
TerraCheck: Verification of Dedicated Cloud
Storage

Zhan Wang1,2, Kun Sun2, Sushil Jajodia2, and Jiwu Jing1

1 State Key Laboratory of Information Security
Institute of Information Engineering

Chinese Academy of Sciences, Beijing 100093, China
{zwang, jing}@lois.cn

2 Center for Secure Information Systems
George Mason University, Fairfax, VA 22030, USA

{ksun3, jajodia}@gmu.edu

Abstract.

When hardware resources are shared between mutually distrustful ten-
ants in the cloud, it may cause information leakage and bring difficulties to
regulatory control. To address these concerns, cloud providers are starting to
offer hardware resources dedicated to a single user. Cloud users have to pay
more for such dedicated tenancy; however, they may not be able to detect the
unexpected misuse of their dedicated storage due to the abstraction layer of
the cloud. In this paper, we propose TerraCheck to help cloud users verify if
their dedicated storage devices have been misused to store other users’ data.
TerraCheck detects the malicious occupation of the dedicated device by moni-
toring the change of the shadow data that are residual bits intentionally left on
the disk and are invisible by the file system. When the cloud providers share
the dedicated disk with other users, such misuses can be detected since the
shadow data will be overwritten and become irretrievable. We describe the the-
oretical framework of TerraCheck and show experimentally that TerraCheck
works well in practice.

Keywords: Dedicated Storage, Cloud Security, Verification

1 Introduction

Cloud service significantly reduces costs by multiplexing hardware re-
sources among users [12]. The co-resident data belonging to different users
may lead to information leakage, which has become a major security con-
cern for cloud users. For instance, a malicious VM is capable of retrieving
the encryption keys [21] from a victim VM hosted on the same physical
machine. Sensitive information can be compromised through the covert
communication channels based on the shared CPU cache [19], memory
bus [18], hard disks [15, 17] and so on in the cloud.

Cloud providers [1] are starting to offer physically isolated resources
in order to lower the entry barrier of cloud adoption for processing sen-
sitive data. For instance, in Amazon cloud [1], Dedicated Instances are a
form of EC2 instances launched within the Amazon Virtual Private Cloud
(Amazon VPC) that runs on hardware dedicated to a single customer. A
dedicated instance ensures that the resources, such as CPU, memory, disk
storage and network, are isolated physically at the hardware level. Un-
surprisingly, the cloud users have to pay more for the dedicated resources
than the regular ones.

Although the dedication property is guaranteed by the Service Level
Agreement (SLA), a misbehaved cloud provider may fail to meet the iso-
lation requirement due to either accidental configuration error or inten-
tionally reassigning the unallocated resources to other users. As a con-
sequence, the dedicated resource, for example the storage device, will
store the data belonging to unexpected users and cause information leak-
age. Because the cloud users usually can only see a logical view of their
resources due to the abstraction layer or the business model of cloud com-
puting [11], they may not be aware of or not be able to detect the violation
of the desired dedicated configuration before the security breaches occur.

In this paper, we propose TerraCheck to help cloud users to verify if
the unallocated disk space has been occupied by undesired users without
the cooperation of the cloud provider. We assume that the cloud providers
are honest-but-greedy, i.e., trustworthy for managing user’s data without
violating the data privacy but greedy for allocating the storage resources
not being in use by the dedicated user to other tenants. To detect the
greedy allocation, TerraCheck places shadow data on the unallocated disk
space and verifies the dedication by detecting the change of the shadow
information.

The shadow data are the residual bits on the disk after deleting the
original stored data and invisible to the file system. We group the set
of residual bits related to the same original file as “shadow chunk”. We
record the hash value and physical disk address of each shadow chunk
as verification metadata. To verify the integrity of each shadow chunk,
we utilize disk forensics techniques to retrieve shadow chunks according
to the prior recorded disk addresses. If the shadow chunks cannot be
recovered entirely, it indicates that the unallocated disk space has been
overwritten and the dedication property is violated.

Our shadow chunk method has two advantages comparing to sim-
ply stuffing the unallocated disk space with void files. First, it makes
the cheating behavior of the honest-but-greedy cloud provider very costly.

The retrieval of the shadow chunks relies on the physical disk address of
each chunk. If the misbehaved cloud providers move the shadow data to
some non-dedicated devices and make the shadow data still retrievable,
they must map the prior recorded disk address to the addresses of the
new device. Instead, accessing files relies on the file system and can be
redirected to another device with less efforts. Second, shadow data will
not affect the normal use of the dedicated device. The attested disk area
filled by the shadow chunks remains available for allocation in the view
of file system. However, if the attested disk area is filled by files, it cannot
be occupied by the dedicated user immediately.

We present two schemes for verifying the dedication property of cloud
storage. The basic TerraCheck scheme can detect the unexpected occu-
pation of dedicated storage device with high accuracy by checking the
retrievability of every chunk. With sampling, our advanced probabilistic
TerraCheck scheme can discover 10% unexpected occupation of the ded-
icated storage device with 95% probability by randomly challenging 29
chunks. Therefore, smaller size of chunk achieves low computational cost
but results in the large storage of metadata. Furthermore, with the help of
Bloom filter with 1% false positive rate, the size of verification metadata
can be reduced 5.5 times.

The rest of the paper is organized as follows. In Section 2, we describe
the threat model and general assumptions. Section 3 presents the require-
ments and operations of the dedication verification. Section 4 describes
both the basic and advanced probabilistic TerraCheck schemes. Section 5
implements two schemes and evaluates both the computational and stor-
age costs. Section 6 overviews the related work. Section 7 concludes this
paper.

2 Threat Model and Assumptions

The dedication property of cloud storage is guaranteed by the terms in
SLA. However, a misbehaved cloud provider may fail to meet such dedi-
cation requirement due to either accidental configuration errors or inten-
tionally being greedy with the unallocated storage resources: First, config-
uration error may allocate dedicated storage space to undesired tenants.
For instance, in Amazon dedicated instance, the dedication property is
enabled by the “Dedicated” attribute configured at the launch time. The
“Dedicated” attribute may be silently disabled (e.g., for software update,
server migration or testing). Second, a cloud provider may intentionally

place the non-frequently accessed data, such as archive data, to the unoc-
cupied disk space where is supposed belonging to one specific customer.

We consider the misbehaved cloud providers as honest-but-greedy.
Honestmeans that the cloud providers are not motivated to corrupt user’s
data or violate the data privacy with respect to the business reputation.
However, the cloud providers may be greedy for allocating the storage
not being in use by the dedicated user to other tenants. Although the
honest-but-greedy cloud providers are only interested in the large amount
of unused disk space belonging to a dedicated user, they cannot control
the behavior of the co-resident tenants once the cloud provider acciden-
tally allocate the unoccupied space to another tenant. Co-resident tenants
may threaten the security and privacy of the existing user data, such as
exploiting covert channels to retrieve encryption key [21] and other sen-
sitive information [15] or violating the access control policy [17].

We assume the usage of the dedicated storage is well-planned by the
user. For example, the user allocates a determined amount of dedicated
disk space to each VM. This is a common practice [11] of resource manage-
ment in the cloud. When the user only launches a small number of VMs,
only part of the dedicated storage are allocated. The rest of the dedi-
cated storage should be protected from being exploited by other users
due to both the security and performance reasons. We call this part of
disk space as attested area. The disk space being in use by the dedicated
user is called occupied area. Additionally, the attested area may scale
up and down based on the occupation of the dedicated disk. TerraCheck
requires a small amount of trusted disk space for storing verification meta-
data on the occupied area. We assume the occupied area is trusted since
honest-but-greedy cloud provider is trustworthy for managing user data.

3 System Model

We first formalize the model of TerraCheck. Suppose a user C pays and
possesses a dedicated disk with the capacity of s in the cloud. The dedi-
cated disk is divided into two areas as shown in Fig. 1. The occupied area
with the capacity of sa disk space has been allocated by C for storing
the data associated with running VMs or as general purpose storage. We
consider occupied area is trusted by C to execute the TerraCheck and
store the verification metadata. The attested area with the capacity of
su disk space remains unallocated where su = s − sa. Attested area is
the verification target of TerraCheck. When C needs more disk space by
increasing the size of occupied area, the size of attested area will shrink

Occupied Area

Dedicated Disk

f1 f2 fn
...

Occupied Area

❸Challenge and Retrieve
Chunks by Forensic

❶ Place shadow chunks

Attested Area

c'1 c'2 c'n...

 ❹ Checking with Metadata

Attested Area

c1 c2 cn
...

❷ Generate verification
metadata

Occupied Area Attested Area

Metadata

Metadata

c1 c2 cn
...

c1 c2 cn
...

Fig. 1. Overview of TerraCheck

accordingly. The goal of TerraCheck is to verify if the attested area has
been maliciously taken by other users or the cloud provider.

TerraCheck consists of four major procedures, as shown in Fig. 1.
First, it places shadow chunks on the attested area of the target disk.
The shadow chunks are deleted files which cannot be accessed from the
file system. Shadow chunks can be recovered by disk forensics technique
as long as they have not been overwritten. Second, it generates meta-
data, such as the hash value of the shadow chunks, for monitoring the
alternation of shadow chunks. The metadata are stored on the occupied
area where has been allocated for storing the data associated with run-
ning VMs or as general purpose storage. Third, TerraCheck challenges the
shadow chunks by using disk forensic technique to recover them. Lastly,
it compares the forensics results with the verification metadata. If any
one of the shadow chunks has been altered and cannot be recovered, a
violation of dedication property is detected.

3.1 Verification Requirements

A solution for verifying the dedicated storage should satisfy the following
technical requirements.

– Trustworthy. The verification mechanism should provide the users
high confidence on the result of the verification. In other words, the

Table 1. Summary of Operation Parameters

Variable Meaning
C The cloud user who possesses the dedicated device and

executes dedication verification
n The number of shadow chunks placed on attested disk area
lk Length of each shadow chunk
th Header tag of each chunk
tf Footer tag of each chunk
K The set of shadow chunks
su Size of unallocated disk space
idki

ID of shadow chunk i
F The set of files for generating shadow chunks

imgAA Disk image of attested area
metaDB File for storing verification metadata

bi Starting disk address of chunk i on attested area
ei Ending disk address of chunk i on attested area

idARx ID of attested region x
metaFILTER File for storing Bloom filter

cloud provider has to pay higher storage overhead to defeat our ver-
ification mechanism. We can ensure our checking capability from the
economic consideration.

– Efficiency. The verification procedure should be fast without obvi-
ously interrupting the disk activities against the allocated part of the
disk. Moreover, The metadata used for verification should be small;
otherwise, it is unacceptable to use the same amount or more of disk
space to store the original shadow data on the local disk.

– Scalability. When the dedicated user occupies or releases more disk
space, for example, for running more VMs or shutting down existing
VMs, the disk area to be attested varies. Every time the customer
needs to scale the disk space up or down, the affected shadow chunks
should be as few as possible.

3.2 System Operations

TerraCheck consists of five basic operations. ChunkGen generates the
shadow chunks and places them on the attested area. MetaGen generates
the verification metadata and stores them on the occupied area. ChalGen
generates the information of challenged chunks. Retrieve executes the
forensics of challenged chunks and calculates their hash values. V erify
operation compares the result of Retrieve with the verification metadata
recorded in MetaGen and makes the decision of the dedication verifica-
tion. Table 1 summarizes all the variables used in this paper.

– ChunkGen(n, lk, th, tf)→K = {k1, k2, ..., kn}: TerraCheck fills at-
tested area with a set of chunks K = {k1, k2, ..., kn} and n ∗ lk = su.

Each chunk ki has a header tag th and a footer tag tf to represent
the start and the end of a chunk, respectively. The total length of the
header and the footer lth + ltf is less than lk. This algorithm takes the
number of chunks, the length of each chunk, the header th, the footer
tf as inputs and generates n temporary files F = {f1, f2, ..., fn} first.
Every file fi in F starts with th, ends with tf and the rest of it is filled
by random bits. Every file fi has the same length as lk. All the files in
F are stored on attested area and then deleted from the file system.
The bits left on attested area associated with each file fi are the set
of chunks K = {k1, k2, ..., kn}. Each chunk contains three parts - the
header, the footer, and a random body.

– MetaGen(n, th, tf , imgAA, h)→{metaDB, ⊥}: It takes the num-
ber of chunks, the header, footer tag information, the disk image of
attested area and a hash function as inputs, returns the verification
metadata or abortion. h : {0, 1}∗→{0, 1}m denotes a fixed hash func-
tion that outputs m bits hash value. The MetaGen algorithm retrieves
the chunks from imgAA by matching the th and tf and calculates
the hash value of each chunk. The results of verification metadata
metaDB is stored on occupied area. metaDB = {(idki , bi, ei, h(ki))|i ∈
{1, 2...n}, ki ∈ K} lists the ID of a chunk and the boundary of each
chunk on the disk, such as the start block number bi and the end block
number ei of chunk ki, and the hash value of each chunk h(ki). Each
chunk can be retrieved from the raw disk based on the start and end
block number without the help of the file system. Let |metaDB| be the
number of items in metaDB. If |metaDB| ̸= n, it indicates that some
chunks either cannot be recovered from the disk image of attested
area or a mismatched header or footer involved among the chunks. In
this case, MetaGen fails and outputs abortion symbol ⊥.

– ChalGen(metaDB, idki)→chal: This algorithm generates a challenge
chal based on metaDB and the ID of the queried chunk. chal =
(idki , bi, ei, h(ki)) ∈ metaDB is the chunk to be examined.

– Retrieve(chal, h)→result: It takes the challenge and the hash func-
tion as inputs and calculates the hash value after retrieving the chunk
based on the information specified in chal. It returns the hash value
of the chunk in chal.

– Verify(result, chal)→{“success”, “failure”}: The Verify algorithm
takes result and chal as inputs and compares the hash value in result
with that in chal. If the two hash values match, it outputs “success”
and otherwise outputs “failure”.

4 TerraCheck Schemes

We propose two schemes. The basic TerraCheck can accurately verify the
violation of the dedication with a high computation and storage overhead.
The advanced TerraCheck can detect the violation of the dedication with
a high probability while reducing the verification overhead dramatically.

4.1 Basic Scheme

Our goal is to make sure that the attested area hasn’t been allocated to
other users. Our basic TerraCheck scheme consists of four phases.

– Initial. In the initial phase, the attested area is filled by all zeros. This
operation prevents the existing content on the disk from affecting our
placement results.

– Placement. We place the shadow chunks on the attested area by
using the ChunckGen and MetaGen algorithms. If MetaGen → ⊥, a
failure occurs, TerraCheck should be restarted from the initial phase.
Otherwise, MetaGen generates valid verification metadata metaDB.

– Verification is a procedure to patrol on the dedicated storage de-
vice and collect the evidence for the undesired occupation by calling
Challenge, Retrieve and V erify algorithms until each shadow chunk
placed in the attested area has been checked. The V erification phase
would be stopped once V erify algorithm returns a “failure” for any
chunk. The dedication property is preserved if all the chunks passed
the examination.

– Update is executed when the size of attested area is subject to
change. It is difficult to predict the set of affected chunks since the
allocation of disk space depends on the disk scheduling. Therefore,
both the shadow chunks and their associated verification metadata
become useless and subjects to deletion. The initial phase and place-
ment phase should be restarted with the new attested area.

The basic TerraCheck can successfully check the dedication property
with high accuracy. If n−t shadow chunks are recoverable, it means that t
chunks are altered so that around t∗ lk out of su disk space has been allo-
cated or corrupted maliciously. Theoretically, we can 100% detect the al-
ternation of any number of chunks. However, the basic TerraCheck scheme
has two main limitations:

– Computational Cost. The verification phase has to read through
the whole attested area and calculate the hash value for every shadow
chunk.

3

9

27

81

243

729

0% 5% 10% 15% 20% 25% 30%

#
 o

f
C

h
a

ll
e

n
g

e
d

 C
h

u
n

k
s

Percentage of Corrupted Chunks on Attested Area

0.99 0.95 0.9

Fig. 2. Probabilistic Framework of Advanced TerraCheck

– Update Operation.When the size of attested area has to be changed,
TerraCheck should be restarted from the initial phase against the new
attested area.

4.2 Advanced Scheme

To mitigate the limitations of the basic TerraCheck scheme, we propose
a probabilistic based TerraCheck scheme. To reduce the computational
cost, we randomly sample the chunks during the Verification procedure.
In order to provide efficient update operation, we introduce multiple re-
gions within the attested area, we call them attested region. The attested
region is the smallest unit for C to scale up the size of the occupied area.
For example, C plans to attach a certain size of disk space to a newly
launched VM. When the size of occupied area is shrunk due to the termi-
nation of a VM, new attested region will be created. Each attested region
contains multiple shadow chunks. The shadow chunk is the smallest unit
for challenge and verification. In addition, we use bloom filter to reduce
the storage for saving the verification metadata.

Attested Region We introduce attested region for conveniently scaling
up and down the size of attested area. The attested area is divided into
multiple attested regions. The size of attested region depends on how a
user uses the dedicated disk. For example, if it uses the disk as the at-
tached secondary storage for running VMs, and each VM is attached by
a fixed amount of disk space, such amount is an optimal size for each
attested region. When an attested region should be deleted, the related

verification metadata are deleted and excluded from the TerraCheck pro-
cedure.

Probabilistic Verification The sampling would greatly reduce the com-
putational cost, while still achieving a high detection probability. We now
analyze the probabilistic guarantees offered by a scheme that supports
chunk sampling.

Suppose the client probes p chunks during the Challenge phase. Clearly,
if the cloud provider destroys with a chunk other than those probed, the
cloud provider will not be caught. Assume now that t chunks are tampered
and become unrecoverable, so that at least st = t∗ lk size of disk space are
maliciously allocated. If the total number of chunks is n, the probability
that at least one of the probed chunks matches at least one of the tam-
pered chunks is ρ = 1− n−t

n · n−t−1
n−1 , ..., ·n−p+1−t

n−p+1 . Since n−t−i
n−i ≥ n−t−i−1

n−i−1 ,

it follows that ρ ≥ 1− (n−t
n)p.

When t is a fraction of the chunks, user C can detect misbehaviors
by asking for a constant amount of chunks, independently on the total
number of file blocks. As shown in Fig. 2, if t = 1% of n, then TerraCheck
asks for 459 chunks, 300 chunks and 230 chunks in order to achieve the
probability of at least 99%, 95% and 90%, respectively. When the number
of corrupted chunks goes up to 10% of the total chunks, the violation of
dedicated can be detected with 95% probability by only challenging 29
chunks. As the number of corrupted chunks increases, the number of
chunks required to be checked is decreased dramatically. The sampling is
overwhelmingly better than scanning all chunks in the basic TerraCheck
scheme. Therefore, we can challenge a fix number of chunks to achieve
certain accuracy. The size of each chunk will determine the computation
cost. When the size of each chunk is small, the overhead for retrieving all
challenged chunks from dedicated disk is low.

Advanced Operations For establishing efficient TerraCheck, we need
to refine both the MetaGen and ChalGen algorithms.

MetaGen(n, th, tf , imgAA, h)→{metaDB, ⊥}: The results of veri-
fication metadata metaDB = {(idARx , idki , bi, ei, h(ki))|i ∈ {1, 2...n}, ki ∈
K}. It lists the ID of the located attested region, the ID of a chunk and
the boundary of each chunk on the disk, such as the start block number
bi and the end block number ei of chunk ki, and the hash value of each
chunk h(ki). Each chunk can be retrieved from the raw disk based on the
start and end block number and the ID of the attested region without
the help of the file system.

ChalGen(metaDB)
r→chal. It randomly generates a challenge chal

based on metaDB. chal = (idARr , idkr , br, er, h(kr)) ∈ metaDB is the
chunk to be examined.

Our advanced TerraCheck scheme consists of the same phases as
the basic TerraCheck. Advanced operations will be called in the related
phased. Besides, the update phase should be modified accordlingly.

– Update. Since the attested area is further divided into attested re-
gions, when a user needs to extend or shrink the disk space for occu-
pied area, only limited number of attested regions are deleted or added
so that the TerraCheck against the rest of chunks remains valid. When
the occupied area scales up, the metadata related to the erased at-
tested region will be deleted. The rest of metadata are still available
for TerraCheck.

Reducing Metadata Storage In the basic TerraCheck scheme, the
size of metaDB for storing the verification metadata is linear to the num-
ber of shadow chunks. The number of chunks could be very large if the
user wants to achieve a lower computational cost as we discussed in the
probabilistic verification. In order to reduce the amount of storage for
verification metadata in TerraCheck, we take advantage of Bloom filter
to store the metadata for verification.

Bloom filter [4] is a space-efficient data structure for representing a
set in order to support membership queries. Bloom filter is suitable to the
place where one might like to keep or send a list for verification, but a
complete list requires too much space. We use Bloom filter to represent a
set S = {x1, x2, ..., xn} of n elements as an array of m counters, initially
all set to 0. It uses k independent hash functions h1, h2, ..., hk with range
[1, m]. For mathematical convenience, we make the natural assumption
that these hash functions map each item in the universe to a random
number over the range {1, ...,m}. For each element x ∈ S, the bits hi(x)
are set 1 for 1 ≤ i ≤ k. A location can be set as 1 multiple times. To
check if an item y is a member of S, we check whether all hi(y) are 1.
If not, then clearly y is not a member of S. If all hi(y) are 1, we assume
that y is in S. We know that a Bloom filter may yield a false positive,
where it suggests that an element x is in S even though it is not.

The probability of a false positive for an element not in the set, or
the false positive rate, can be estimated, given our assumption that hash
functions are perfectly random. After all the elements of S are hashed into
the Bloom filter, the probability that a specific bit is still 0 is PRzero =

1− 1
m

kn ≈ e−
kn
m . The probability of a false positive is (1− PRzero)

k. A
Bloom filter with an optimal value for the number of hash functions can
improve storage efficiency.

We modify our TerraCheck model for utilizing Bloom filter to reduce
the storage cost of the verification metadata.

– BF-MetaGen(th, tf , imgAA, h)→{metaFILTER, ⊥} The algorithm
takes the header, footer tag information, the disk image of attested
area and a hash function as inputs, returns the verification metadata
or an abortion. metaFILTER is a Bloom filter which involves the hash
value of every shadow chunk.

– BF-Verify(result,metaFILTER)→{“success”, “failure”}: It takes result
and metaFILTER as inputs and checks if the hash value in result
is valid and associates with any chunks. If the hash value can be
found from metaFILTER, the algorithm outputs “success” and other-
wise “failure”.

5 Implementation and Evaluation

We implement and evaluate both basic TerraCheck scheme and advanced
TerraCheck scheme. All experiments are conducted on a Dell PowerEdge460
server with Intel Core i5 CPU running at 3.10GHz, and with 4096 MB of
RAM. The system runs Ubuntu 12.04 (LST) that is configured with Xen
Hypervisor. The dedicated storage device is a WestDigital SATA 7200
rpm hard disk with 1TB capacity and 64MB cache. For evaluation pur-
pose, we used SHA-1 as the hash function h. The random values used for
challenging the chunks in the advanced TerraCheck are generated using
the function proposed by Shoup [7]. All data represent the mean of 20
trials.

We implement a large attested area in basic TerraCheck and imple-
ment an attested region in advanced TerraCheck as a logical volume. The
occupied area may involve multiple logical volumes. LVM (Logical Volume
Management) technology is exploited to automate the update operation
when the size of occupied disk space varies. We rely on the retrievabil-
ity of the shadow chunks on each logical volume to check the dedication
property. We utilize Scalpel [14], which is an open source file recovery
utility with an emphasis on speed and memory efficiency, to retrieve the
shadow chunks based on their header tag and footer tag. To perform file
recovery, Scalpel makes two sequential passes over each disk image. The
first pass reads the entire disk image and searches for the headers, foot-
ers and a database of the locations of these headers is maintained. The

Table 2. Time for Retrieving Chunks

Chunk Size 512KB 1MB 2MB 4MB 8MB 16MB

Retrieve Time 13 ms 15 ms 20 ms 29 ms 48 ms 86 ms

second pass retrieves the files from the disk image based on the location
information of the header and footer. Scalpel is file system-independent
and will carve files from FATx, NTFS, ext2 and ext3, or raw partitions.

We evaluate both the computation overhead and storage cost during
each phase of TerraCheck.

Initial Phase. During the initial phase, the attested area is filled by
all zeros. The time for this phase is determined by and linear to the size
of attested area su. It takes about 10 seconds for cleaning 1 GB of the
attested area. Both basic TerraCheck and advanced TerraCheck have the
same performance at this phase.

Placement Phase. There are two steps for placing the chunks. The
first step is to generate and store the chunks to the attested area. The
cost of this operation is determined by the chunk size and the size of
attested area. On our testbed, it takes 12 seconds to store 100MB of
shadow chunks. The second step is to generate the metadata. It takes
8.198 seconds for Scalpel to scan 1 GB of the attested area in the first
pass and store the location information.

Verification Phase. The basic TerraCheck examines all the chunks
based on the verification metadata recorded in metaDB. Therefore, the
time for generating the challenge can be ignored. The advanced Ter-
raCheck randomly challenges the chunks. The generation of random num-
ber takes less than 0.1 ms. The challenged chunks are retrieved from the
attested area based on the start and end location recorded as the verifi-
cation metadata. Therefore, the performance is determined by the disk
access time. Tab. 2 shows the disk access time in our experiment.

After retrieving the challenged chunks, TerraCheck compares the hash
value of the retrieved chunk with the verification information. In basic
TerraCheck, it checks all the chunks residing on the attested area so
that the checking time is the time for calculating the hash value of all
the chunks. The advanced TerraCheck scheme randomly challenges the
chunks to achieve the detection of undesired disk occupation. We simulate
the behaviors that a proportion of attested area is altered. For instance,
if a randomly 1% of an attested area with 10000 chunks are altered, such
situation could be detected with a 90% probability by challenging 217
chunks on average, which is closed to the theoretical result.

16

128

1024

8192

65536

0 2000000 4000000 6000000 8000000 10000000

K
B

of Chunks

Without Bloom Filter With Bloom Filter

Fig. 3. Comparison of the Storage Cost with/without Bloom Filter (%1 Fault Positive
Rate Allowed)

Update Phase. For the basic TerraCheck scheme, the performance of
update is the same as the overhead of executing the initial and placement
phases. The performance of the advanced TerraCheck scheme depends
on the change of the size of attested area. When the occupied area is
extended, the advanced TerraCheck scheme only needs to update the
metaDB by deleting the items of affected chunks. When occupied area
is shrunk, more attested regions should be created on the attested area.
The generation of each attested region takes about 400 ms regardless the
size of the attested region.

Reducing Metadata Storage. apgbmf [2] is originally used to man-
age Bloom filter for restricting password generation in APG password
generation software [16]. We use apgbmf version 2.2.3 as a standalone
bloom filter management tool.

We consider each hash value of the shadow chunk as an item of pass-
word dictionary in the context of apgbmf. We create a Bloom filter for
such hash value dictionary. During the verification phase of TerraCheck,
if a recovered chunk is unaltered, its hash value will pass the Bloom filter,
i.e, the hash value is one of the hash values which associates an original
shadow chunk with a high probability. When we allow 1% fault positive
rate, the storage cost with Bloom filter is reduced 5.5 times as shown in
Fig. 3. When the number of chunks is more than 10 million, the metadata
only requires 36 MB as compared to 200 MB without using Bloom filter.

6 Related Work

Cloud service providers [1, 13] have started to offer physically isolated re-
sources to lower the entry barrier for enterprises to adopt cloud computing

and storage. For instance, in Amazon cloud [1], Dedicated Instances are
a form of EC2 instances launched within the Amazon Virtual Private
Cloud, which runs hardware dedicated to a single customer. Some re-
search have been done to guarantee the exclusive occupation of dedicated
resources for security reason. The side channel based on CPU L2 cache
has been used to verify the exclusive use of a physical machine [20]. Ris-
tenpart et al. [15] also propose to use the existing side channels to verify
the co-residency of VMs. [10] allows application designers to build secure
applications in the same way as on a dedicated closed platform by using
a trusted virtual machine monitor. However, it requires the modification
of commercial hypervisor.

Researchers have also investigated techniques to verify various secu-
rity properties claimed in the SLAs. Dijk et al. [8] prove that the files are
stored with encryption at the cloud server side by imposing a resource
requirement on the process of translating files from the plain texts to the
cipher texts. Proof of Retrievability (PoR) [9] aims to verify if the files
are available in the cloud storage at any time. However, PoR cannot ver-
ify where the files are located. RAFT [5] can verify that a file is stored
with sufficient redundancy by measuring the response time for accessing
“well-collected” file blocks. Another work [3] proposes a mechanism to
verify that the cloud storage provider replicates the data in multiple geo-
locations by measuring the network latency. [17] proposes a method to
verify the disk storage isolation of conflict-of-interest files so that Chi-
nese Wall security policy [6] can be successfully enforced in cloud storage
environment.

7 Conclusion

In this paper, we propose TerraCheck to help cloud users to verify the
exclusive use of their dedicated cloud storage resources. TerraCheck places
shadow chunks on the dedicated disk and detects the change of the shadow
information by taking advantage of disk forensics technique. We further
improve the computational efficiency by randomly challenging the chunks
and reduce the storage by applying Bloom filter.

References

1. Amazon Web Services: http://aws.amazon.com
2. APGBFM: http://linux.die.net/man/1/apgbfm
3. Benson, K., Dowsley, R., Shacham, H.: Do you know where your cloud files are?

In: CCSW. pp. 73–82 (2011)

4. Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Commun.
ACM 13(7), 422–426 (1970)

5. Bowers, K.D., van Dijk, M., Juels, A., Oprea, A., Rivest, R.L.: How to tell if your
cloud files are vulnerable to drive crashes. In: ACM Conference on Computer and
Communications Security. pp. 501–514 (2011)

6. Brewer, D.F.C., Nash, M.J.: The chinese wall security policy. In: IEEE Symposium
on Security and Privacy. pp. 206–214 (1989)

7. Dent, A.W.: The Cramer-Shoup encryption scheme is plaintext aware in the stan-
dard model. In: EUROCRYPT. pp. 289–307 (2006)

8. Dijk, M.V., Juels, A., Oprea, A., Rivest, R.L., Stefanov, E., Triandopoulos, N.:
Hourglass schemes: How to prove that cloud files are encrypted. In: ACM Confer-
ence on Computer and Communications Security (2012)

9. Dodis, Y., Vadhan, S.P., Wichs, D.: Proofs of retrievability via hardness amplifi-
cation. In: Theory of Cryptography Conference. pp. 109–127 (2009)

10. Garfinkel, T., Pfaff, B., Chow, J., Rosenblum, M., Boneh, D.: Terra: a virtual
machine-based platform for trusted computing. SIGOPS Oper. Syst. Rev. 37(5),
193–206 (Oct 2003)

11. Jhawar, R., Piuri, V.: Fault tolerance management in iaas clouds. In: Proc. of the
1st IEEE-AESS Conference in Europe about Space and Satellite Telecommunica-
tions (ESTEL 2012). ESTEL 2012, Rome, Italy (Oct 2012)

12. Kurmus, A., Gupta, M., Pletka, R., Cachin, C., Haas, R.: A comparison of secure
multi-tenancy architectures for filesystem storage clouds. In: Middleware. pp. 471–
490 (2011)

13. Rackspace: http://www.rackspace.com
14. Richard III, G.G., Roussev, V.: Scalpel: A frugal, high performance file carver. In:

DFRWS (2005)
15. Ristenpart, T., Tromer, E., Shacham, H., Savage, S.: Hey, you, get off of my cloud:

exploring information leakage in third-party compute clouds. In: ACM Conference
on Computer and Communications Security. pp. 199–212 (2009)

16. Spafford, E.: Opus: Preventing weak password choices
17. Wang, Z., Sun, K., Jajodia, S., Jing, J.: Disk storage isolation and verification in

cloud. In: Globecom 2012. Anaheim, CA, USA (2012)
18. Wu, Z., Xu, Z., Wang, H.: Whispers in the hyper-space: High-speed covert chan-

nel attacks in the cloud. In: the 21st USENIX Security Symposium (Security’12)
(August 2012)

19. Xu, Y., Bailey, M., Jahanian, F., Joshi, K.R., Hiltunen, M.A., Schlichting, R.D.:
An exploration of L2 cache covert channels in virtualized environments. In: CCSW.
pp. 29–40 (2011)

20. Zhang, Y., Juels, A., Oprea, A., Reiter, M.K.: Homealone: Co-residency detec-
tion in the cloud via side-channel analysis. In: IEEE Symposium on Security and
Privacy. pp. 313–328 (2011)

21. Zhang, Y., Juels, A., Reiter, M.K., Ristenpart, T.: Cross-VM side channels and
their use to extract private keys. In: Proceedings of the 2012 ACM conference on
Computer and communications security. pp. 305–316. CCS (2012)

