set the DQS settings in the memory controller (the north bridge) for
memory read and write. In normal S3 sleep mode, system power is removed from the the memory controller;
however, a copy of the DQS settings is still maintained in non-volatile RAM (NVRAM) of the south bridge.
During an S3 wakeup, the BIOS copies the DQS settings from the south bridge to the memory controller.

A normal system keeps only one set of the DQS settings, while our SecureSwitch system must keep two
sets of different DQS settings to initialize/enable different DIMMs for two OSes. To wake up one OS, the
BIOS should reset the DQS settings in the memory controller using the corresponding set of DQS settings.
Since the NVRAM of the south bridge can only save one set of DQS settings, we must store the other set of
DQS settings in some other non-volatile memory. For custom-designed computers with specific hardware
devices, we may save the two settings in the BIOS. However, in many scenarios, the memory control should
be dynamically adjusted to achieve optimal performance under different voltages and temperatures. Our
solution is to save the other set of DQS settings in the CMOS. We save 64 bytes of Data Strobe Signal(DQS)
settings, starting from the offset 56 of CMOS, which by default are not used according to the CMOS layout
of the motherboard (ASUS M2V-MX SE).

In our system, the untrusted OS cannot initialize/enable the memory controller to access the DIMM for the
trusted OS. The DQS settings contain more than one hardware register (i.e., 16 registers on AMD K8 and 4
registers on AMD family 10h processors), which means there is a transient state wherein the system cannot
access any DIMM before all the DQS settings are complete. When an attacker exploits a short program
to modify the DQS settings in the memory controller, the program cannot obtain the next instruction from
the main memory and the system will hang. The BIOS can modify the DQS settings because it reads the
instructions from the non-volatile ROM that is not controlled by the DQS settings. The untrusted OS can
modify both DQS settings saved in the south bridge and in the CMOS. However, besides the DQS settings,
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the BIOS uses a “DIMM Mask” byte to control which DIMM should be enabled, and the DIMM mask is set
by the OS flag. When the DIMM mask conflicts with the DQS settings, the system will hang.

5.3.3 Hard Disk Isolation
The non-volatile storage, such as hard disks used by the trusted OS, should be completely isolated from

the untrusted OS to prevent information leakage. One direct solution is to encrypt a portion or the entirety
of the hard disk before sleeping the trusted OS and to decrypt it after waking it up. However, the encryp-
tion/decryption operations will increase the switching time, along with the size of the hard disk.

Most motherboards (e.g., ASUS M2V-MX SE, in our implementation) has more than one SATA Channels
to support more than one hard disk. When each OS can have its own hard disk, there are two methods to
constrain access to the hard disk of the trusted OS. First, some hard disks support disk lock, an optional
security feature defined by AT Attachment (ATA) specification [28]. This lock allows the user to set a
password to lock a hard disk. Without knowing the password, an adversary cannot access the hard disk.
The limitation of this method is that not all hard disks are provided with this feature. Second, according
to the OS flag, the payload of BIOS (e.g., SeaBIOS), which is responsible for hard disk initialization, can
initialize only one of the two hard disks by setting the SATA Channel enable register (e.g., Bus0, Device15,
Function0, offset0x40 on southbridge VT8237r). However, if an attacker knows the southbridge data sheet,
the untrusted OS may reset the SATA Channel enable register and initialize both hard disks. To prevent the
attacker from re-enabling the hard disk, we use the SMM-based monitoring mechanism to check the settings
of the hard disk configuration. If SMM detects that the hard disk used by the trusted OS is enabled when the
untrusted OS is running, it will trigger an alarm to notify the user. The details of an SMM-based monitoring
mechanism can be found in [14, 13].

With the observation that most applications in the trusted OS only require a small amount of data (e.g.,
browser cookies) be saved on the hard disk, our system uses RAM disk to store the dynamic sensitive data
in the RAM. With Linux kernel version 2.6.18, we set the kernel parameter ramdisk size to initialize 256MB
RAM disk. After booting into the trusted Linux OS, we create a directory called /ramdisk and mount RAM
disk /dev/ram0 to the directory. However, it is not very user friendly. We improve upon it by using a
stackable file system aufs [29, 2] to mount a read-write layer of RAM disk on top of regular directories,
which are mounted as read-only. We mount a read-only home directory to /ramdisk/home, so all the files
created under the /home directory will be written into /ramdisk/home, which is in RAM. Since the RAM
is isolated between the trusted and untrusted OSes, the files in the RAM disk cannot be accessed by the
attacker. Moreover, the files in RAM disk are lost after a reboot.

5.4 Security Analysis
Our system can ensure a firmware-assisted resource isolation between two OSes to prevent data exfiltra-

tion attacks. The untrusted OS cannot steal data from the trusted OS or compromise the integrity of the data
in the trusted OS. Our system can also enforce a trusted path during secure switching to prevent the spoofing
trusted OS attacks. We do not prevent DoS attacks because the user can easily notice this attack and boot the
machine to recover.

Data Exfiltration Attacks. The untrusted OS cannot steal any data information from the trusted OS using
either shared or separated devices. The two OSes have separated RAM DIMMs and hard disks. Since the
untrusted OS cannot change memory DQS settings without crashing the system, an attacker cannot access
the DIMM of the trusted OS. To protect the dynamic sensitive data in the trusted OS, we could either save the
data in RAM disk or save them in the hard disk, which is protected by a SMM-based monitoring mechanism.

The two OSes share all other hardware devices aside from RAM and the hard disk. The ACPI S3 sleep
guarantees that the trusted OS won’t leave any sensitive data on those devices to be accessed by the untrusted
OS. First, the CPU context, including registers and caches, will be flushed during S3 sleep. In AMD K8, the
north bridge is integrated in CPU and its content is flushed, too. The NVRAM in south bridge only records
some system configuration data. Second, for hardware devices with their own buffers, such as VGA and
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NIC, all of the content in their buffers will be lost because those devices lose power in S3 sleep.
Suppose that the user has started a sensitive Web transaction in the trusted OS, and he/she switches to the

untrusted OS before the transaction ends. If the remote server keeps sending sensitive data, the untrusted OS
may receive the data. This problem can be solved by protecting all Web transactions in the trusted OS with
encryption, or closing all Web transactions by the trusted OS before the switching occurs.

Spoofing Trusted OS Attacks. Our system can prevent spoofing trusted OS attacks by enforcing a trusted
path during OS switching and protecting the integrity of the OS flag. We use the system power LED to ensure
that the untrused OS has been suspended, and use the power button to enforce that the system enters the BIOS
first when it is powered on. We use a physical jumper to protect the integrity of the OS flag. Note the power
LED, the power button, and the physical jumper are all hardware-controlled, so the untrusted OS cannot
change them.

Network Attacks on Trusted OS. We assume that the trusted OS is secure and can be trusted when it
boots up. However, because an OS contains tens of thousands of lines of code, vulnerabilities exist that can be
misused by attackers from the network. Our system can guarantee that the trusted OS won’t be compromised
from the untrusted OS. However, if normal users use the trusted OS for a long time, we cannot guarantee that
the trusted OS won’t be compromised from network attacks. The stateless OS mode can only alleviate this
attack by restoring the trusted OS to a pristine state every time it is woken, but it cannot prevent this attack.
One promising solution is to employ some TPM- or SMM-based integrity checking mechanisms [30, 14] to
detect any OS tampering attempts by comparing the newly-generated OS states with a clean state. However,
that is beyond the scope of this paper.

6 Implementation & Experimental Results
We implement a prototype of the SecureSwitch system using an ASUS M2V-MX SE motherboard with

VIA K8M890 as the northbridge and VIA VT8237R as the southbridge. The CPU is AMD Sempron 64 LE-
1300. Two Kingston HyperX 1GB DDR2 memory modules and two Seagate Barracuda 7200 RPM 500GB
hard disks are installed. We connect a laptop to the motherboard through a serial port for debugging and data
collection.

We install CentOS 5.5 on one hard disk as the trusted OS, and Windows XP SP3 on another hard disk as
the untrusted OS. Our implementation also supports two CentOS 5.5 (or Windows XP) OSes. We use the
open-source Coreboot V4 [19] and SeaBIOS [31] as the BIOS. The total new lines of code(LOC) we added
in the BIOS is 120. It is significantly smaller than hypervisor- or microkernel-based methods [15], which
rely on an extra software layer in addition to the BIOS.

6.1 OS Loading and Switching Time
OS loading time is the time duration for loading two OSes into the memory, and the OS switching time

measures the time duration when the system switches from one OS to another OS. We use the real-time
clock (RTC) to measure the OS loading time. At the beginning of the BIOS code, we print out the RTC
time to the laptop through the serial port. This time records the beginning time of OS loading. We record
the ending time when the “rc.local” file is executed in CentOS or when a startup application is called in
Windows XP. The total OS loading time is 153 seconds, 74 seconds for loading Centos and 79 seconds for
loading Windows XP. OS loading time only occurs once when the user boots up the system, and it may be
reduced by using solid-state drive.

OS Switching time consists of two parts: the time to suspend current OS and the time to wake up the
other OS. We use the 64-bit Time Stamp Counter (TSC) to measure the OS wakeup time for both CentOS
and Windows XP. TSC counts the number of ticks since reset. We write a user-level program to obtain the
current TSC value once it is being executed, and then calculate the wakeup time as TSC*(1/CPU frequency).
However, it is difficult to use TSC to measure Windows XP’s suspend time. First, we cannot change the
source code of Windows to record the time when the OS suspend ends. Second, since the BIOS is not
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involved in the OS suspend process, it does not know when the OS suspend ends either. Instead, we use an
Oscilloscope, Tektronix TDS 220, to measure the suspend time. Before a customized program initiates the
ACPI S3 sleep, it sends an electrical signal to the Oscilloscope to indicate the start of S3 sleep. When the OS
finishes S3 sleep, the oscilloscope will receive a power-off electrical signal. We use Oscilloscope to measure
the suspend times for both CentOS and Windows XP.

Figure 4: OS Switching Time

Switching Operation Secure Switch(s)

Windows XP Suspend 4.41
CentOS Wakeup 1.96

Total 6.37

CentOS Suspend 2.24
Windows XP Wakeup 2.79

Total 5.03

Table 4 shows that the OS switching time from CentOS
to Windows XP is 5.03 seconds, which is a little faster than
switching from Windows XP to CentOS. For both OSes, the
suspend time is longer than the wakeup time. Windows XP’s
suspend and wakeup times are longer than those of CentOS.
Table 4 only provides a rough latency measurement that is
constrained to the specific hardware and software used in
our prototype system. For instance, when we replace the
integrated VGA card (VIA chip, 256 MB memory) with an
external VGA card (S3 chip, 64 MB memory), the OS sus-
pend time is reduced due to a smaller video memory size.
Moreover, when we run multiple while(1) programs on CentOS, the switching time is three times longer.
This leads us to breakdown the operations in BIOS, user space, and kernel space to understand the major
contributors for the OS switching delay. Due to the closed-source nature of Windows XP, we only break
down the operations on the CentOS.

6.1.1 Linux Suspend Breakdown
We use Ftrace [32] to trace the suspend function calls in Linux S3 sleep. According to the function call

graph generated by Ftrace, the suspend operations can be divided into two phases: user space suspend and
kernel space suspend. We use the pm-suspend script in CentOS to trigger the OS suspend. This script
first notifies the Network Manager to shut down networking, and then uses vbetool [27] to call functions
at video option ROM to save VGA states. Next, it jumps to the kernel space by echoing string “mem”
to /sys/power/state. In the kernel space, the suspend code goes through the device tree and calls the device
suspend function in each driver. The kernel then powers off these devices. To measure the user space suspend
time, we record the TSC time stamp in file /var/log/pm/suspend.log. For kernel time measurement, we add
printk statements between various components of the kernel.
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Figure 5: User Space Suspend Breakdown.

�

���

���

���

���

���

���

�	
� �
�
� ����
��� �����

Figure 6: Kernel Space Suspend Breakdown.

Figure 5 shows the time breakdown for user space suspend. Each bar is an average of 10 measurements,
and the Y axis error bars show confidence interval at 95% confidence. The total suspend times for user space
is 1517.33 ms. The OS spends time on calling vbetool [27] to save video states to the /var/run directory,
changing the GUI terminal to /dev/tty63 as the foreground virtual terminal, and stopping the Network Time
Protocol Daemon and writing the current system time to RTC time in CMOS. Other operations include
stopping network manager and saving the states of CPU frequency governors, etc. Figure 6 shows the time
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breakdown for kernel space suspend, where the total suspend times is 722.79 ms. The most time-consuming
operations are to stop the keyboard, mouse, and hard disks. It takes a while to reset the PS/2 mouse and
keyboard devices in our system. The hard disk delay comes from synchronizing the 16 MB cache on each
SATA disk [28]. The kernel stops other devices (e.g., USB, serial ports) with relatively less time.
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Figure 7: User Space Wakeup Breakdown.
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Figure 8: Kernel Space Wakeup Breakdown.

6.1.2 Linux Wakeup Breakdown
S3 wakeup operations are provided by both the BIOS and the OS. The wakeup process starts from a

hardware reset. The system enters the BIOS first, and then jumps to the OS wakeup vector. The latency time
in BIOS is constant and equals to 1259.25 ms. The OS wakeup operations can be divided into two parts:
kernel space wakeup and user space wakeup. Figure 8 shows the time breakdown for the major components
in the kernel space, where the total latency is 698.74 ms. The major delay contributors are the USB and
the mouse. Because Coreboot doesn’t provide an optimized support for the USB, the OS must initialize the
four USB ports on the motherboard. Moreover, the mouse initialization takes more time than the keyboard
due to lack of support in the Coreboot. Figure 7 shows the wakeup time breakdown in the user space, where
the total latency is 612.04 ms. Initializing the advanced Linux sound architecture (ALSA) for sound card,
changing the foreground’s virtual terminal, and cleaning up the files take most of the time.

Table 1: Comparing SecureSwitch with Other systems

SecureSwitch Lockdown [15] TrustVisor [5] Flicker [7]

Trusted Computing Base BIOS BIOS+Hypervisor BIOS+Hypervisor BIOS
Switching Time (second) ≈6 40 <1 1
Hardware Dependency ACPI ACPI + TPM TPM (DRTM) TPM (DRTM)
Software Compatibility High High Low Low

Memory Overhead High Low Low Low
Computation Overhead Low Median Low High

6.2 Comparison with Other Methods
We compare the SecureSwitch system with other solutions that target at protecting the execution of

security-sensitive code on legacy systems [5, 7, 15]. Table 1 presents the comparison results. The BIOS
code is the trusted computing base (TCB) for both SecureSwitch and Flicker [7], while Lockdown [15] and
TrustVisor [5] must also ensure the security and integrity of a hypervisor when loading it from the hard disk.

Both Flicker and TrustVisor have a very small switching time since they can ensure a hardware-assisted,
trusted execution environment using the Dynamic Root of Trust Measurement (DRTM) [30] feature in TPM
v1.2. SecureSwitch can achieve a 6-second switching time by using the ACPI standard that has been widely
supported by hardware manufactures for efficient power management. Lockdown requires around 40 seconds
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to switch from one OS to another one. In Flicker and TrustVisor, the security code must be custom-compiled
or ported to run in the secure environment, while the legacy programs can run directly on both SecureSwitch
and Lockdown without any changes. The memory overhead in SecureSwitch is high due to the coarse
physical isolation on the DIMMs. The memory overheads in other methods are fairly low.

In SecureSwitch, Lockdown, and Flicker, when a security code is running in the trusted environment, the
applications in the untrusted environment are fully stopped. Lockdown requires 15-55% more computation
overhead in the trusted environment majorly due to overhead of using the NPT pages. Flicker incurs signif-
icant computation overhead due to its frequent use of hardware support for DRTM. SecureSwitch adds no
computation overhead in the trusted environment. TrustVisor can execute the applications in the untrusted
environments with little overhead when the security code is running in the trusted environment; however,
it requires code modification. Although possible, it would seem to be an engineering challenge to port all
existing code to support this, especially for an entire commercial OS.

7 Related Work
SecureSwitch was inspired by Lampson’s Red/Green separation idea [33]. The closest in terms of concept

is the Lockdown [15] system that places two OSes on one machine and isolates them with help of a small
hypervisor. To switch, it hibernates one OS and then wakes up another one. If implemented carefully,
Lockdown can provide isolation between two OSes. Unfortunately, it requires more than 40 seconds to
switch because hibernating requires writing the whole main memory content to the hard disk and reading
it back later on. In contrast, SecureSwitch can accommodate two OSes into the memory at the same time
and offers switching times of approximately 6 seconds. In addition, Lockdown relys on mutable shared code
using a light-weight hypervisor, while SecureSwitch does not.

There is a line of research that uses hypervisors to add an extra layer of control between the OSes and
the underlying hardware, including HyperSpace [34], Terra [4], Safefox [2], Tahoma system [3], Over-
shadow [35], and Nettop [36]. Others attempt to protect the integrity of the hypervisor [37, 38, 13, 14, 8],
or to protect the kernel [39, 40, 41]. All of these systems depend upon the integrity of the shared hypervisor
code for the isolation between two environments. Nevertheless, attacks against the hypervisors are more and
more frequent today [10, 11, 42]. Although the hypervisor may have a smaller attack surface compared to
the traditional OSes, it is still vulnerable to attack. SecureSwitch employs immutable BIOS-protected code
so that minimal code is shared between the trusted and the untrusted environments.

Flicker [7] and TrustVisor [5] employ TPM to provide a small TCB and then run security-sensitive code
in a trusted environment. Flicker is a pure hardware, TPM-based method, while TrustVisor adds a small
hypervisor to accelerate the TPM operation. Both Flicker and TrustVisor require Dynamic Root of Trust
Measurement (DRTM), while the SecureSwitch system does not. In addition, applications must be ported
to support TPM-based methods. For Flicker, the code running in TPM-provided, trusted environments may
not take long because the normal OS is frozen when the trusted environment is running. The SecureSwitch
system is capable of running the legacy applications in the trusted OS for a long time.

8 Conclusions
The increasing number, size, and complexity of the applications running on desktop computers, coupled

with their capability to operate on content and code generated by different sources, brought forward the
need for context-dependent, trustworthy environments. Having such environments will enable the user to
segregate different activities and lower the attack surface while maintaining system usability.

To that end, we propose a novel BIOS-assisted mechanism to foster the secure management of execution
environments, tailored to segregate security-sensitive applications from untrusted ones. A design tenet of
our system was the ability to quickly and securely switch between operating environments without extensive
code modifications or a need for specialized hardware. At the same time, we wanted to minimize the code
attack surface and prevent mutable, non-BIOS code from controlling the switching process. Finally, the

15



system had to offer protection against attacks that aim to deceive the user’s perception of the operating
environment he/she is currently in. We believe that the proposed framework achieves all of these goals. In
our prototype implementation, the switching process takes approximately six seconds. Moreover, the user
can clearly discern the state of the system and seamlessly switch between untrusted and trusted OSes to
perform sensitive transactions.
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