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Abstract. With the wide usage of smartphones in our daily life, new malware is
emerging to compromise the mobile OS and steal the sensitive data from the mo-
bile applications. Anti-malware tools should be continuously updated via static
and dynamic malware analysis to detect and prevent the newest malware. Dy-
namic malware analysis depends on a reliable memory acquisition of the OS
and the applications running on the smartphones. In this paper, we develop a
TrustZone-based memory acquisition mechanism called TrustDump that is capa-
ble of reliably obtaining the RAM memory and CPU registers of the mobile OS
even if the OS has crashed or has been compromised. The mobile OS is running
in the TrustZone’s normal domain, and the memory acquisition tool is running in
the TrustZone’s secure domain, which has the access privilege to the memory in
the normal domain. Instead of using a hypervisor to ensure an isolation between
the OS and the memory acquisition tool, we rely on ARM TrustZone to achieve a
hardware-assisted isolation with a small trusted computing base (TCB) of about
450 lines of code. We build a TrustDump prototype on Freescale i.MX53 QSB.
It can reliably acquire and transmit the kernel memory to a remote machine and
calculate a hash value of the Linux kernel in 1.56ms.
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1 Introduction

Smartphones have been widely used to perform both personal and business transactions
and process sensitive data with various OEM or third-party mobile applications. How-
ever, due to the large code size and complexity of the mobile OS kernel, a malicious
code can exploit known and unknown kernel vulnerabilities to compromise the mobile
OS and steal the sensitive data from the mobile applications. It is critical to continuously
perform malware analysis on the newest emerging malware and immediately update the
anti-malware tools on the smartphones

There are two generic types of malware analysis methods: in-the-box approach and
out-of-the-box approach. For the in-the-box approach, all the anti-malware and debug-
ging tools are installed in the OS. This approach is efficient since it can use the OS
context and call the kernel functions to study the malware’s behaviors. However, it is
vulnerable to malware running at the same OS level, such as rootkits that can mod-
ify the kernel functions. For the out-of-the-box approach, the malware analysis tools
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are installed in an isolated execution environment from the targeted OS environment.
For instance, Virtual Machine Introspection (VMI) [1–6] runs a suspicious OS in one
VM, and runs the analysis tools in another VM, which can introspect the suspicious
VM from outside. This method needs to know the internal structures of the OS in order
to fill the semantic gaps. Recently, Yan et al. [7] extend the out-of-the-box malware
analysis approach to Android smartphones using a customized QEMU emulator.

All the VMI based malware analysis solutions rely on a trusted hypervisor, which
should not easily crash or be compromised. However, due to the large size of the hyper-
visor, it may contain a number of vulnerabilities that may be exploited by the malware to
compromise the hypervisor and the malware analysis VM. VT-x/SVM [8–10] and Sys-
tem Management Mode (SMM) [11–14] on x86 architecture can be used to create an
isolated instruction level execution environment for out-of-the-box malware analysis.
Fortunately, the ARM processors, which are widely used on smartphones, also provide
a system level isolation solution using a hardware security support called TrustZone [15,
16], which divides the mobile platform into two isolated execution environments, nor-
mal domain and secure domain. The OS running in the normal domain is usually called
Rich OS, and the one running in the secure domain is called secure OS.

In this paper, we develop a TrustZone-based reliable memory acquisition mecha-
nism called TrustDump that is capable of obtaining the RAM memory and CPU regis-
ters of the Rich OS even if the Rich OS has crashed or has been compromised. Trust-
Dump does not require to install a hypervisor installed in the normal domain. The Rich
OS running in the normal domain is the target for memory dump and malware analysis
by a memory acquisition module called TrustDumper, which is installed in the secure
domain. Since TrustDumper is self-contained, we don’t need to install a full-feature OS
in the secure domain. When there is only one OS running on the ARM platform, it is
usually running in the secure domain. Thus, we need to first port the Rich OS to run in
the normal domain and then install the TrustDumper in the secure domain. TrustZone
can ensure the TrustDumper is securely isolated from the Rich OS, so that a compro-
mised Rich OS cannot compromise the memory acquisition module.

To reliably obtain the Rich OS’s memory dump, TrustDump ensures a reliable sys-
tem switch from the normal domain to the secure domain even if the Rich OS has
crashed. Moreover, TrustDump guarantees that a malicious Rich OS cannot launch De-
nial of Service (DoS) attacks to block or intercept the switching process. We use a
hardware button on the smartphone to trigger a non-maskable interrupt (NMI) to the
ARM processor, which then initiates the switching process. Since the secure domain
has the access privilege to the memory in the normal domain, the TrustDumper can
access the physical RAM memory and the CPU states of the Rich OS. On the other
hand, we must prevent attackers from misusing our technique to acquire the memory
and uncover sensitive data such as passwords and encryption keys. We propose to use
a PIN number to authenticate the user when the system switches to the secure domain.
To achieve a better understanding on what happened on a compromised smartphone,
the memory acquisition module sends the memory dump to a remote machine. A hash
value of the memory dump is also sent to verify a correct transmission. The remote
machine can use all types of powerful memory forensics tools to uncover the malware
behaviors recorded in the memory dump and CPU registers.
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TrustDump can acquire the RAM memory and CPU registers of the Rich OS even
if the Rich OS crashes. Those raw data contain detailed system state information, and
they can be combined with the memory dump automatically generated by the OS to
further the analysis. When the user notices any malicious behaviors in the Rich OS, it
can reliably acquire the RAM memory of the Rich OS by pressing a physical button.
A malicious Rich OS cannot block the non-maskable interrupt being sent to the ARM
processor to trigger the memory acquisition module. The Rich OS is frozen after the
system switches into the secure domain, so it has no chance to clean its attacking traces.
TrustDump is OS agnostic. Since TrustDump does not need to make any changes to
the Rich OS kernel, rooting the Rich OS is not required. Moreover, it strictly follows
the smartphone forensic principle of extracting the digital evidence without losing or
altering the data contents.

In summary, we make the following contributions in this paper.

– We design a hardware-assisted memory acquisition mechanism named TrustDump
to reliably acquire the RAM memory and CPU registers of the OS on smartphones,
even if the OS has crashed or has been compromised.

– The trusted computing base (TCB) of TrustDump is small, only consisting of the
memory acquisition module in the secure domain. We don’t need to install a hyper-
visor or root the OS.

– We implement a TrustDump prototype on Freescale i.MX53 QSB. We port the
Rich OS to work in the normal domain and run the memory acquisition module
in the secure domain. We construct a non-maskable interrupt (NMI) for ensuring a
reliable switching with minimum impacts on the Rich OS.

The remainder of the paper is organized as follows. Section 2 introduces back-
ground knowledge. Section 3 describes the threat model and assumptions. We present
the framework in Section 4. A prototype implementation is detailed in Section 5. Sec-
tion 6 discusses the experimental results. We describe related works in Section 7. Fi-
nally, we conclude the paper in Section 8.

2 Background

2.1 TrustZone Overview

TrustZone [16, 15] is a system-wide approach to provide hardware-level isolation on
ARM platforms. It’s supported by a wide range of processors: Cortex-A8 [17], Cortex-
A9 [18] and Cortex-A15 [19]. It creates two isolated execution domains: secure domain
and normal domain. The secure domain has a higher access privilege than normal do-
main, so it can access the resource of the normal domain such as memory, CPU registers
and peripherals, but not vice versa. There’s an NS bit in the CPU processor to control
and indicate the state of the CPU - 0 means the secure state and 1 means the normal
state. The system bus also contains a bit to indicate the state of the bus transaction. Thus,
normal peripherals can only transmit normal transactions, but not the secure transac-
tions. There’s an additional CPU mode, monitor mode, which only runs in the secure
domain regardless of the value of the NS bit. The monitor mode serves as a gatekeeper
between the normal and secure domains. If the normal domain requests to switch to the
secure domain, the CPU must first enter the monitor mode.
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2.2 TrustZone Aware Interrupt Controller (TZIC)

The TZIC is a TrustZone enabled interrupt controller, which allows complete and in-
dependent control over every interrupt connected to the controller. It receives interrupts
from peripheral devices and routes them to the ARM processor. The TZIC provides se-
cure and non-secure transaction access to those interrupts, restricting non-secure read
and write transactions to only those interrupts configured as non-secure and allowing
secure transactions read and write capability to all interrupts regardless of security con-
figuration. It supports priority masking, overall enable/disable of secure or non-secure
interrupts, and access to raw interrupt state and pending transactions. By default, the
TZIC uses Fast Interrupt FIQ as secure interrupt and uses IRQ Interrupt as non-secure
interrupt. There are three exception vector tables associated with the normal domain,
the secure domain, and the monitor mode, respectively.

2.3 General Purpose Input/Output (GPIO)

The GPIO provides general-purpose pins that can be configured as either input or out-
put. It can be connected to the physical buttons, LED lights, and other signals through
an I/O multiplexer. As the signal can be either 0 or 1, each pin of GPIO contributes a bit
in the GPIO block. The GPIO can trigger interrupts to the TZIC. However, if the source
is masked off in the GPIO, the corresponding interrupt request cannot be sent to TZIC.

3 Threat model and Assupmtions

On an ARM TrustZone platform, when the Rich OS crashes due to system failure or
malicious behaviors, the system may not enter the secure domain even after receiving
a secure interrupt. A reliable memory acquisition must prevent this type of “Denial of
Service” attacks. When the Rich OS has been compromised, it can intercept the switch
request and fake a memory acquisition process in a “Man in the Middle” attack. It is
critical to ensure that the TrustDump is really entered after triggering the NMI. The
Rich OS may compromise the memory acquisition module in the secure domain to
break the memory acquisition process. Therefore, we must protect the integrity of the
TrustDump.

We assume the adversary has no physical access to the smartphone. It cannot per-
form hardware attacks, e.g., accessing the MicroSD card. The ROM code is secure and
cannot be flashed. We assume the smartphone has TrustZone hardware security sup-
port. We trust the hardware isolation mechanisms of TrustZone and use it to protect the
memory acquisition from the Rich OS.

4 TrustDump Framework

Figure 1 shows the TrustDump framework using ARM TrustZone hardware security
support. The Rich OS running in the normal domain is the target for memory acquisi-
tion, and a self-contained software called TrustDumper in the secure domain is respon-
sible for data acquisition, data analysis, and data transmission of the Rich OS’s memory
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and CPU registers. After a reliable switching from the normal domain to the secure do-
main, a data acquisition module is responsible for reading the RAM memory and CPU
registers of the Rich OS without any support from the Rich OS. TrustDump is flexible
to either perform simple analysis such as checking the integrity of the OS kernel or run
complicated malware analysis tools after filling the semantics gap. Then, the acquired
memory and CPU registers can be transmitted to a remote computer.

Rich OS

Normal Domain Secure Domain

Reliable 
Switch Data 

Acquisition

Exporting

Analysis

Monitor

Remote Monitor

TrustDumper

Fig. 1. The System Framework

4.1 TrustDumper Deployment

When there is only one OS running on the ARM platform, it is usually running in the
secure domain. In our system, since the Rich OS is running in the normal domain, we
need to port the Rich OS to the normal domain and then install the TrustDumper in
the secure domain. The work of porting Rich OS to the normal domain sounds simple,
but the source code customized to run in the secure domain cannot be executed in the
normal domain without modification. Since there’s no open source OS available for
running in the normal domain on real platform, we have to port Android OS from the
secure domain to the normal domain by ourselves. We allocate a sealed memory region
for the secure domain to run the TrustDumper. TrustZone guarantees that the normal
domain cannot access the sealed memory. Since TrustDumper is self-contained, we
don’t need to install a full-featured OS in the secure domain. It dramatically reduces the
complexity of system implementation.

4.2 Reliable Switching

A reliable switching into the secure domain is the prerequisite for memory acquisition.
We must ensure the system will be switched from the normal domain to the secure
domain per the user’s requests even if the Rich OS is compromised or simply crashes.
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First, the system can be safely switched into the secure domain when the Rich OS
crashes. In other words, we cannot rely on the Rich OS to initiate the switching process
even if the Rich OS is secure and trusted. Second, our system should prevent a malicious
Rich OS from launching Denial of Service attacks to block or intercept the switching
request.

A non-maskable interrupt (NMI) can be used to achieve a reliable switching, since
the Rich OS cannot block or intercept the NMI. NMI has been widely used and deployed
on mobile platforms [20, 21], and we can configure one NMI triggered by pressing a
button or a combination of several buttons for switching the system into the secure
domain. For mobile platforms that do not have dedicated NMI but support TrustZone
(e.g., Freescale i.MX53 QSB [22]), we can use one secure interrupt as the NMI.

TrustZone provides two ways to enter the secure domain from the normal domain:
SMC instruction and Secure Interrupt. SMC instruction is a privileged instruction that
can only be invoked in the Rich OS’s kernel mode. However, when the Rich OS is ma-
licious, it can block or intercept the secure monitor call that uses the SMC instruction.
Moreover, when the Rich OS crashes, SMC instruction may not be called before the
crash happens. Secure interrupt of TrustZone can be called to switch from the normal
domain to the secure domain. TrustZone uses the fast interrupt FIQ as the secure inter-
rupt and uses the normal IRQ interrupt as the normal interrupt. Since we don’t need to
use all the FIQ in the secure domain, we can reserve one FIQ as the NMI to enforce a
reliable domain switching.

4.3 Data Acquisition and Transmission

The software in the secure domain has access privilege to entire physical memory of
the normal domain. Moreover, it can access all the banked CPU registers, which are
critical to fill the semantic gaps for malware analysis. When the system enters the secure
domain, the Rich OS in the normal domain is frozen.

Our system supports both online malware detection and offline malware analysis.
For online malware detection, since the analysis module runs out of the Rich OS, it
has to fill the semantic gaps. Based on the knowledge of the kernel data structures, the
analysis module first reconstructs the context of the Rich OS and then runs malware
analysis tools in the secure domain. It can verify the integrity of the Rich OS and detect
rootkits. For offline analysis, since we need to transmit a large amount of acquired RAM
memory (e.g., 1GB in Freescale i.MX53 QSB) to a remote computer, DMA is used to
transfer data from RAM memory to communication peripherals such as serial port or
network card. A hash value of the acquired memory is calculated and transmitted to
verify the data transmission process. When the DMA and the peripherals are being
used by the Rich OS when the switching happens, their states should be saved before
the memory dumping and restored afterward.

4.4 System Security

With the NMI triggered by a physical button, TrustDump can safely switch the system
from the normal domain to the secure domain no matter what state the Rich OS is at.
Thus, a malicious Rich OS cannot launch Denial of Service attacks to block or intercept
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the switching. When the system switches into the secure domain, the Rich OS is frozen,
so the malware in the Rich OS cannot clean its traces.

The TrustDumper has the privilege to access all the memory and CPU registers of
the Rich OS, so it can check the integrity of the Rich OS and detect various malware
such as rootkits in the Rich OS. Since the TrustDumper in the secure domain is securely
isolated from the Rich OS by TrustZone, a compromised Rich OS cannot compromise
the memory acquisition modules. To prevent a malicious user from misusing our mech-
anism, we use a PIN number to authenticate the user when the system is triggered by
the specific NMI to switch to the secure domain.

5 Implementation

We implement a prototype using Freescale’s i.MX53 QSB, a TrustZone-enabled mobile
System on Chip (SoC) [22]. i.MX53 QSB has an ARM Cortex-A8 1 GHz application
processor with 1 GB DDR3 RAM memory and a 4GB MicroSD card. We deploy An-
droid 2.3.4 in the normal domain. The development board is connected through a serial
port to a Thinkpad-T430 laptop that runs Ubuntu 12.04 LTS. The TrustDump prototype
can securely acquire the Android kernel memory and CPU registers, check the Android
kernel integrity and detect potential rootkits that modify the kernel data or structures,
and transmit the acquired kernel memory to the laptop. The TCB of TrustDump con-
tains only 456 lines of code.

5.1 Deployment of TrustDump

Since we cannot find any open source OS working in the normal domain of a hardware
platform, we have to port Android OS from secure domain to normal domain based on
the Board Support Package (BSP) published by Adeneo Embedded [23]. We deploy the
TrustDumper in the secure domain to isolate it from the Rich OS.

Because the normal domain has a lower privilege than the secure domain, the source
code running in the secure domain may not execute in the normal domain without
proper modification. There are some peripherals that cannot be configured to be ac-
cessed from normal domain. For example, the Deep Sleep Mode Interrupt Holdoff
Register (DSMINT) can only be accessed in the secure domain. However, the Rich OS
needs DSMINT to hold off the interrupts before entering low power mode. To make An-
droid run in the normal domain, we develop a pair of secure I/O functions, secure write
and secure read, to access the peripherals.

The two functions are called in the normal domain to request the secure domain
to help access the peripherals. Each peripheral on the i.MX53 QSB is controlled by
the registers in it. Each register is expressed as an address in the memory map of the
board. Both functions give access privilege escalation to the normal domain on certain
registers. The function definition is shown in Listing 1. The target address is physical
address and the data is 32 bits. secure write is to write parameter data to physical
address pa. secure read is to read data from the physical address pa and return the
result. There’s an SMC instruction in these two functions to deliver the request to secure
domain. The Whitelist stores all the registers to which the normal domain is allowed
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to access with access privilege escalation. Upon receiving a request, the secure domain
checks if the address requested is in the Whitelist. If yes, the secure domain helps access
the address per the request. If not, it directly returns without doing anything.

Listing 1. Definition of secure write and secure read
void secure_write(unsigned int data, unsigned int pa);
unsigned int secure_read(unsigned int pa);

5.2 Reliable Switching

To ensure a reliable switching from the normal domain to the secure domain, we re-
serve a secure interrupt (FIQ) of TrustZone to serve as non-maskable interrupt (NMI).
Figure 2 shows the switching process, which involves three components, namely, pe-
ripheral device, TZIC, and the ARM processor. The switching contains four steps. First,
a peripheral device as the source of interrupt makes the interrupt request. Second, the
interrupt request will be sent to TZIC. Third, based on the type of the interrupt (FIQ
or IRQ), TZIC asserts the corresponding exception to the ARM processor. To trigger a
reliable switching, the interrupt request must be an FIQ. Finally, after receiving an FIQ,
the ARM processor switches to secure domain according to the setting of the Secure
Configuration Register (SCR) and Current Program Status Register (CPSR).

Note all the three components are critical to a reliable switching. The compromise
of any of the three components will result in the compromise of the reliable switching.
If the source of the interrupt can be managed and then masked by the Rich OS, or Rich
OS just blocks all the FIQs to the ARM processor, then the switch to the secure domain
will be blocked. We construct an NMI using GPIO-2. An interrupt can be configured as
either secure or non-secure in TZIC. The non-secure transaction cannot access the se-
cure interrupt. To make an NMI, the GPIO-2 interrupt should be set as secure interrupt
first. Then we use the peripheral access privilege control in Central Security Unit (CSU)
to isolate the peripheral from the normal domain. It guarantees the normal domain can-
not configure the peripheral. At last, by configuring the registers of ARM processor, we
make the FIQ request to be handled in the secure domain.

To minimize the impacts on the access of the Rich OS to other peripherals sharing
the same access privilege with GPIO-2, we propose a method to enable Fine-grained
Access Control. To minimize the impacts on the functionalities of other peripherals,
we propose a method to enable Fine-grained Interrupt Control. It differentiates the
interrupts sharing the same interrupt number and distributes them to different handlers
in different security domains.

Non-maskable GPIO-2 Secure Interrupt In our prototype, we use the user-defined
button 1 on the board to trigger reliable switching to the secure domain. There are seven
GPIOs from GPIO-1 to GPIO-7 on our board. The user-defined button 1 is connected
to the second GPIO: GPIO-2. The interrupt number of GPIO-2 is 52. The button is a
binary signal and is attached to the fifteenth bit (Data[14]) of GPIO-2.

The interrupt type is set in Interrupt Security Registers (TZIC INTSEC). Each inter-
rupt corresponds to a bit in the register. We set the bit to 0 in TZIC INTSEC to mark the
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Fig. 2. The Control Flow of Reliable Switching

GPIO-2 interrupt secure. Because many of the security features can only be accessed in
the secure domain, we create the NMI before launching the normal domain. First, we
configure the interrupt of GPIO-2 as secure in TZIC INTSEC. This prevents the normal
domain from accessing the GPIO-2 interrupt configuration in TZIC. Second, we set the
FIQ bit in SCR to 1 to ensure the FIQ exception will be branched to the monitor mode.
We also set the FW bit in SCR to 0 to ensure the FIQ enable (F) bit in CPSR won’t be
modified by normal domain. Then we set the F bit in CPSR to 0 to enable FIQ excep-
tion before switching to the normal domain. This step ensures that the FIQ exception
cannot be blocked to ARM processor by codes running in the normal domain. At last,
we disable the non-secure access to GPIO-2 in CSU. It isolates GPIO-2 from normal
domain. Thus the interrupt unit of GPIO-2 cannot be configured again by codes running
in the normal domain.

As soon as the secure interrupt happens, TZIC generates FIQ request to ARM pro-
cessor and the ARM processor is routed to the secure domain. The entry of the secure
interrupt is in the vector table of monitor mode at the offset of 0x1C. Upon receiving
the interrupt, CPU changes to the monitor mode and jumps to the entry automatically.
When the memory acquisition finishes, the CPU executes the instruction: subs pc,
lr, #4 to return to the Rich OS.

Fine-grained Access Control We isolate GPIO-2 from the normal domain in CSU
to prevent the normal domain from configuring its interrupt control unit. TrustZone
creates two isolated domains with different privileges. Both privileges have their own
access control policy to the peripherals. The access privilege of peripherals is managed
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by CSU, which sets access control policies between bus masters and bus slaves in bus
transaction on i.MX53 QSB. It sets peripheral access policy to determine the master
privileges required to access each peripheral. The non-secure master cannot access the
secure peripherals. There are registers whose bits correspond to the peripherals. Setting
access control policies is done by setting the corresponding bits in registers. It is worth
mentioning that the CPU is one of the masters and it generates its own security signal
through NS bit. So when NS=0, CPU can access all the peripherals; while when NS=1,
CPU can only access the non-secure peripherals.

However, this access control management is too rigid and provides limited discrim-
ination among peripherals. Some peripherals share a same access control policy, their
access control is binding. For example, user-defined button 1 only corresponds to one
bit of the data of GPIO-2. Other bits share the same access policy with the button and
may be connected to non-secure peripherals. If we deny the non-secure access to user-
defined button 1, the non-secure access to other bits of GPIO-2 will be denied all to-
gether. It harms the usability of GPIO-2.

We use fine-grained access control to solve the problem. We set the configuration-
binding peripherals to be only accessible by the secure domain but disclose those pe-
ripherals to the normal domain by adding them to a Whitelist. In the Rich OS, every
time we want to access the disclosed peripherals, we use the secure I/O functions de-
scribed above. In this way we protect the NMI while not influencing the access of the
normal domain to other devices.

Fine-grained Interrupt Control If the other bits of GPIO-2 don’t use interrupt to
operate, fine-grained access control would work for the Rich OS. However, when it
comes to interrupts, it is not the case. There’s only one interrupt number for all the 32
bits of GPIO-2. Each bit can generate the No.52 interrupt. The 15th bit of GPIO-2 is
dedicated to NMI and its handler is in the secure domain while the handlers of other bits’
interrupts may be in the Rich OS. For example, in our prototype user-defined button 2
is connected to Data[15] of GPIO-2. And it’s for the home key of Android. The Rich
OS returns to the home screen of Android when the button is pressed. These two user-
defined buttons generate the same interrupt in TZIC. Therefore, after the construction
of NMI, button 2 now generates FIQ request together with button 1. When button 2 is
pressed, CPU goes into secure domain first. To better control the interrupt and maintain
the functionality of button 2, we provide an approach to support fine-grained interrupt
control.

When CPU goes into the secure domain after pressing button 2, we forward the FIQ
request generated by button 2 back to the Rich OS. The entry of IRQ exception of the
normal domain has already been used for interrupt handling by the Rich OS. Therefore,
we leverage the entry of FIQ exception of the normal domain, which is left unused
by the Rich OS, to handle the forwarded request. As the operation code of button 2 is
already in Rich OS, we reuse it with the interrupt number 52.

The program flow of hardware interrupts on the board is depicted in Figure 3. The
interrupts configured as non-secure in TZIC will assert IRQ request. The IRQ exception
are handled in the Rich OS. The IRQ exception handler gets the number of pending in-
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terrupt from TZIC and gives it to the operation codes, which will perform corresponding
action.

The interrupt configured as secure in TZIC asserts FIQ request. Upon secure inter-
rupt assertion, system switches to the FIQ exception entry of secure domain uncondi-
tionally. The FIQ exception handler of secure domain gets the interrupt number from
TZIC and knows the source bit of interrupt through interrupt control unit of GPIO-2.
If the interrupt is dedicated to NMI, the handler clears the interrupt status in TZIC to
prevent re-entry. Next, it starts to do the memory acquisition and analysis. After that,
the system returns to the normal domain for Rich OS to gain control.

When the source of the interrupt is not for NMI, the handler masks the interrupt
bit of the source in GPIO-2. This automatically stops the interrupt request to TZIC
and thus clears the interrupt status in TZIC. Masking, not clearing the interrupt in the
handler prevents re-entry after entering Rich OS and keeps the interrupt status in the
interrupt control unit of GPIO-2, which is used to distinguish the source bit of GPIO-2
by Rich OS. Hence, we just need to transfer the interrupt number to Rich OS because
it will access the interrupt control unit of GPIO-2 to determine which bit generates
the interrupt. After that, change CPU mode to FIQ mode and jump to the entry of
FIQ exception in normal domain. Because secure domain will not be re-entered, before
jumping to FIQ handler of Rich OS the context of the Rich OS at the point when the
interrupt happened should be restored. In this way, the program flow acts as if the FIQ
request is routed to the Rich OS without the interference of secure domain.

The functions of Rich OS cannot be called without the knowledge of the address
of the function. The functions cannot be simply called by using the symbol of Rich
OS in secure domain as Rich OS is compiled separately from the software in secure
domain. It needs an intermediary to receive the request from secure domain and call
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the operation codes. We leverage the FIQ exception handler of Rich OS to accomplish
this goal. The entry of FIQ exception is addressed at 0xFFFF01C. It’s easy for secure
domain to jump to because it’s fixed. Because the handler runs in FIQ mode and the
mode is not used by Rich OS, we can make it a bridge between secure domain and
Rich OS without influencing the operation of Rich OS. We add initialization code of
FIQ mode and the handler of FIQ exception to Rich OS. Rich OS sets up a 16KB-stack
for FIQ mode when the system boots up and then the FIQ mode is ready for use. After
getting the interrupt number from TZIC, the FIQ exception handler saves the context
of Rich OS. As the operation codes of interrupts run in SVC mode, the FIQ exception
handler saves its own context and changes mode to Supervisor. Then it calls operation
codes in Rich OS with the interrupt number. After the codes finish running, program
returns to the FIQ exception handler of Rich OS. The handler then recovers the context
at the point when the interrupt happened and Rich OS wakes up.

After getting the interrupt number, the interrupt operation codes find the correspond-
ing action code. In our prototype, it’s the function mx3 gpio irq handler. The
function first checks which bit of GPIO generates the interrupt. As we mask the source
bit, the function will ignore the interrupt and return directly without doing anything. So
we let the function bypass the mask status judgment by or-ing the corresponding bit
with 1 in the mask status judgment code. We don’t need to bypass the interrupt status
judgment as the interrupt status bit keeps high as long as the interrupt condition meets.
With the mask status judgment passed, the action of the user-defined button 2 is taken.
Of course, the action of user-defined button 1 is lost as the button is used for NMI.

5.3 TrustDumper

TrustDumper can get the information of CPU state and physical memory of the Rich
OS, perform some analysis, and then send the acquired data to a remote machine.

Data Acquisition and Transmission Some of the CPU state information is stored in
banked registers: one copy for normal domain and the other copy for secure domain.
When running, each domain uses its own copy of the registers. In monitor mode, CPU
runs in secure domain using the secure copy of registers but can access the non-secure
copies of the registers by setting the NS bit to 1.

Secure domain can access the physical memory of normal domain directly. Hence,
TrustDump can get the data of Rich OS with physical address mapping. To get the data
of the virtual address, TrustDump has a translation block to walk the page tables of
Rich OS and get the mapping information. The physical base address of page table is in
Translation Table Base Register (TTBR). With access to TTBR of normal domain and
according to the two-level virtual memory system of Rich OS, TrustDump walks the
translation table to translate virtual address of normal domain to physical address.

Memory dumping involves transferring data of RAM to the peripherals. Both CPU
and DMA can do the work. Because data transferring is time-consuming and DMA
goes faster when it comes to large scale of data, we take advantage of the DMA on the
board. Using DMA, CPU can continue working while the memory is being dumped.
DMA has its own processing core and memory. It stores the scripts used by Rich OS
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in its internal RAM. Before transferring, TrustDump stores the state of the core and
the scripts in internal RAM. It exports these data to an unused area of OCRAM on
the board. Then it downloads the dumping execution program and the corresponding
context to the internal RAM. After that, TrustDump triggers the DMA and starts to
dump memory to the peripherals. CPU can do other work at the time of transferring.
After the transfer is done, an interrupt is generated. Then TrustDump restores the core
state and internal memory in DMA internal RAM from OCRAM. Note only the area of
internal RAM to be used by the analysis is saved to OCRAM. This reduces the saving
time. In our prototype, we use the serial port for memory dumping and the output of
serial is connected to a laptop. Other peripherals can also be used, e.g., the network card
and wireless module.

Integrity Checking and Rootkit Detection In our prototype, the analysis module is
capable of checking the integrity of kernel code and detecting some rootkits. We use
SHA-1 algorithm of SAHARA to check the integrity of Android kernel. SAHARA Se-
curity Accelerator (SAHARA) of i.MX53 QSB is a security co-processor which imple-
ments block encryption algorithms (AES, DES, and 3DES), hashing algorithms (MD5,
SHA-1, SHA-224, and SHA-256), a stream cipher algorithm (ARC4), and a hardware
random number generator. The static kernel code is continuous in physical address
space. There’s an offset from the physical address to the virtual address. In our proto-
type the offset is 0x10000000 and the start virtual address of kernel is 0x80004000
in our prototype. The start physical address is 0x70004000. The length of the kernel
depends on the code of kernel and varies from different versions of kernel. Yet after the
kernel has been compiled, the length is certain. Given the start address and the length,
the hash of kernel can be calculated in analysis module.

We implement SHA-1 hash in two ways. One is in software way and the other is
to leverage the hardware accelerator of i.MX53 QSB. Because not every platform has
a hardware accelerator, we provide software-implemented hash. The source of SHA-1
algorithm is from open source project PolarSSL [24]. We re-implement the memory
operation and output functions to accommodate the code to the bare-metal environ-
ment of secure domain. The performance of hardware hash is better than software hash.
Therefore, we use the hardware accelerator in our prototype.

Our prototype can detect rootkits that hide processes. Figure 4 illustrates the list of
process in linux kernel 2.6.35. A process is represented by a struct: task struct. It
includes the process number (pid) and the memory descriptor of the process (mm). The
task struct of the current running process is in the struct: thread info. The
address of the thread info can be located at (stack pointer &(0x1FFF)).
All the processes are linked by struct:list head. These list heads construct a
doubly linked list and each list head stores the address of the list head of the
previous and next task.

Because the members of data structure struct are continuous in virtual memory
space, the pointer to the struct data structure plus the offset of the member in the
struct is the address of the member. The address of task struct is the address of
thread info plus the offset 0xC. Therefore, starting from the thread info of
current thread, all the information of processes are listed through the doubly linked list.
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struct thread_info{
unsigned long flags;
int preempt_count;

mm_segment_t addr_limit;
struct task_struct *task;

��

��}

struct task_struct{
��

struct list_head tasks;
��

pid_t pid;
��

struct mm_struct *mm;
 ��}

current 
thread_info

struct task_struct{
��

struct list_head tasks;
��

pid_t pid;
��

struct mm_struct *mm;
 ��}

current task next task

previous task

struct task_struct{
��

struct list_head tasks;
��

pid_t pid;
��

struct mm_struct *mm;
 ��}

struct task_struct{
��

struct list_head tasks;
��

pid_t pid;
��

struct mm_struct *mm;
 ��}

tasks

Fig. 4. Process List

6 Performance Evaluation

We evaluate the performance of TrustDump in three aspects: NMI switching perfor-
mance, analysis performance, and memory dumping performance. We use the perfor-
mance monitor in Cortex-A8 to count the CPU cycles and then convert the cycle to
time by multiplying 1 ns per cycle. We conduct each experiment 50 times and report
the average.

6.1 NMI Switching performance

We measure the time of entering TrustDump with NMI and SMC instruction respec-
tively for comparison. It’s difficult to measure the time from triggering the interrupt
to handling it because cycle counter cannot be started at the exact time when the but-
ton is pressed. To get the performance of NMI, we use the Software Interrupt Trigger
Register (TZIC SWINT) in TZIC to assert the NMI in a software way. Writing the in-
terrupt number of the NMI triggers the interrupt to assert. We measure the time from
writing the register to receiving the request in TrustDump. The average time of enter-
ing TrustDump using NMI is 1.7 us. We measure the SMC instruction performance by
calculating the time from invoking SMC instruction to receiving the request in Trust-
Dump. The average time using SMC instruction is 0.3 us. It’s shorter than the time of
NMI because it takes time to transfer the interrupt request from the peripheral to TZIC
and then to CPU. However, the time of NMI in whole is small and imperceptible by
user. Moreover, NMI is more reliable and more flexible than the SMC instruction.
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6.2 Analysis Performance

We deploy rootkit Suterusu [25] for evaluation. Suterusu performs system call inline
hooking on arm platform to hide specific processes. Each time you use the ls and top
command in the terminal, suterusu hooks the function and deletes the hidden process
information from the result. We can detect the rootkit by traversing all the processes.
To get the pointer of current process’s thread info, we need to obtain the stack pointer
of user mode in monitor mode. In the monitor mode, we change CPU mode to system
mode by directly modifying Current Program Status Register (CPSR) and after the
mode change save the r13 register to one of {r0,r1,...,r12}. Then we modify the CPSR
to return to monitor mode. The system mode has the same stack pointer as user mode
and can go into monitor mode by modifying the CPSR directly. With the stack pointer,
we can traverse all the processes along the process list. When comparing the result with
what we get using command ls or top, we can detect hidden processes by a rootkit.

The time to detect Suterusu is 2.13 ms; however, this time depends on the number
of processes, and in our prototype there are 75 processes. The time to calculate kernel
hash is 1.56 ms by hardware, and 578.6 ms by software. Those times vary with length
of the kernel, and our kernel length is 9080836 Bytes. Both the time is negligible and
TrustDump can be invoked frequently while not influencing the performance of Rich
OS in the normal domain. However, calculating hash through software is much slower
than the hardware and the user may experience the Rich OS hang.

Table 1. Memory Dumping Performance

Scale(Byte)
Bit Rate(bit/s)

SDMA CPU

10 92178.12 92178.49
100 92163.38 92165.45
1K 92163.01 92163.43

10K 92163.09 92163.11

6.3 Memory Dumping Performance

Both DMA and CPU can dump memory to peripherals. We choose DMA in TrustDump
to free the burden of dumping memory from CPU. Our result shows that the memory
dumping performance of DMA isn’t worse than CPU. To compare the performance be-
tween DMA and CPU, we pick four scales of memory size: 10B, 100B, 1KB and 10KB.
In each scale, we conduct the experiments 50 times for DMA and CPU respectively. We
take the average value and divide the result with the scale to get the bit rate. The bit rate
at these four scales is listed in Table 1. We can see that DMA performs as fast as CPU. It
take 13.14 minutes in average to dump Android Kernel of 9080836 Bytes to a laptop
through serial port. The bottleneck of the speed is the limited baud rate of serial port.
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The performance of memory dumping can be improved by using other peripherals, e.g.,
the Ethernet and wireless device. It is included in our future work.

7 Related Work

Memory acquisition techniques are through software or hardware in nature. A software
memory acquisition is typically achieved by accessing virtual memory system and the
file system inside Rich OS, or by monitoring the physical address space of Rich OS
in a virtual machine which runs Rich OS. Hardware techniques target at the physical
storage medium directly with the help of dedicated hardware [26].

JTAG [27] and chip-off technique [28] can be used to achieve memory acquisition;
However, memory acquisition using JTAG is only possible when a JTAG debug port
is identified on the embedded device. What’s more, many operating system denies the
debugging request of JTAG to protect its own security. The cost of the equipment and
the destructive nature of chip-off technique keeps it away from being used.

The hardware way is more efficient and reliable. However, introducing a dedicated
hardware on the platform incurs more cost and not all platforms pre-install the ded-
icated hardware. The software way getting memory through Rich OS is more practi-
cal and popular. However if Rich OS compromises the data acquired isn’t trustworthy.
The out-of-the-box approach of virtual machine [29, 5, 30–32] can keep the acquisition
module from being tampered by Rich OS. As we all know, adding a hypervisor under
Rich OS reduces the efficiency of the whole system. Besides, the TCB of hypervisor
is large. Hardware-assisted approach is also used for out-of-the-box memory acquisi-
tion [33, 34, 13]. The out-of-the-box approach has two weak points: (1) The semantic
gap between Rich OS and acquisition module; (2) The entrance to the acquisition mod-
ule. A hypercall for virtual machine or a CPU assembly instruction [8, 9, 14] to enter the
acquisition module can be intercepted by Rich OS. Hypersentry [12] can provide not
only reliable entrance but also stealthy invocation. However, IPMI used in Hypersentry
is not available on ARM platform.

On smartphones, the Android Recovery Mode can give the user root privilege and
bypass the passcodes to acquire the memory of Rich OS, but it needs to reboot the de-
vice before acquisition. Live memory acquisition in Android also draws much attention.
Linux Memory Extractor (LiME) module is introduced into Android kernel to imple-
ment live memory acquisition [35]. Based on LiME, another work called DMD [36]
is carried out to acquire the volatile memory of Android. Gianluigi Me et.al [37] pre-
sented a removable memory card based solution to overcome the heterogeneity of the
tools adopted to retrieve smartphone contents. Besides the above solutions, DDMS [38]
provided by Android SDK can also be used to get memory information. Because all the
work above rely on the Rich OS to operate, they cannot defend against a compromised
kernel and then guarantee the reliability of the memory acquisition.

8 Conclusions

Based on ARM TrustZone technology, we propose a reliable memory acquisition mech-
anism named TrustDump on Smartphone to perform forensic analysis and facilitate
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malware analysis. TrustDump installs an Android OS in the normal domain and the
memory acquisition module in the secure domain, and it relies on TrustZone to en-
sure a hardware-assisted isolation. TrustDump ensures the reliability of the memory
acquisition with a non-maskable interrupt, which prevents user’s request from being
intercepted or blocked by a malicious Rich OS. We propose fine-grained access control
and fine-grained interrupt control techniques to minimize the impacts on the Rich OS.
Our prototype on i.MX53 QSB can enter TrustDump and begin memory dumping in
1.7 us and calculate the hash value of kernel in 1.56 ms.
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