
TinySeRSync: Secure and Resilient Time Synchronization
in Wireless Sensor Networks∗

Kun Sun, Peng Ning
Computer Science Dept.

NC State University
Raleigh, NC 27695

{ksun3,pning}@ncsu.edu

Cliff Wang
Army Research Office

RTP, NC 27709

cliff.wang@us.army.mil

An Liu, Yuzheng Zhou
Computer Science Dept.

NC State University
Raleigh, NC 27695

{aliu3,yzhou3}@ncsu.edu

ABSTRACT
Accurate and synchronized time is crucial in many sensor
network applications due to the need for consistent dis-
tributed sensing and coordination. In hostile environments
where an adversary may attack the networks and/or the
applications through external or compromised nodes, time
synchronization becomes an attractive target due to its im-
portance. This paper describes the design, implementation,
and evaluation of TinySeRSync, a secure and resilient time
synchronization subsystem for wireless sensor networks run-
ning TinyOS. This paper makes three contributions: First,
it develops a secure single-hop pairwise time synchronization
technique using hardware-assisted, authenticated medium ac-
cess control (MAC) layer timestamping. Unlike the previous
attempts, this technique can handle high data rate such as
those produced by MICAz motes (in contrast to those by
MICA2 motes). Second, this paper develops a secure and re-
silient global time synchronization protocol based on a novel
use of the µTESLA broadcast authentication protocol for
local authenticated broadcast, resolving the conflict between
the goal of achieving time synchronization with µTESLA-
based broadcast authentication and the fact that µTESLA
requires loose time synchronization. The resulting protocol
is secure against external attacks and resilient against com-
promised nodes. The third contribution consists of an im-
plementation of the proposed techniques on MICAz motes
running TinyOS and a thorough evaluation through field
experiments in a network of 60 MICAz motes.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: General—
Security and protection; C.2.1 [Computer-Communication
Networks]: Network Architecture and Design—Wireless
communication

∗This work is supported by the National Science Founda-
tion (NSF) under grant CAREER-0447761. Wang’s work is
supported by the US Army Research Office (ARO) under
staff research grant W911NF-04-D-0003-0001.

Copyright 2006 Association for Computing Machinery. ACM acknowledges
that this contribution was authored or co-authored by an employee, contrac-
tor or affiliate of the U.S. Government. As such, the Government retains
a nonexclusive, royalty-free right to publish or reproducethis article, or to
allow others to do so, for Government purposes only.
CCS’06,October 30–November 3, 2006, Alexandria, Virginia, USA.
Copyright 2006 ACM 1-59593-518-5/06/0010 ...$5.00.

General Terms
Security, Design, Algorithms

Keywords
Sensor Networks, Security, Time Synchronization

1. INTRODUCTION
Recent technological advances have made it possible to

develop distributed sensor networks consisting of a large
number of low-cost, low-power, and multi-functional sen-
sor nodes that communicate over short distances through
wireless links [6]. Such sensor networks are ideal candidates
for a wide range of applications such as monitoring of crit-
ical infrastructures, data acquisition in hazardous environ-
ments, and military operations. The desirable features of
distributed sensor networks have attracted many researchers
to develop protocols and algorithms that can fulfill the re-
quirements of these applications (e.g., [6,14,16,21,30,31,36]).

Accurate and synchronized time is crucial in many sen-
sor network applications, particularly due to the need for
consistent distributed sensing and coordination. However,
due to the resource constraints on typical sensor nodes such
as MICA motes [8], traditional time synchronization proto-
cols (e.g., NTP [27]) cannot be directly applied in sensor
networks.

A number of time synchronization protocols (e.g., [11,13,
17, 23, 26, 28, 33, 37]) have been proposed for sensor net-
works to achieve pairwise and/or global time synchroniza-
tion. Pairwise time synchronization aims to establish rela-
tive clock offsets between pairs of sensor nodes, while global
time synchronization aims to provide a network-wide time
reference for all the sensor nodes in a network. Existing pair-
wise or global time synchronization techniques are all based
on single-hop pairwise time synchronization, which discov-
ers the clock difference between two neighbor nodes that
can communicate with each other directly. Two approaches
have been used for single-hop pairwise clock synchroniza-
tion: receiver-receiver synchronization (e.g., RBS [11]), in
which a reference node broadcasts a reference packet to
help a pair of receivers identify their clock differences, or
sender-receiver synchronization (e.g., TPSN [13]), where a
sender communicates with a receiver to estimate their clock
difference. Multi-hop pairwise clock synchronization pro-
tocols and most of the global clock synchronization proto-
cols (e.g., [11, 13, 37]) establish multi-hop paths in a sen-
sor network, so that all the nodes in the network can syn-
chronize their clocks to the source based on the single-hop

pairwise clock differences between adjacent nodes in these
paths. Alternatively, diffusion based global synchronization
protocols [23] have the nodes’ clocks converge by spreading
synchronization information locally.

1.1 Threats to Time Synchronization in
Wireless Sensor Networks

Most of existing time synchronization techniques devel-
oped for sensor networks assume benign environments. How-
ever, in hostile environments, an adversary may certainly
attack the time synchronization protocol due to its impor-
tance. Note that all time synchronization protocols rely on
time-sensitive message exchanges. To mislead these proto-
cols, the adversary may forge and modify time synchroniza-
tion messages, jam the communication channel to launch
Denial of Service (DoS) attacks, and launch pulse-delay at-
tacks [12] by first jamming the receipt of time synchroniza-
tion messages and then later replaying buffered copies of
these messages. The adversary may also launch wormhole
attacks [18] by creating low latency and high bandwidth
communication channels between different locations in the
network, and (selectively) delay or drop time synchroniza-
tion messages transmitted through the wormholes. The
adversary may use Sybil attacks [10, 29], where one node
presents multiple identities, to defeat typical fault tolerant
mechanisms. Though message authentication can be used to
validate message sources and contents, it cannot validate the
timeliness of messages, and thus is unable to defend against
all of these attacks.

Moreover, the adversary may compromise some nodes,
and exploit the compromised nodes in arbitrary ways to
attack time synchronization. For example, the adversary
may instruct the compromised nodes to (selectively) delay
or drop time synchronization messages, and launch Sybil at-
tacks [29] using the identities and keying materials of com-
promised nodes if message authentication is enabled. The
adversary may also instruct the compromised nodes not to
cooperate with others, and inject false time synchronization
messages. The compromised nodes may collude with each
other to cause the worst damage to the network.

1.2 Inadequacy of Current Solutions
It is natural to consider fault-tolerant time synchroniza-

tion techniques, which have been studied extensively in the
context of distributed systems (e.g., [7, 9, 22, 32, 39]). How-
ever, these techniques require either digital signatures (e.g.,
HSSD [9], CSM [22]), exponential copies of messages (e.g.,
COM [22]), or a completely connected network (e.g., CNV [22])
to prevent malicious nodes from modifying or destroying
clock information sent by normal nodes. Thus, they are
impractical for resource-constrained sensor nodes. A recent
work provides an efficient fault-tolerant time synchroniza-
tion protocol for a cluster of fully connected nodes by ex-
ploiting the broadcast nature of wireless communication [40].
However, it requires a trusted entity during network initial-
ization to avoid heavy communication overhead, and does
not allow incremental deployment of additional sensor nodes.

There have been several recent studies for secure and re-
silient time synchronization in sensor networks [12, 25, 38,
41]. Ganeriwal et al. proposed several techniques for se-
cure pairwise synchronization (SPS), secure multi-hop syn-
chronization, and group-wise synchronization [12]. The SPS
technique provides authentication for medium access con-

trol (MAC) layer timestamping by adding timestamp and
message integrity code (MIC) as the messages being trans-
mitted. This approach works for low data rate sensor radios
(e.g., CC1000 on MICA2 motes with 38.4Kbps data rate);
however, it cannot keep up with recent IEEE 802.15.4 [20]
compliant sensor radios such as CC2420 on MICAz and
TelosB, whose data rate is 250Kbps. The group synchro-
nization in [12] uses pairwise authentication to synchronize
a group of nodes, thus introducing high computation and
communication overheads. Moreover, the group synchro-
nization assumes all nodes in a group can communicate with
each other directly. Extensions to groups with multi-hops
are speculated, but no specific solution is provided.

Manzo et al. discussed a few attacks against existing time
synchronization protocols and several countermeasures to
protect single-hop and multi-hop time synchronization [25].
However, there was no mechanism to authenticate the time-
liness of synchronization messages, and thus no protection
against, for example, pulse-delay attacks [12] and worm-hole
attacks [19], in which the adversary may delay authenticated
synchronization messages. Moreover, though µTESLA was
suggested as a way to authenticate broadcast synchroniza-
tion messages, no solution was given to resolve the conflict
between the goal of achieving time synchronization and the
fact that µTESLA requires loose time synchronization.

Sun et al. proposed a resilient time synchronization pro-
tocol that can deal with various attacks including compro-
mised nodes [41]. However, similar to [25], the proposed
techniques cannot authenticate the timeliness of synchro-
nization messages, thus suffering from pulse-delay [12] and
wormhole attacks [19]. In addition, the approaches in [41]
use authenticated unicast communication to propagate global
synchronization messages. This introduces substantial com-
munication overhead as well as frequent message collisions
in dense sensor networks [41].

Song et al. investigated countermeasures against attacks
that mislead sensor network time synchronization by de-
laying synchronization messages [38]. They proposed two
methods for detecting and tolerating delay attacks: one
transforms attack detection into statistical outliers detec-
tion, and the other detects attacks by deriving the bound
of the time difference between two nodes through message
exchanges. Unfortunately, [38] only addresses synchroniza-
tion of neighbor nodes, but does not support global time
synchronization in multi-hop sensor networks.

1.3 Our Contributions
To address the aforementioned problems, we develop a

secure and resilient time synchronization subsystem called
TinySeRSync for wireless sensor networks, targeting com-
mon sensor platforms such as MICAz and TelosB running
TinyOS [16]. Our solution offers a novel way to integrate
(broadcast) authentication into time synchronization, which
successfully provides authentication of the source, the con-
tent, and the timeliness of synchronization messages. Our
solution not only addresses secure time synchronization be-
tween neighbor nodes, but also the global synchronization
of an entire sensor network.

We make three contributions in this paper:

1. We develop a secure single-hop pairwise time synchro-
nization technique using hardware-assisted, authenti-
cated medium access control (MAC) layer timestamp-
ing. Unlike the previous attempts, this technique can

handle high data rate such as those produced by MI-
CAz and TelosB motes (in contrast to those by MICA2
and MICA2DOT motes).

2. We develop a secure and resilient global time synchro-
nization protocol based on a novel use of the µTESLA
broadcast authentication protocol for local authenti-
cated broadcast, resolving the conflict between the goal
of achieving time synchronization with µTESLA-based
broadcast authentication and the fact that µTESLA
requires loose time synchronization. The resulting pro-
tocol is secure against external attacks and resilient
against compromised nodes.

3. We provide an implementation of the proposed tech-
niques on TinyOS and a thorough evaluation through
field experiments in a network of 60 MICAz motes.
The evaluation results indicate that TinySeRSync is a
practical system for secure and resilient time synchro-
nization in wireless sensor networks.

1.4 Organization of the Paper
The rest of the paper is organized as follows. The next sec-

tion gives an overview of the TinySeRSync system. Section 3
and Section 4 describe the secure pairwise time synchroniza-
tion and the secure and resilient global time synchronization
in TinySeRSync, respectively. Section 5 provides the secu-
rity and performance analysis of TinySeRSync. Section 6
discusses a few implementation issues. Section 7 presents
the experimental evaluation of TinySeRSync in a network
of 60 MICAz motes. Section 8 concludes this paper and
points out future research directions.

2. OVERVIEW OF PROPOSED APPROACH
We assume that a sensor network consists of a large num-

ber of resource constrained motes such as MICA series of
motes. We assume there is a source node S that is well syn-
chronized to the external clock, for example, through a GPS
receiver. We would like to synchronize the clocks of all the
sensor nodes in the network to that of the source node. We
assume the source node is trusted, and all the other nodes
know the identity of the source node. The assumption of the
single, trusted source node is to simplify the discussion in
this paper. Our approach can be easily modified to accom-
modate multiple source nodes in order to enhance the per-
formance, improve the availability of source nodes, and/or
tolerate potentially compromised source nodes.

To deal with the ad hoc deployments of sensor networks
and the lack of initial synchronization among sensor nodes,
we propose to achieve global time synchronization in a sen-
sor network in two asynchronous phases: Phase I–secure
single-hop pairwise synchronization, and Phase II–secure and
resilient global synchronization. In Phase I, pairs of neighbor
nodes exchange messages with each other to obtain single-
hop pairwise time synchronization. Phase I uses authen-
ticated MAC layer timestamping and a two message ex-
change to ensure the authentication of the source, the con-
tent, and the timeliness of synchronization messages. Nodes
run Phase I periodically to compensate (continuous) clock
drifts and maintain certain pairwise synchronization preci-
sion, providing the foundation for global time synchroniza-
tion as well as the µTESLA-based local broadcast authen-
tication in Phase II.

Phase II uses authenticated local (re)broadcast to achieve
global time synchronization, starting with a broadcast syn-
chronization message from the source node. Phase II adapts
µTESLA to ensure the timeliness and the authenticity of the
local broadcast synchronization messages. To be resilient
against potential compromised nodes, each node estimates
multiple candidates of the global clock using synchroniza-
tion messages received from multiple neighbor nodes, and
chooses the median. Nodes that are synchronized to the
source node further rebroadcast the synchronization mes-
sages locally. This process continues until all the nodes are
synchronized. Phase II also runs periodically to maintain
certain global time synchronization precision.

We would like to emphasize that the two phases are asyn-
chronous. In other words, secure single-hop pairwise syn-
chronization (Phase I) is executed by nodes individually and
independently, while secure and resilient global synchroniza-
tion (Phase II) is controlled by the source node and prop-
agated throughout the network. The only requirement is
that a node finishes Phase I before entering Phase II. Also
note that both Phase I and Phase II are executed periodi-
cally. Though a node that has not performed Phase I syn-
chronization with its neighbor nodes cannot participate in a
global synchronization, it may join the next round of global
synchronization once it finishes Phase I. Thus, our approach
supports incremental deployment of sensor nodes, which is
an important property required by many sensor network ap-
plications.

We present the two phases of TinySeRSync in detail in
the next two sections.

3. PHASE I: SECURE SINGLE-HOP PAIR-
WISE TIME SYNCHRONIZATION

The goal of secure single-hop pairwise time synchroniza-
tion is to ensure two neighbor nodes can obtain their clock
difference through message exchanges in a secure fashion.
This requires the authentication of the source, the content
(i.e., the timing information), and the timeliness of each
message used for such synchronization.

In the following, we first discuss how we provide authen-
tication of the source and the timing information in syn-
chronization messages, and then describe a secure two-way
pairwise time synchronization protocol for a node to obtain
the clock difference from a neighbor node.

3.1 Authenticated MAC Layer Timestamping
MAC layer timestamping has been widely accepted as an

effective way to reduce the synchronization error during the
message exchanges since it was proposed in [13]. By adding
(on the sender’s side) and retrieving (on the receiver’s side)
timestamps in the MAC layer, this approach avoids the
uncertain delays introduced by application programs and
medium access, and thus has more accurate synchronization
precision.

To ensure the integrity of pairwise time synchronization,
we may authenticate a synchronization message by adding
a MIC once the MAC layer timestamp is added, assuming
the two nodes performing pairwise synchronization share a
secret pairwise key through, for example, TinyKeyMan [24].
This, however, introduces a potential problem due to the
extra delay required by the MIC generation: It is necessary
to have a MAC layer timestamp that marks the exact trans-

mission time of a certain bit in the message at the sender’s
side, but the MIC generation and insertion require extra de-
lay and have to be done after the timestamp is inserted into
the message.

The delay introduced by MIC generation and insertion can
be tolerated for sensor platforms with low data rate radio
components, such as MICA2 motes. In an earlier study [12],
Ganeriwal et al. attempted to provide authenticated MAC
layer timestamping for MICA2 motes (38.4 kbps data rate)
by generating MIC on the fly. Specifically, when the radio
component of a sensor node begins to transmit the first byte
of a synchronization message, it appends the current times-
tamp into the message, calculates the MIC, and appends the
MIC into the message being transmitted. Due to the low
data rate (38.4 kbps), the MAC layer timestamp and the
MIC can be added into the packet before the correspond-
ing bytes are transmitted [12]. However, with the increased
data rate on recent sensor platforms with IEEE 802.15.4
compliant radio components (250 kbps data rate [20]), such
as MICAz and TelosB motes, there is not enough time to
generate and insert the MIC before the transmission of the
MIC bytes due to the delay introduced by the MIC calcula-
tion [12].

We propose a prediction-based approach to address the
above problem. In the following, we describe our approach,
with a specific target of the IEEE 802.15.4 compliant radio
component ChipCon CC2420 [3], which is commonly used in
recent sensor platforms such as MICAz and TelosB motes.
We also assume the sensor nodes use TinyOS [16], the open
source operating system for networked sensor nodes.

3.1.1 Prediction-Based MAC Layer Timestamping and
Hardware-Assisted Authentication

We observe that the code for generating a MIC is deter-
ministic, and the time required for a MIC generation for
messages with a given length (or, more precisely, a given
number of blocks) is fixed. In addition, the process to trans-
mit a packet (starting from observing the channel vacancy
to the actual transmission of data payload) in CC2420 is
also deterministic. Thus, when we put a timestamp into a
synchronization message to be authenticated in the MAC
layer, we may predict the time required by MIC generation
and at the same time predict the delay between the start of
transmission and the transmission a given bit in the packet.

Let us review how a sensor node (such as a MICAz mote)
equipped with a CC2420 radio component handles packet
transmission on TinyOS. Figure 1 shows the transmission
and receiving process. When a node has a message to send,
its micro-controller first transmits the message to the RAM
(TXFIFO buffer) of the CC2420 radio component. After
the buffering is done, CC2420 sends a signal to the micro-
controller. At this time, if the radio channel is clear, the
micro-controller signals CC2420 to send out the packet with
a STXON strobe. Otherwise, it will back off randomly and
then test the channel again. After receiving a STXON sig-
nal, CC2420 first sends 12 symbol periods, with 4 bits in
each symbol, and then sends 4 byte preamble and 1 byte
of Start of Frame Delimiter (SFD) field, followed by 1 byte
length field and the MAC Protocol Data Unit (MPDU). The
sequence of events follows strict timing, and the delays in-
troduced by all of them are predictable.

We use the last bit of the SFD byte as the reference point
for time synchronization. In other words, the sender takes

the transmission (completion) time of the last bit of SFD
as the MAC layer transmission timestamp, and the receiver
marks the receiving time of the same bit as the receiving
timestamp. To allow the sender to perform MAC layer
timestamping and authentication, as mentioned earlier, we
can predict the time when the last bit of SFD will be trans-
mitted.

Sender Side: Now let us describe our proposed sending
process in detail. Assume the sender has started sending
a synchronization message to the RAM (TXFIFO buffer)
of CC2420. At this time, the timestamp field in the mes-
sage has not been filled. Upon completion of the transfer,
CC2420 sends a signal to the micro-controller, which then
starts handling the signal in the MAC layer. If the radio
channel is clear, the micro-controller generates a timestamp
by adding the current time with a constant offset ∆. This
constant offset ∆ is the time delay from checking the cur-
rent time to the transmission of the last bit of SFD. The
micro-controller then writes the timestamp directly to the
corresponding bytes in CC2420’s TXFIFO. Next, if the ra-
dio channel is still clear, it signals CC2420 to send out the
message with a STXON strobe. Otherwise, it backs off for a
random period of time and then repeats the above process.
(Note that this back-off will force the micro-controller to
write the MAC layer timestamp again when the same mes-
sage is to be re-transmitted.) Upon receiving the STXON
signal, as described earlier, CC2420 starts transmitting the
symbol periods, the preamble, the SFD, and the MPDU. In
the case when CC2420 can successfully transmit the packet,
the execution and the data transmission are both determin-
istic, and the delay ∆ is a constant. The delay ∆ we ob-
tained on MICAz motes is 399.28 µs. This includes the total
transmission time for the 12 symbol periods, preamble and
SFD ((12 ∗ 4 + (4 + 1) ∗ 8)/250, 000 = 0.000352 s = 352 µs)
and the execution time between checking the timestamp and
starting the transmission (47.28 µs).

In our implementation, we have CC2420 start the inline
authentication to generate the MIC of the message at the
time when it begins to transmit the symbol periods. Accord-
ing to the manual of CC2420 [3], the inline authentication
component in CC2420 can generate a 12-byte MIC on a 98-
byte message in 99 µs. Thus, we can easily see the MIC
generation can be completed before it is transmitted. Be-
sides the MIC, CC2420 also generates a 2-byte Frame Check
Sequence (FCS) using Cyclic Redundancy Check (CRC).

Receiver Side: After an approximately 2 µs propagation
delay [3], the radio component CC2420 on the receiver node
will receive the preamble of an incoming message. Once
the SFD field is completely received by CC2420, the SFD
pin will go high to signal the micro-controller, which then
records the current time as the receiving timestamp. When
the FIFOP pin goes low, the micro-controller will be signaled
to read the data from CC2420’s RXFIFO buffer, in which
the first byte indicates the length of the message. During
the receiving process, CC2420 performs inline verification
of the MIC (and the CRC) in the message, using the pair-
wise key shared between the sender and the receiver. The
micro-controller examines the verification result, and copies
the whole packet if the packet is authenticated. All these
operations are performed in the MAC layer, and transparent
to the application layer.

Unlike the deterministic delay on the sender’s side, the de-
lay affecting the receiving timestamps on the receiver’s side

� �� � � � �� � � 	
 � � � � � � � � �� � � � � 	 � � � � � �� � 	 � ��� � � � � � � � � � � � � � � � � � � � � ! "# $ # % & � � ' � ()* � + ,(- �
. / 0 1 .2 3 4 5 6 7 8 9: / . ; < 7 8 = 0 6 > ?7 7 / 1 @ = 6 7 A B < C

D � E � +F � � -� � # # & � & G
H 1 1 A HI 2 ?> / 6 7 = > J ? 0 K $ # $ L % M N - - + $ +F ' � O F �)(F -

� �� � � � �� � � 	
 � � � � � � � � �� � � � � 	 � � � � � �� � 	 � ��� � � � � � � � � � � � � � � � � � � � � ! "# $ # %. ; < 1 / 7 / P 7 / 1 Q @ = 6 7 A B < C
R � S T ,+�U � + ,V ,W F � ,(E

H 1 1 A HI 2 ? > / 67 = > J ? 0 K$ # $ L % M N - - + $ +F ' � O F �)(F -@ / 0 K7 X Y / P/ ?Z / 1
O +(* F [F � ,(EL �)F �

\] ^ _ ` a b ` c
\ d ^ e ` f ` gh ` c

Figure 1: Packet Sending and Receiving Processi j k lm n o n p j n q r s n i t u v w x y z { m n o n p j n q r s | }~ �� � � �� � � �� �� � � � � � � �� �� � �� � �� � �� � � �� � � � � � � � � � �� �� � �� � �� � �� � � � �
Figure 2: (Revised) Secure Pairwise Synchro-
nization (The authors would like to thank Glenn
Wurster for pointing out a typo in an earlier ver-
sion of this figure.)

is not entirely deterministic. When interrupt is disabled,
the micro-controller will not be able to get the SFD signal
immediately, and the resulting delay will be uncertain.

3.2 Secure Pairwise Synchronization
Given the authenticated MAC layer timestamping capa-

bility, we can now describe how two neighbor nodes can
perform secure pairwise time synchronization.

Let us take a look at our options. RBS uses a receiver-
receiver approach to synchronize nodes [11], in which a ref-
erence node broadcasts a reference packet to help pairs of
receivers to identify their clock difference. However, an ad-
versary can compromise it by simply launching a pulse-delay
attack [12] or wormhole attack against one of the nodes to
manipulate the packet transmission delay [19], so that the
two nodes receive the reference packet at different times. In
some protocols such as FTSP [26], one node passes its own
time to the other by directly sending a MAC layer times-
tamped packet to the latter. This works well in benign en-
vironments, as demonstrated in [26]. However, in hostile
environments, it suffers from the same problems mentioned
above. TPSN uses a sender-receiver approach (through one
request and one reply message) to help the sender obtain
its clock difference from the receiver [13]. This approach

was later improved with security in Secure Pairwise Syn-
chronization (SPS) [12] to deal with pulse-delay and worm-
hole attacks. Specifically, it authenticates the messages be-
ing exchanged, and uses the timestamp information to esti-
mate both the clock difference and the message transmission
delay. Pulse-delay and wormhole attacks that manipulate
packet transmission delay will introduce extra delay in mes-
sage transmission, and will be detected.

We adopt the SPS approach [12] with a slight modifica-
tion. SPS uses a random nonce to prevent replay of a pre-
viously transmitted reply message. In our case, we simply
use the sender’s timestamp in the reply message to prevent
replay attacks.

Figure 2 shows the revised SPS protocol, in which all mes-
sages are timestamped and authenticated with the key KAB

shared by nodes A and B, as described in Section 3.1. Node
A initiates the synchronization by sending message M1. The
message contains M1’s sending time t1. Node B receives the
message at t2. After verifying the message, at time t3, node
B sends a message M2 that includes t2, t3 to node A. (Note
that t1 is also included in M2 to detect replay attacks.)
When node A receives the message at t4, it can calculate

the clock difference ∆A,B = (t2−t1)−(t4−t3)
2

, and the esti-

mated one-way transmission delay dA = t2−t1+t4−t3
2

. Since
all messages are authenticated, any modification to any mes-
sage will be detected. To prevent the pulse-delay attacks [12]
and wormhole attacks [19], node A verifies that the one-way
transmission delay is less than the maximum expected delay.
In fact, this approach can detect any attack that attempts to
mislead single-hop pairwise time synchronization by intro-
ducing significant extra message delays. As a result, sender
A can easily detect attempts to affect the timeliness of the
synchronization messages.

Note that the revised SPS protocol only enables the sender
(A) to obtain the clock difference with the receiver (B). If
the receiver (B) also needs this information, it has to initiate
this protocol with the sender (A) as well. An alternative is
to perform a three-way message exchange so that both nodes
will get the clock difference at the end of the protocol ex-
ecution. However, in such a three-way protocol, both the
sender and the receiver have to maintain their states at the
intermediate protocol steps, and each node has to carefully

0.00% 0.01% 0.71%

8.43%

67.76%

19.84%

3.15%
0.09% 0.01%

0%

10%

20%

30%

40%

50%

60%

70%

80%

-4 -3 -2 -1 0 1 2 3 4
Synchronization Error (tick)

P
er

ce
n

ta
g

e

Figure 4: Synchronization Error Distribution in Se-
cure Pairwise Synchronization (1 Tick = 8.68 µs)

maintain its states to avoid interference when it is involved
in multiple concurrent synchronizations with different neigh-
bors. The additional space requirement and the increased
software complexity do not strictly justify the possibly re-
duced communication overhead.

Despite the use of MAC layer timestamping, there is still
possible uncertainty in pairwise time synchronization, which
may affect the precision of time synchronization.

Figure 3 shows the sources of packet delays in the revised
SPS protocol. On the target platform (i.e., MICAz motes),
the time for the CPU to access current time is determin-
istic and less than 1 tick. The time for adding timestamp
in the buffered packet is deterministic, too, which is less
than 2 ticks. The encoding time is for the radio to encode
and transform a part of the packet (4 bits a time in case of
CC2420) to electromagnetic waves, and the decoding time
is for the radio to transform and decode electromagnetic
waves into binary data. These times are controlled by a
chip sequence at 2 MChips/s, and thus are deterministic.
The propagation time depends on the distance between the
sender and the receiver, which is also deterministic. The un-
certainty in the packet delay is mainly because of the jitter
of the interrupt handling, which is caused by temporarily
disabled interrupt handling on the receiving side. For ex-
ample, the receiver may be executing a piece of code that
disables interrupt handling when the SFD is received by the
RF module, and thus cannot access the receiving timestamp
promptly.

We tested 30 pairs of nodes in our lab to obtain the syn-
chronization precision. For each pair of nodes, we ran 500
rounds of pairwise time synchronization. After two nodes
finish a pairwise time synchronization, a third reference node
broadcasts a query to them. Each of the node records the
MAC layer receiving time of the broadcast message and
sends the receiving time to the reference node. This allows
the reference node to calculate the synchronization error.
Figure 4 shows the distribution of the pairwise synchroniza-
tion error.

4. PHASE II: SECURE AND RESILIENT
GLOBAL TIME SYNCHRONIZATION

In this section, we present our method for secure and re-
silient global time synchronization, assuming all the sensor

nodes perform secure single-hop time synchronization peri-
odically.

4.1 Basic Approach
Given the secure pairwise synchronization protocol, the

remaining threats to global time synchronization are two-
fold. First, an external attacker may fake or replay (local)
broadcast messages used for global synchronization to mis-
lead the regular nodes. To defend against this threat, we
need to integrate authentication of both the content and
the timeliness of broadcast synchronization messages during
global time synchronization. Second, a compromised node
may provide misleading synchronization information to dis-
rupt the global time synchronization. Thus, our global time
synchronization protocol must be resilient to compromised
nodes.

We propose a distributed, resilient protocol integrated
with (local) broadcast authentication to provide secure and
resilient global time synchronization. Intuitively, the source
node broadcasts synchronization messages periodically to
adjust the clocks of all sensor nodes. The synchronization
messages are flooded throughout the network to reach nodes
that cannot communicate with the source node directly.
Specifically, when receiving a synchronization message for
the first time, each node rebroadcasts it (after a random de-
lay to avoid collisions). To reduce the impact of processing
delays at intermediate nodes on synchronization precision,
our approach focuses on the clock differences without in-
volving the delays directly in the computation. The timely
transmission of all these messages are authenticated. More-
over, each node obtains synchronization information from
multiple neighbor nodes, so that it can tolerate compromised
nodes to a certain extent.

Specifically, each node i maintains a local clock Ci. The
local clock CS of the source node S is the desired global
clock. For each neighbor node j, each node i can obtain
a single-hop pairwise clock difference ∆i,j = Cj − Ci using
the secure pairwise time synchronization in Section 3. Each
node i maintains a source clock difference δi,S between its
local clock and the clock of the source node S. Node i can
directly obtain it if it is a neighbor node of S. Otherwise,
node i needs to estimate ∆i,S . When the source node S de-
cides to send a synchronization message, it broadcasts such
a message to its direct neighbors. Each of the neighbors can
determine its source clock difference directly as mentioned
earlier. These neighbor nodes then broadcast their source
clock differences to help those that cannot receive the syn-
chronization messages from S directly.

To tolerate up to t compromised neighbor nodes, each
node i that receives source clock differences from non-source
neighbor nodes computes at least 2t + 1 candidate source
clock differences through different neighbor nodes. Specif-
ically, for each source clock difference ∆j,S that node i re-
ceives from node j, node i computes a candidate source
clock difference ∆j

i,S = CS −Ci = (CS −Cj) + (Cj − Ci) =
∆j,S +∆i,j . Given at least 2t+1 such candidate clock differ-
ences, node i picks the median as the estimated source clock
difference Ci,S . It is easy to see that node i can tolerate up
to t compromised neighbor nodes that provide misleading
synchronization information.

Each node i can estimate the global clock by using its local
clock and its source clock difference, i.e., the estimated global
clock Ĉi

S = Ci +∆i,S. After computing its own source clock

 ¡ ¢£ ¤ ¥ ¦§¨ © ª « © © ¤ ¨ « ¬ ¬ ¦ © ¤ © ¥ ¤ ¥ ¥ ¦ © ª ¦® « ¬ ª ¤ ® ¡ ¯ª ° « © ¬ « © ¥ ± ² ³ ´ µ § ® ® ¤ © ¥¶ © § ¥ ¦ © ¬ · ® ¸ § ¹ ¡ « º ¦§ ¥ ¬ ¤ © ¥ ¡ º « ¤ ® ¸ ¹«
 ¡ ¢£ ¤ ¥ ¦§¨ © ª « © © ¤ » « § ¥ ¦ © § ¼ ± ½ »¾ © ª « º º ¢ ¡ ª ° ¤ © ¥ ¹ ¦©

¿ º § ¡ ¤ ¤ ª ¦§ © § ¼ ± ½ »
¨ « ¬ ¬ ¦ © ª ¦® « ¬ ª ¤ ® ¡² ¦® «

± « © ¥ « º
£ « « ¦À « º

ª Á

ª Â ª Ã
¶ © § ¥ ¦ © § ¼ ± ½ »¿ º § ¡ ¤ ¤ ª ¦§ © § ¼ ± ½ »» « § ¥ ¦ © § ¼ ± ½ »¾ © ª « º º ¢ ¡ ª ° ¤ © ¥ ¹ ¦© ¨ « ¬ ¬ ¦ © ª ¦ ® « ¬ ª ¤ ® ¡ª Ä

¶ © § ¥ ¦© ± ½ »
¨ « ¬ ¬ ¦© ¤ © ¥ ¤ ¥ ¥ ¦ © ª ¦® « ¬ ª ¤ ® ¡ ¯ª ° « © ¬ « © ¥ ± ² ³ ´ µ § ® ® ¤ © ¥¶ © § ¥ ¦ © ¬ · ® ¸ § ¹ ¡ « º ¦§ ¥ ¬ ¤ © ¥ ¡ º « ¤ ® ¸ ¹«

Figure 3: Delay Uncertainty (Certain Details are Omitted for Clarity)

difference, each node broadcasts this value to help the nodes
that have not been synchronized estimate their source clock
differences as well as the global clock.

Our approach is similar to the resilient clock estimation
approach proposed in [41] in that both approaches esti-
mate the clock difference between each node and the source
node through multiple nodes that have already been syn-
chronized. However, our approach has a critical difference
from that approach: Our approach uses authenticated lo-
cal broadcast to propagate synchronization messages, while
the approach in [41] uses authenticated unicast that leads
to substantial communication overhead as well as message
collisions as shown in the performance study in [41]. This
difference represents a key step that enables practical secure
and resilient time synchronization in sensor networks.

The ability to authenticate local broadcast messages is the
cornerstone of the proposed protocol. In the following, we
describe in detail how this is done in TinySeRSync.

4.2 Authentication of Local Broadcast
Synchronization Messages

As discussed earlier, the signaling messages for global time
synchronization are broadcast in nature, and must be trans-
mitted in a timely and authenticated way. There are two
general solutions for authenticating broadcast messages in
sensor networks: digital signatures and µTESLA [34, 36].
Though it is possible to verify digital signatures on sensor
platforms, as shown in [15], signature operations are still
multiple order of magnitude more expensive than secret key
based solutions such as µTESLA. Using digital signatures
for time synchronization may quickly exhaust the battery
power of sensor nodes. Moreover, it is also an attractive
target of Denial of Service (DoS) attacks: An attacker may
broadcast synchronization messages with false digital signa-
tures to force sensor nodes to perform expensive signature
verifications.

µTESLA [36] relies on symmetric cryptography, and thus

does not suffer from the above problems. However, µTESLA
requires loose time synchronization between the broadcast
sender and the receivers. Considering the goal of having the
source node synchronize the clocks of all the sensor nodes,
there seems to be a conflict in using µTESLA for authenti-
cating broadcast time synchronization messages.

We can indeed avoid the above conflict. We observe that
two neighbor nodes may securely perform single-hop pair-
wise time synchronization using the techniques in Section 3.
Consider an arbitrary node A. Assume node A have syn-
chronized with all its neighbor nodes so that node A and
any of its neighbor nodes know the clock difference between
them. As a result, if node A needs to broadcast a synchro-
nization message to all its neighbor nodes, it may certainly
use µTESLA for broadcast authentication, since the “loose
synchronization” requirement needed by µTESLA is already
satisfied. In other words, we only use µTESLA locally to
avoid the above conflict.

Specifically, we adapt µTESLA for local broadcast au-
thentication to protect the broadcast messages from a node
to its neighbors, assuming the Phase I neighbor synchroniza-
tion has completed. In the following, we first give a brief
introduction to µTESLA, and then discuss the adaptation
of µTESLA in TinySeRSync.

4.2.1 Overview ofµTESLA
An asymmetric mechanism such as public key cryptogra-

phy is generally required for broadcast authentication [34].
Otherwise, a malicious receiver can easily forge any mes-
sage from the sender, as discussed earlier. µTESLA intro-
duces asymmetry by delaying the disclosure of symmetric
keys [36]. A sender broadcasts a message with a MIC gener-
ated with a secret key K, which is disclosed after a certain
period of time. When a receiver gets this message, if it can
ensure that the message was sent before the key was dis-
closed, the receiver buffers this message and authenticates
the message when it later receives the disclosed key. To

Time...I1 In-1 In

T1T0 T2 Tn-2 Tn-1 Tn

I2

KnKn-1K1K0 ...F F FFF
K2

Figure 5: µTESLA

continuously authenticate broadcast messages, µTESLA di-
vides the time period for broadcast into multiple intervals,
assigning different keys to different time intervals. All mes-
sages broadcast in a particular time interval are authenti-
cated with the key assigned to that time interval.

To authenticate the broadcast messages, a receiver first
authenticates the disclosed keys. µTESLA uses a one-way
key chain for this purpose. The sender selects a random
value Kn as the last key in the key chain and repeatedly
performs a (cryptographic) hash function F to compute all
the other keys: Ki = F (Ki+1), 0 ≤ i ≤ n − 1, where the
secret key Ki (except for K0) is assigned to the i-th time
interval. Because of the one-way property of the hash func-
tion, given Kj in the key chain, anybody can compute all
the previous keys Ki, 0 ≤ i ≤ j, but nobody can compute
any of the later ones Ki, j + 1 ≤ i ≤ n. Thus, with the
knowledge of the initial key K0, which is called the commit-
ment of the key chain, a receiver can authenticate any key
in the key chain by merely performing hash function oper-
ations. When a broadcast message is available in the i-th
time interval, the sender generates a MIC for this message
with a key derived from Ki, broadcasts this message along
with its MIC, and discloses the key Ki−d for time interval
Ii−d in the broadcast message (where d is the disclosure lag
of the authentication keys). Figure 5 illustrates the division
of the time line and the assignment of authentication keys
in µTESLA.

Each key in the key chain will be disclosed after some de-
lay. As a result, the attacker can forge a broadcast message
by using the disclosed key. µTESLA uses a security condi-
tion to prevent such situations. When a receiver receives an
incoming broadcast message in time interval Ii, it checks the
security condition ⌊(Tc +∆−T1)/Tint⌋ < i+d−1, where Tc

is the local time when the message is received, T1 is the start
time of the time interval 1, Tint is the duration of each time
interval, and ∆ is the maximum clock difference between the
sender and itself. If the security condition is satisfied, i.e.,
the sender has not disclosed Ki yet, the receiver accepts this
message. Otherwise, the receiver simply drops it.

4.2.2 Short DelayedµTESLA: AdaptingµTESLA for
Global Synchronization

Distribution of µTESLA Parameters: In order to use
µTESLA, the sender needs to transmit a number of param-
eters to all the receivers before the actual broadcast mes-
sages. These include the key chain ID, the key chain com-
mitment, the duration of each time interval, and the starting
time of the first time interval. We can fix the duration of
time intervals and the length of each key chain as network
wide parameters. However, the other parameters have to
be communicated from each node to its neighbors. To re-
duce communication cost, we piggy-back the transmission
of these µTESLA parameters with the single-hop pairwise
synchronization between neighbors. In other words, each

node sends the parameters of its own µTESLA key chain
to a neighbor node during secure single-hop pairwise syn-
chronization. When one key chain is about to expire, each
node needs to communicate with each neighbor node again
to transmit the parameters for the next key chain.

Balancing Key Chain Size and Authentication De-
lay: A direct application of µTESLA to authenticate the lo-
cal broadcast synchronization messages faces a risk. µTESLA
is subject to DoS attacks [35], in which an attacker overhear-
ing a valid broadcast message may use the disclosed key in
the message to forge broadcast synchronization messages. A
receiver has to buffer all such (forged) messages claimed to
be from some neighbor until it receives the disclosed key.
As a result, the receiver may not have enough memory to
buffer synchronization messages from other neighbor nodes.
The immediate authentication mechanism proposed in [35]
cannot be applied here, because it requires that the sender
know the next message to be transmitted before sending the
current message.

One possible way to mitigate the threat of DoS attacks
in global synchronization is to exploit the tight time syn-
chronization established during Phase I. Specifically, when
using µTESLA for local broadcast authentication, we may
use very short time intervals to limit the duration vulnera-
ble to DoS attacks. Because the neighbor nodes have been
tightly synchronized with each other during phase I, the
broadcast sender can use very short time intervals and dis-
close an authentication key right after the corresponding
interval is over. When the time interval is short enough, it
does not give enough time to an attacker to forge broadcast
messages using the disclosed key it just learns from the valid
broadcast message. A short enough interval duration also
offers authentication of the timeliness of the synchronization
messages; it disallows a replayed message to be transmitted
in the valid time interval, and thus enables receivers to de-
tect and remove them.

However, this approach comes with a significant cost: To
cover a certain period of time (e.g., 30 minutes), the sender
needs to generate a fairly long key chain due to the short
time intervals, and most of the keys will be wasted. Reduc-
ing the key chain length will force al the neighbor nodes to
exchange the key chain commitments frequently, leading to
heavy communication overhead.

We propose to adapt the µTESLA broadcast authentica-
tion protocol to address the above conflict. Specifically, we
propose to use two different durations in one µTESLA in-
stance, a short duration r and a long duration R. The short
intervals and the long intervals are interleaved, as shown in
Figure 6. As in the original µTESLA, each time interval is
still associated with an authentication key, which is used to
authenticate messages sent in this time interval. Each node
broadcasts a message authenticated with µTESLA only dur-
ing the short intervals, while broadcasting the disclosed key
in the following long interval (possibly multiple times to tol-
erate message losses).

Upon receiving a broadcast message, a receiver first checks
the security condition using the (MAC layer) message re-
ceipt time. Because each receiver and the sender have syn-
chronized tightly with each other, the receiver can easily
transform the receipt time into the time point in the sender’s
clock, and verify if the corresponding authentication key has
been disclosed when the receiver receives the message.

Consider Figure 6. Suppose the receiver B receives a

Mi Ki

TimeSender A

Receiver B
ti

r rR Rr rR R

Time

Figure 6: Short Delayed µTESLA

synchronization message Mi from the sender A at its lo-
cal time ti (taken in the MAC layer), and the start time
of A’s µTESLA instance is T0 in A’s clock. B may calcu-
late i = ⌊ ti−T0

r+R
⌋ and checks the following security condition:

ti − T0 + ∆B,A + δmax < i ∗ (R + r) + r, where ∆B,A is the
pairwise clock difference between A and B, and δmax maxi-
mum synchronization error between two neighbor nodes. B
stores the message and i only if this check is successful. Oth-
erwise, B simply drops the message. After node B obtains
the disclosed key Ki, it verifies F i−j(Ki) = Kj with a pre-
viously received key or commitment Kj where j < i. If the
key is valid, B then uses Ki to verify the MIC included in
the broadcast synchronization message Mi.

5. ANALYSIS

5.1 Security Analysis
Phase I. Phase I uses hardware-assisted inline authenti-

cation, providing authentication of the source and the con-
tent of synchronization messages. Moreover, Phase I uses a
two-way message exchange to estimate both the clock differ-
ence between direct neighbors and the transmission delay,
and can detect attacks that attempt to mislead time syn-
chronization by introducing extra message delays. Thus,
Phase I provides protection of the source, the content, and
the timeliness of single-hop pairwise synchronization mes-
sages. Specifically, Phase I effectively defeats external at-
tacks that attempt to mislead single-hop pairwise time syn-
chronization, including forged and modified messages, pulse-
delay attacks, and wormhole attacks that introduce extra
delays. Phase I protocol cannot handle DoS attacks that
completely jam the communication channel. Nevertheless,
no existing protocol can survive such extreme DoS attacks.

Phase II. Phase II adapts µTESLA to provide local
broadcast authentication. The security of this µTESLA
variation follows directly from the original scheme [34]. Be-
sides local broadcast authentication, another benefit of us-
ing µTESLA is the authentication of the timeliness of local
broadcast synchronization messages, since a delayed mes-
sage will be automatically discarded due to the violation
of the security condition. Thus, similar to Phase I, by au-
thenticating the source, the content, and the timeliness of
local broadcast synchronization messages, Phase II can suc-
cessfully defeat all the external attacks that are intended to
mislead the time synchronization.

Since the source node is trusted, in Phase II, each direct
neighbor node of the source node can directly estimate the
global clock securely. However, the other nodes may receive
false synchronization information from compromised nodes.
The solution used by Phase II is to have each node use the
source clock differences received from 2t + 1 neighbor nodes
to estimate 2t + 1 candidate source clock differences, and
select the median one as its own source clock difference.

We say a source clock difference obtained by a normal

node is correct if it has no more error than one obtained
using information only from normal nodes. The resilience
property of the Phase II protocol can be seen by induction.
As discussed earlier, the source node is trusted. Consider
a normal node i. Suppose the source clock difference is ob-
tained through node j, that is, δi,S = δi,j + δj,S . There
are two cases. (1) If node j is a normal node, both δj,S

and δi,j must be correct according to the induction assump-
tion, and thus δi,S = δi,j + δj,S is correct by definition. (2)
Suppose node j is malicious. Because there are at most t
malicious nodes, δi,S , which is the median of the 2t+1 candi-
date source clock differences, must be between two candidate
source clock differences obtained through two normal nodes.
This implies that the synchronization error introduced by a
compromised node is no more than the error introduced by
a normal node. As a result, the source clock difference δi,S is
still correct. Thus, if every node has no more than t compro-
mised neighbor nodes, Phase II can successfully synchronize
all the normal nodes as long as they have enough number
of neighbor nodes. However, similar to Phase I, Phase II
cannot handle DoS attacks that completely jam the com-
munication channel.

In conclusion, TinySeRSync provides a comprehensive so-
lution to providing secure and resilient time synchronization
in wireless sensor networks. It can successfully defeat all
non-DoS external attacks against time synchronization, and
is resilient to compromised nodes.

5.2 Performance Analysis
Synchronization Precision and Coverage. Tiny-

SeRSync uses predication-based MAC layer timestamping
in Phase I, avoiding many places that could introduce uncer-
tainty during time synchronization. In Phase II, TinySeR-
Sync tries to estimate the global clock through the estima-
tion of source clock differences, and thus greatly reduces the
impact generated by the propagation delays of synchroniza-
tion messages. Thus, TinySeRSync can provide high preci-
sion time synchronization. Moreover, TinySeRSync employs
flooding-based propagation of global synchronization mes-
sages; this allows all the nodes that have enough number of
neighbor nodes to be synchronized.

Communication, Computation, and Storage Over-
heads. TinySeRSync uses message exchanges between di-
rect neighbor nodes for Phase I synchronization. All these
message exchanges are local, and do not introduce wide area
interference. In Phase II, TinySeRSync adopts local broad-
cast for the propagation of global synchronization messages,
effectively harnessing the broadcast nature of wireless com-
munication. Thus, TinySeRSync is efficient in terms of com-
munication.

TinySeRSync uses efficient symmetric cryptography for
message authentication. In particular, it exploits the hard-
ware cryptographic support provided by the CC2420 radio
component. Thus, TinySeRSync introduces very light com-
putation overhead for cryptographic operations.

TinySeRSync does increase the storage overhead on sensor
nodes due to the need to maintain cryptographic keys, buffer
the local broadcast messages, and store the source clock dif-
ferences received from 2t + 1 neighbor nodes. A critical
issue is the maintenance of the µTESLA key chain required
for authenticating outgoing synchronization messages. Our
adaptation of µTESLA greatly reduces the number of keys
in each key chain. In addition, we use another approach to
further reduce the memory requirement and the delay: Af-
ter generating a key chain, each node only saves some select
keys called key anchors (e.g., 1 of every 10 keys), and also
caches the keys before the next key anchor to be used (e.g.,
the first 10 keys). When a µTESLA key is required for au-
thentication, if the key is available in the cache, the node
can directly use it. Otherwise, the node can regenerate and
fill the key cache using the next key anchor.

Incremental Deployment. As discussed earlier, Tiny-
SeRSync uses two asynchronous phases, both of which are
executed periodically. Thus, TinySeRSync works well with
incremental deployment of sensor nodes. The newly de-
ployed nodes first obtain the pairwise time differences and
the commitments of the key chains from its neighbor nodes
in Phase I, and then join the Phase II global time synchro-
nization. Our experimental results in Section 7 will show the
performance when there are incrementally deployed nodes.

6. IMPLEMENTATION DETAILS
Our implementation of TinySeRSync is targeted at MI-

CAz motes [2]. (However, our implementation can be used
with slight modification for other sensor platforms that also
use CC2420 radio components, such as TelosB [4] and Tmote
Sky [5].) A MICAz mote has an 8-bit micro-controller AT-
Mega128L [1], which has 128 kB program memory and 4
kB SRAM. As discussed earlier, MICAz is equipped with
the ChipCon CC2420 radio component [3], which works at
2.4GHz radio frequency and provides up to 250 kbps data
rate. CC2420 is an IEEE 802.15.4 compliant RF transceiver
that features hardware security support.

In the following, we give a few details that are critical for
repeating our implementation.

6.1 Exploiting Hardware Security Support in
CC2420

The hardware security support featured by CC2420 pro-
vides two types of security operations: stand-alone encryp-
tion operation and in-line security operation. The stand-
alone encryption operation provides a plain AES encryp-
tion, with 128 bit plaintext and 128 bit keys. To encrypt
a plaintext, a node first writes the plaintext to the stand-
alone buffer SABUF, and then issues a SAES command to
initiate the encryption operation. When the encryption is
complete, the ciphertext is written back to the stand-alone
buffer, overwriting the plaintext.

The in-line security operations can provide encryption,
decryption, and authentication on frames within the re-
ceive buffer (RXFIFO) and the transmit buffer (TXFIFO)
of CC2420 on a per frame basis. It supports three modes of
security: counter mode (CTR), CBC-MIC, and CCM. CTR
mode performs encryption on the outgoing MAC frames in
the TXFIFO buffer, and performs decryption on the incom-
ing MAC frames in the RXFIFO buffer. CBC-MIC mode
can generate and verify the message integrity code (MIC)
of the messages. The length of MIC can be adjusted. CCM

mode combines CTR mode encryption and CBC-MIC au-
thentication in one operation. All the three security modes
are based on AES encryption/decryption using 128 bit keys.

We use the CBC-MIC mode to authenticate both pairwise
and global synchronization messages. A sender can use in-
line CBC-MIC mode to generate the MIC for both pair-wise
and global synchronization messages in the MAC layer after
the message has been written to the TXFIFO buffer.

The receiver side, however, is slightly different. When a
receiver receives a pair-wise synchronization message, since
it already knows the secrete key shared with the sender, it
can use the in-line CBC-MIC mode to verify the MIC be-
fore the message is read from the RXFIFO buffer. However,
for the global synchronization messages, before receiving the
disclosed key, the receiver cannot use in-line authentication
to verify the MIC in the message. Because the receiver still
needs the RXFIFO buffer to receive other messages, it can-
not buffer the message in the RXFIFO buffer while waiting
for the disclosed key. Thus, we have the receiver read the
message from RXFIFO and buffer it in its local memory.
When the key is received, the receive uses the stand-alone
mode to authenticate the buffered global synchronization
messages. Since the stand-alone mode only provides single-
block encryption functionality, we implemented the CBC
mode based on the hardware support.

6.2 Handling Timers
Using timers on MICAz is a tricky issue; improper uses

usually lead to unexpected results. The micro-controller AT-
Mega128 provides two 8-bit timers (Timer0, Timer2) and
two 16-bit timers (Timer1, Timer3) [1]. In TinyOS, Timer 0
is mainly used as one-shot or repeat timers for applications.
For MICAz, Timer 2 is used by CC2420 as a high preci-
sion timer (32 µs per tick) to back off the sending packets
for a short period of time. Timer 1 is used by CC2420 for
capturing radio packet transmit and receive events. In Tiny-
SeRSync, we use the remaining 16-bit Timer 3 to maintain
the local clock and schedule the message transmission.

ATMega128L uses a 7.3728 MHz crystal oscillator as I/O
clock source, whose accuracy is ±40ppm [3]. In our imple-
mentation, we divide the I/O clock by 64 as the source of
Timer 3, thereby achieving a 115.2 kHz Timer 3, with a 8.68
µs time resolution. Timer3 provides three compare match
registers (OCR3A/B/C), each connected with an interrupt
vector. If the compare match interrupt is enabled, when-
ever the value of Timer3 (TCNT3) equals to the value of
one compare match register, it will trigger an interrupt to
handle the event. Each node uses compare match register
A to maintain a 48-bit logical clock. The value of Timer3
(TCNT3) is 16 bits, and it will overflow every 568.8 ms. We
add another 32 bits to have a logical clock that will not over-
flow for over 77 years Each node sets compare match register
B to launch pair-wise synchronization with its neighbors pe-
riodically. The source node will use compare match register
B to initiate the global synchronization periodically. Each
node uses compare match register C to send its global syn-
chronization message in its nearest short µTESLA interval
and disclose the key in the adjacent long µTESLA interval.

7. EXPERIMENT RESULTS
We performed a series of experiments in a network of 60

MICAz motes to evaluate the performance of TinySeRSync
in real deployment. We focused on the performance met-

ÅÆ ÇÈ
ÇÇ

ÆÇ ÉÉ ÉÊ ËÌ ÍËÊ ÆÌ ÉË ËÈ ËÎ ÍÍÉ ÆÈ ÆÎ ÉÍ ËÆ ËÅ ÍÇË ÆÆ ÆÅ ÉÇ ËÉ ËÊ ÍÌÍ ÆÉ ÆÊ ÉÌ ËË ÍÈ ÍÎÇ ÆË ÉÈ ÉÎ ËÍ ÍÆ ÍÅÌ ÆÍ ÉÆ ÉÅ ËÇ ÍÉ ÍÊÎ
ÇÆÇÉÇËÇÍÇÌ

ÇÎÇÅÇÊÌÈ
ÏÐÑÒÓÔ ÕÐÖÔ ×ØÒÙÚ ÒÐÑÛÖÜÖÖØÚØÐÛÜÝ ÛÐÖÔ ÏÔÓÐÛÖ ÒÐÑÛÖÜÖÖØÚØÐÛÜÝ ÛÐÖÔÏØÛÞ ÕÐÖÔ

Figure 7: Network Topology

Table 1: Code Size
Memory Size (bytes)

RAM 1,977
ROM 24,814

rics in normal situations, while relying on the analysis in
Section 5 for the security properties.

7.1 Configuration
Figure 7 shows the sensor network test-bed used in our

experiments. (The different node shapes represent nodes
deployed at different times during incremental deployment,
which will be explained in Section 7.4.) The test-bed con-
sists of 60 nodes, among which node 1 (with the solid circle)
is configured as the source node.

We use a number of parameters in our evaluation. Each
node performs a secure single-hop pairwise synchronization
with its neighbor nodes for every d1 = 4 seconds. During
this synchronization, the node informs its neighbor nodes
its µTESLA parameters. The source node starts a global
synchronization every d2 seconds. In our experiments, we
use d2 = 5 or 10 seconds. The degree of tolerance (against
compromised neighbor nodes) is represented as t, as used
throughout this paper. In our experiments, we use t =
0, 1, 2, 3, 4 to examine the various performance metrics.

We use a sink node to help collecting data from each sen-
sor node. Periodically, the sink node broadcasts an anchor
message with the highest power to all the nodes. Upon re-
ceiving this message, each node marks the receiving time
and converts it to the global time using its source clock
difference. The sink node then queries each node individu-
ally to get the receiving time (in the estimated global clock)
along with other auxiliary information. This allows us to
discover the synchronization error on each individual sensor
node, the synchronization coverage, as well as the number
of synchronization levels each node has to go through.

7.2 Code Size
Let us first look at the code size before presenting the per-

formance results. The code size is related to the maximum
number of compromised nodes we would like to tolerate. For
each neighbor node, a node will spend 46 bytes to save the
pairwise key, current key in key chain, and clock differences,
etc. In our experiments, each node saves 10 keys for a key
chain with 100 keys. Each node reserves a buffer to store
at most 6 unauthenticated global synchronization messages,
which increase the size of RAM.

7.3 Performance in Static Deployment
Let us first look at the performance of TinySeRSync in

static deployments. In our experiments, we use the follow-
ing metrics to evaluate the performance and the overhead of
TinySeRSync: the average and the maximum synchroniza-
tion errors, the synchronization rate (i.e., the percentage of
nodes that can be synchronized), the synchronization level
(i.e., the maximum number of hops that global synchroniza-
tion messages have to go through before a sensor node can
be synchronized.

Average and Maximum Synchronization Error: Fig-
ure 8(a) shows the maximum and the average synchroniza-
tion error with different global synchronization intervals and
different degrees of tolerance against compromised neighbor
nodes. In all cases, the maximum synchronization error is
below 14 ticks (121.52 µs), and the average synchronization
error is below 6 ticks (52.08 µs). Figure 8(a) also shows that
as the global synchronization interval increases, the maxi-
mum and the average synchronization errors both increase.

Synchronization Rate: Figure 8(b) shows the synchro-
nization rate (i.e., the percentage of nodes that can be syn-
chronized by TinySeRSync) after one, two, and three rounds
of global synchronization. When the tolerance against com-
promised neighbor nodes increases, as we expected, the syn-
chronization rate decreases. However, after three rounds of
global synchronization, even in the worst case, about 95%
of the nodes can be synchronized to the source node.

Synchronization Level: Figure 9(a) shows the maxi-
mum and the average number of hops the global synchro-
nization messages have to traverse before all the nodes are
synchronized. In our test-bed, in all cases, the average syn-
chronization level is around 3. An interesting issue is that
the maximum synchronization level initially decreases as the
tolerance t increases, but then goes up as t is greater than
2. This is because when t is very small (i.e., t = 0, 1), a
node can broadcast the synchronization message almost im-
mediately after it is synchronized. The synchronization trig-
gered by these fast nodes may be propagated to many nodes
that have not been synchronized. However, when t is large
enough, synchronizing a node with increased t requires re-
ceiving synchronization messages from more neighbor nodes,
thus resulting in an increasing trend for maximum synchro-
nization levels.

Communication Overhead: We measure the commu-
nication overhead by assessing the number of messages each
node has to transmit per time unit. For each neighbor node,
a node sends one message to obtain the pairwise time dif-
ference. In one round of global time synchronization, each
node at most broadcasts one synchronization message and
one key disclosure message. Suppose each node has n neigh-
bor nodes, the pairwise synchronization interval is d1, and
the global synchronization interval is d2. In a given long time
interval T , each node sends at most n · T

d1
+ 2T

d2
messages.

Figure 9(b) shows the communication overhead per hour for

0

2

4

6

8

10

12

14

16

0 1 2 3 4
Tolerance (t)

S
yn

ch
ro

n
iz

at
io

n
 E

rr
o

r
(t

ic
k)

Avg 5s Avg 10s

Max 5s Max 10s

(a) Maximum and average synchronization error

60

65

70

75

80

85

90

95

100

0 1 2 3 4
Tolerance (t)

P
er

ce
n

ta
g

e

One Round

Two Rounds

Three Round

(b) Synchronization rate

Figure 8: Synchronization Error and Synchronization Rate

0

1

2

3

4

5

6

7

8

9

10

11

12

0 1 2 3 4
Tolerance (t)

L
ev

el
s

Average Level

Maximum Level

(a) Maximum and average synchronization level

10440

9720

9200

9400

9600

9800

10000

10200

10400

10600

5 10
Global synchronization interval (seconds)

N
u

m
b

er
 o

f
m

es
sa

g
es

(b) Communication overhead (# messages each
node sends per hour)

Figure 9: Synchronization Level and Communication Overhead

a configuration where each node has 10 neighbor nodes, the
pairwise time synchronization interval is 4 seconds, and the
global time synchronization interval is 10 seconds.

7.4 Incremental Deployment
We evaluated the performance of TinySeRSync when there

were incremental deployments. Consider Figure 7. At the
beginning of the experiment, we deployed the 49 nodes marked
as circles. We then added 5 new nodes into the network
about 10 minutes later, and added another 6 new nodes
about 1 minute later. In this experiment, we set t = 2,
and the global synchronization interval is set to 10s. Fig-
ure 10 shows the history of the average synchronization er-
ror and the coverage in this experiment. As shown in the
figure, when new nodes were just added into the network,
they could not be synchronized immediately, and the aver-
age synchronization error was large and the synchronization
rate dropped to around 90%. However, after a few rounds
of global synchronization, all these new nodes were correctly
synchronized, resulting in a low average synchronization er-
ror and 100% synchronization coverage.

8. CONCLUSION AND FUTURE WORK
In this paper, we presented the design, implementation,

and evaluation of TinySeRSync, a secure and resilient time
synchronization subsystem for wireless sensor networks run-
ning TinyOS. TinySeRSync includes a comprehensive suite

of techniques, including a secure single-hop pairwise time
synchronization protocol based on hardware-assisted, au-
thenticated MAC layer timestamping, and a secure and re-
silient global time synchronization protocol based on a novel
use of the µTESLA broadcast authentication protocol. These
techniques exceed the capability of previous solutions. In
particular, unlike the previous attempts, the secure single-
hop pairwise synchronization technique can handle high data
rate such as those produced by MICAz motes (in contrast
to those by MICA2 motes). Moreover, our novel use of
µTESLA in global time synchronization successfully resolved
the conflict between the goal of achieving time synchroniza-
tion and the fact that µTESLA requires loose time synchro-
nization. The resulting protocol is secure against external
attacks and resilient against compromised nodes.

Our future research is two-fold. First, we will investigate
additional techniques that can improve the synchronization
precision. One potential solution is to adapt the linear re-
gression technique proposed in [26] to compensate the con-
stant clock drifts. Second, we will look into the integration
of TinySeRSync in sensor network applications.

9. ACKNOWLEDGMENTS
The authors would like to thank the anonymous reviewers

for their valuable comments.

10. REFERENCES

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1.E+08

1.E+09

1.E+10

0:09:00

0:09:10

0:09:20

0:09:30

0:09:40

0:09:50

0:10:00

0:10:10

0:10:20

0:10:30

0:10:40

0:10:50

0:11:00

0:11:10

0:11:20

0:11:30

0:11:40

0:11:50

0:12:00
time (hh:mm:ss)

m
ic

ro
se

co
n

d
s

0

10

20

30

40

50

60

70

80

90

100

p
er

ce
n

ta
g

e

Avg Sync Error

Sync Rate

Figure 10: Average Synchronization Error (Left Y-axis) and Coverage (Right Y-axis) During Incremental
Deployment (t = 2)

[1] ATmega128(L) Complete Technical Documents.
http://www.atmel.com/dyn/resources/

prod documents/doc2467.pdf.

[2] MICAz: Wireless measurement system.
http://www.xbow.com/Products/Product pdf files/

Wireless pdf/MICAz Datasheet.pdf.

[3] SmartRF CC2420 Datasheet (rev 1.3), 2005-10-03.
http://www.chipcon.com/files/

CC2420 Data Sheet 1 3.pdf.

[4] TelosB mote platform.
http://www.xbow.com/Products/Product pdf files/

Wireless pdf/TelosB Datasheet.pdf.

[5] Tmote Sky: Reliable low-power wireless sensor
networking eases development and deployment.
http://www.moteiv.com/products-tmotesky.php.

[6] I.F. Akyildiz, W. Su, Y. Sankarasubramaniam, and
E. Cayirci. Wireless sensor networks: A survey.
Computer Networks, 38(4):393–422, 2002.

[7] B. Barak, S. Halevi, A. Herzberg, and D. Naor. Clock
synchronization with faults and recoveries. In
Proceedings of the 19th Annual ACM Symposium on
Principles of Distributed Computing, pages 133–142,
2000.

[8] Crossbow Technology Inc. Wireless sensor networks.
http://www.xbow.com/Products/

Wireless Sensor Networks.htm.

[9] D. Dolev, J. Y. Halpern, B. Simons, and R. Strong.
Dynamic fault-tolerant clock synchronization. Journal
of the ACM, 42(1):143–185, 1995.

[10] J. R. Douceur. The sybil attack. In First International
Workshop on Peer-to-Peer Systems (IPTPS’02), Mar
2002.

[11] J. Elson, L. Girod, and D. Estrin. Fine-grained
network time synchronization using reference
broadcasts. ACM SIGOPS Operating Systems Review,
36:147–163, 2002.

[12] S. Ganeriwal, S. Capkun, C. Han, and M. B.
Srivastava. Secure time synchronization service for
sensor networks. In Proceedings of 2005 ACM
Workshop on Wireless Security (WiSe 2005), pages

97–106, September 2005.

[13] S. Ganeriwal, R. Kumar, and M. B. Srivastava.
Timing-sync protocol for sensor networks. In
Proceedings of the First International Conference on
Embedded Networked Sensor Systems (SenSys), pages
138–149, 2003.

[14] D. Gay, P. Levis, R. von Behren, M. Welsh,
E. Brewer, and D. Culler. The nesC language: A
holistic approach to networked embedded systems. In
Proceedings of Programming Language Design and
Implementation (PLDI 2003), June 2003.

[15] N. Gura, A. Patel, A. Wander, H. Eberle, and S.C.
Shantz. Comparing elliptic curve cryptography and
RSA on 8-bit CPUs. In Proceedings of Workshop on
Cryptographic Hardware and Embedded Systems
(CHES 2004), August 2004.

[16] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D.E. Culler,
and K. S. J. Pister. System architecture directions for
networked sensors. In Architectural Support for
Programming Languages and Operating Systems,
pages 93–104, 2000.

[17] A. Hu and S. D. Servetto. Asymptotically optimal
time synchronization in dense sensor networks. In
Proceedings of the Second ACM International
Workshop on Wireless Sensor Networks and
Applications (WSNA), pages 1–10, September 2003.

[18] Y. Hu, A. Perrig, and D. B. Johnson. Wormhole
detection in wireless ad hoc networks. Technical
Report TR01-384, Department of Computer Science,
Rice University, Dec 2001.

[19] Y.C. Hu, A. Perrig, and D.B. Johnson. Packet leashes:
A defense against wormhole attacks in wireless ad hoc
networks. In Proceedings of INFOCOM 2003, April
2003.

[20] IEEE Computer Society. IEEE 802.15.4: Ieee standard
for information technology – telecommunications and
information exchange between systems local and
metropolitan area networks – specific requirements
part 15.4: Wireless medium access control (MAC) and
physical layer (PHY) specifications for low-rate
wireless personal area networks (LR-WPANs).

http://standards.ieee.org/getieee802/download/

802.15.4-2003.pdf, October 2003.

[21] C. Intanagonwiwat, R. Govindan, and D. Estrin.
Directed diffusion: A scalable and robust
communication paradigm for sensor networks. In
Proceedings of the sixth annual international
conference on Mobile computing and networking
(Mobicom ’00), pages 56–67, August 2000.

[22] L. Lamport and P.M. Melliar-Smith. Synchronizing
clocks in the presence of faults. Journal of the ACM,
32(1):52–78, 1985.

[23] Q. Li and D. Rus. Global clock synchronization in
sensor networks. In Proceedings of IEEE INFOCOM
2004, pages 214–226, March 2004.

[24] D. Liu, P. Ning, and R. Li. TinyKeyMan: Key
management for sensor networks. http:
//discovery.csc.ncsu.edu/software/TinyKeyMan/.

[25] M. Manzo, T. Roosta, and S. Sastry. Time
synchronization attacks in sensor networks. In
Proceedings of the 3rd ACM workshop on Security of
ad hoc and sensor networks, pages 107–116, 2005.

[26] M. Maroti, B. Kusy, G. Simon, and A. Ledeczi. The
flooding time synchronization protocol. In Proceedings
of the Second ACM Conference on Embedded
Networked Sensor Systems (SenSys’04), pages 39–49,
Nov 2004.

[27] D.L. Mills. Internet time synchronization: The
network time protocol. IEEE Transactions on
Communications, 39(10):1482–1493, 1991.

[28] M. Mock, R. Frings, E. Nett, and S. Trikaliotis. Clock
synchronization for wireless local area networks. In
Proceedings of the 12th Euromicro Conference on
Real-Time Systems (Euromicro-RTS 2000), June 2000.

[29] J. Newsome, R. Shi, D. Song, and A. Perrig. The sybil
attack in sensor networks: Analysis and defenses. In
Proceedings of IEEE International Conference on
Information Processing in Sensor Networks (IPSN
2004), April 2004.

[30] J. Newsome and D. Song. GEM: graph embedding for
routing and data-centric storage in sensor networks
without geographic information. In Proceedings of the
First ACM Conference on Embedded Networked
Sensor Systems (SenSys ’03), pages 76–88, Nov 2003.

[31] D. Niculescu and B. Nath. Ad hoc positioning system
(APS). In Proceedings of IEEE GLOBECOM ’01,
2001.

[32] A. Olson and K.G. Shin. Fault-tolerant clock
synchronization in large multicomputer systems. IEEE
Transactions on Parallel and Distributed Systems,
5(9):912–923, 1994.

[33] S. PalChaudhuri, A.K. Saha, and D.B. Johnson.
Adaptive clock synchronization in sensor networks. In
Information Processing in Sensor Networks (IPSN),
pages 340–348, April 2004.

[34] A. Perrig, R. Canetti, D. Song, and D. Tygar.
Efficient authentication and signing of multicast
streams over lossy channels. In Proceedings of the 2000
IEEE Symposium on Security and Privacy, May 2000.

[35] A. Perrig, R. Canetti, D. Song, and D. Tygar.
Efficient and secure source authentication for
multicast. In Proceedings of Network and Distributed
System Security Symposium, February 2001.

[36] A. Perrig, R. Szewczyk, V. Wen, D. Culler, and
D. Tygar. SPINS: Security protocols for sensor
networks. In Proceedings of Seventh Annual
International Conference on Mobile Computing and
Networks, pages 521–534, July 2001.

[37] M.L. Sichitiu and C. Veerarittiphan. Simple, accurate
time synchronization for wireless sensor networks. In
IEEE Wireless Communications and Networking
Conference WCNC03, 2003.

[38] H. Song, S. Zhu, and G. Cao. Attack-resilient time
synchronization for wireless sensor networks. In
Proceedings of IEEE International Conference on
Mobile Ad-hoc and Sensor Systems (MASS’05), 2005.

[39] T. K. Srikanth and S. Toueg. Optimal clock
synchronization. Journal of the ACM, 34(3):626–645,
1987.

[40] K. Sun, P. Ning, and C. Wang. Fault-tolerant
cluster-wise clock synchronization for wireless sensor
networks. IEEE Transactions on Dependable and
Secure Computing (TDSC), 2(3):177–189,
July–September 2005.

[41] K. Sun, P. Ning, and C. Wang. Secure and resilient
clock synchronization in wireless sensor networks.
IEEE Journal on Selected Areas in Communications,
24(2), February 2006.

