TrustOTP: Transforming Smartphones into Secure
One-Time Password Tokens

He Sun®23, Kun Sun', Yuewu Wang?, and Jiwu Jing?

'Department of Computer Science, College of William and Mary
{hsun01,ksun}@wm.edu
2Data Assurance and Communication Security Research Center, Chinese Academy of Sciences
State Key Laboratory of Information Security, Institute of Information Engineering of CAS
3University of Chinese Academy of Sciences
{sunhe, wangyuewu, jingjiwu}@iie.ac.cn

ABSTRACT

Two-factor authentication has been widely used due to the
vulnerabilities associated with traditional text-based pass-
word. One-time password (OTP) plays an indispensable role
on authenticating mobile users to critical web services that
demand a high level of security. As the smartphones are
increasingly gaining popularity nowadays, software-based
OTP generators have been developed and installed into
smartphones as software apps, which bring great conve-
nience to the users without introducing extra burden. How-
ever, software-based OTP solutions cannot guarantee the
confidentiality of the generated passwords or even the seeds
when the mobile OS is compromised. Moreover, they also
suffer from denial-of-service attacks when the mobile OS
crashes. Hardware-based OTP tokens can solve these secu-
rity problems in the software-based OTP solutions; however,
it is inconvenient for the users to carry physical tokens with
them, particularly, when there are more than one token to be
carried. In this paper, we present TrustOTP, a secure one-
time password solution that can achieve both the flexibility
of software tokens and the security of hardware tokens by
using ARM TrustZone technology. TrustOTP can not only
protect the confidentiality of the OTPs against a malicious
mobile OS, but also guarantee reliable OTP generation and
trusted OTP display when the mobile OS is compromised
or even crashes. It is flexible to integrate multiple OTP al-
gorithms and instances for different application scenarios on
the same smartphone platform without modifying the mo-
bile OS. We develop a prototype of TrustOTP on Freescale
i.MX53 QSB. The experimental results show that TrustOTP
has small impacts on the mobile OS and its power consump-
tion is low.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions @acm.org.

CCS’15, October 12-16, 2015, Denver, Colorado, USA.

@ 2015 ACM. ISBN 978-1-4503-3832-5/15/10 ...$15.00.

DOI: http://dx.doi.org/10.1145/2810103.2813692.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection

General Terms
Security

Keywords
One-Time Password; ARM TrustZone; Secure GUI

1. INTRODUCTION

There is an ever increasing number of enterprise employ-
ees who need to remotely access the corporate networks. By
the end of 2015, more than 1.3 billion workers worldwide
will routinely work beyond the traditional office environ-
ment [35]. Around the same time, more mobile devices are
being widely used to perform business transactions by mo-
bile workers. Enterprises have traditionally used two-factor
authentication to secure employee’s remote access to corpo-
rate resources. Due to its ease of use, one-time password
(OTP) is widely adopted by enterprises in their two-factor
authentication solutions [24, 44, |52].

An OTP is an automatically generated numeric or al-
phanumeric string of characters that authenticates the user
for a single transaction or session to an authentication server.
OTP enhances the traditional user ID and password au-
thentication by adding an extra level of dynamic password
that changes each authentication. Two most popular types
of OTP solutions are the time-based OTP (TOTP) and
HMAC-based OTP (HOTP) that is event-based. OTP mech-
anism consists of a token - either hardware-based (e.g., pocket-
size fobs) or software-based (e.g., a soft token) - that can
generate an OTP using a built-in clock (or counter) and a
factory-encoded secret key. The secret key is known as the
“seed”, which is different for each token and also stored in
the related authentication server.

As the smartphone gains its popularity nowadays, software-
based OTP generators have been developed and installed on
smartphones as software apps [2]. Due to the popularity of
smartphone usages, the software-based OTP solutions bring
no extra burden to the users and are economical to use.
However, they may suffer from a couple of security prob-
lems. First, when the mobile operating system is compro-

mised, it cannot guarantee the confidentiality of the gener-
ated OTPs or even the seeds. For instance, the attacker may
steal the OTP by taking screenshots that contain the OTP
displayed on the screen [42]. If the OTP app has been instru-
mented [16], the instrumented code can stealthily send the
OTP out to the attacker. Moreover, rootkits [57] in mobile
operating system can steal the OTP seed through inspecting
system memory and easily duplicate the soft token. Second,
the mobile OS may face denial-of-service attacks, so there
is no guarantee of the OTP availability when the OTP is
required. A malicious OS can tamper with or simply delete
the OTP code in the memory or the permanent storage, so
that the OTP generator cannot successfully run. Also, when
the OS crashes, the OTP is not accessible either.

Since hardware OTP tokens can solve all the security
problems of the software OTP tokens, they have been widely
used in the scenarios that demand a higher level of secu-
rity |24} 144} 52]. A small piece of self-contained software runs
in a tamper-resistant environment, which makes it difficult
to compromise the seeds in the physical token for duplica-
tion. The battery in the hardware tokens can commonly
last for 5 years. However, compared to software token, the
hardware tokens also have some limitations. First, it is not
easy to upgrade the software in the physical tokens. Second,
a physical token usually costs tens of dollars [26], which is
much more expensive than a software token that is usually
free. Third, it is inconvenient for the users to carry physical
tokens with them, particularly, when there are more than
one fob to be carried all the time.

In this paper, we present TrustOTP, a secure one-time
password solution that can achieve both the flexibility of
software tokens and the security of hardware tokens by us-
ing ARM TrustZone technology [15]. TrustOTP can not
only protect the confidentiality of the OTPs against a mali-
cious mobile OS, but also guarantee reliable OTP generation
and trusted OTP display to the users when the mobile OS
is compromised or even crashes. Our solution can accom-
modate various OTP algorithms and support multiple OTP
instances on the same smartphone platform. TrustOTP tar-
gets at combining the benefits of both hardware tokens and
software tokens.

First, TrustOTP can achieve a secure OTP token that
ensures confidentiality, integrity, and availability of the
OTPs generated on smartphones. All the code and data
of TrustOTP in both volatile and non-volatile memory stor-
age are securely isolated from the mobile OS (called Rich
OS) running in the normal domain. TrustZone ensures that
the Rich OS cannot compromise the confidentiality and in-
tegrity of the generated OTPs or the seeds, which are only
accessible in the secure domain. Moreover, TrustOTP can
ensure the availability of the OTPs even if the Rich OS is
compromised or totally crashes. The static code image of
TrustOTP is stored on a secure permanent storage that can
only be accessed in the secure domain, so the Rich OS can-
not delete or modify the code image. Users can trigger a
non-maskable interrupt (NMI) to guarantee that the system
will be switched into the secure domain when the OTP is
required.

Second, TrustOTP is flexible to integrate various OTP
algorithms and able to support multiple OTP instances on
the same smartphone. It can support both event-based and
time-based OTP. For the time-based OTP, a secure real-
time clock is used by the OTP and protected from the Rich

OS. For the event-based OTP, a secure counter, which in-
crements as the OTP is updated, can only be accessed by
the secure domain. Given an OTP algorithm on the smart-
phone, users can easily add new OTP instances by copying
the new OTP seeds into the system.

Third, we provide a trusted user input/output for users to
input new seeds, select needed OTP instances, and display
the OTPs. Since the Rich OS and the trusted OTP ap-
plication share the same touchscreen, we must ensure that
no sensitive information will be leaked into the Rich OS
through the shared display device. When the input (e.g.,
OTP seed) can be mediated by the Rich OS, it can be ma-
nipulated by malware. We solve this problem by integrating
a self-contained touchscreen driver in the secure domain for
users to register new OTP instances. Also, we achieve a
trusted output by isolating a secure framebuffer that cannot
be accessed by the Rich OS and providing a secure display
controller in the secure domain. When the selected OTP
instance is displayed on one corner of the screen, the users
can still see the screen contents of the Rich OS and continue
their operations in the Rich OS.

In summary, we make the following contributions in this
paper.

e We propose a new design of secure OTP Tokens using
smartphones. Our design can achieve the same level of
security as the hardware token and the flexibility of the
software token. It can prevent all types of attacks from
the malicious Rich OS and is capable of showing the OTP
even if the mobile OS crashes. It is flexible to support
various OTP algorithms and multiple OTP instances on
one smartphone.

e We provide a trusted graphical user interface that
displays the OTP on the same screen shared with the
Rich OS. Our user-friendly display allows users to read
the OTP and input it into an app in the Rich OS simulta-
neously. We ensure that the Rich OS cannot directly read
the OTPs and seeds from the framebuffer memory or ob-
tain the current OTP by capturing the screenshots. More-
over, we provide a trusted touchscreen driver for users to
input new OTP seeds and choose the OTP instances to
display.

e We implement a TrustOTP prototype and the eval-
uation results show that TrustOTP can work efficiently
with small power consumption. TrustOTP requires no
modification of the Rich OS and has small impacts on
user experience of using the Rich OS. In our prototype,
after the user presses a physical button, the password can
be shown on the screen in less than 80 ms.

The remainder of the paper is organized as follows. Sec-
tionintroduces background knowledge. Sectiondescribes
the threat model and assumptions. We present the TrustOTP
framework in Section[d A prototype implementation is de-
tailed in Section 5} Section [6] discusses the experimental re-
sults. We discuss the limitation of our system in Section [7]
We describe the related work in Section I8/ and conclude the
paper in Section [0

2. BACKGROUND

2.1 One-Time Password

One-time password (OTP) is the kind of password that is
only valid for one transaction. Different from the traditional
passwords, OTP is resistant to replay attacks. The OTPs
can be generated in three ways: the time-synchronization
OTP is calculated based on current time, the previous-
password-based OTP is calculated using the previous OTP,
and the challenge-based OTP is calculated with a challenge
from the server. The OTP can be generated respectively
by the client and an authentication server with shared se-
cret key, or it can be generated on the server side and
then sent to the client through SMS or Email. A number
of OTP-related standards have been developed, including
RFC 1760 (S/KEY) [10], RFC 2289 (OTP) [11], RFC 4226
(HOTP) [12] and RFC 6238 (TOTP) [13].

2.2 ARM TrustZone

ARM TrustZone technology [4] is a system-wide secu-
rity approach to provide hardware-level isolation between
two execution domains: normal domain and secure domain,
which share the CPU in a time-sliced fashion. The secure do-
main has a higher access privilege than the normal domain,
so it can access the resources of the normal domain such as
memory, CPU registers, and peripherals, but not vice versa.
TrustZone includes an NS bit in the CPU processor to con-
trol and indicate the state of the CPU. The memory address
is partitioned into a number of memory regions, which are
marked as either secure or non-secure, by the TrustZone
Address Space Controller (TZASC). TrustZone supports se-
cure and non-secure interrupts. The normal domain cannot
access the interrupt source of the secure domain. Each in-
terrupt is marked either secure or non-secure, and a Generic
Interrupt Controller (GIC) only signals an IRQ interrupt for
the non-secure interrupt and signals either IRQ or FIQ for
the secure interrupt. The device privilege is configured in
the TrustZone Protection Controller (TZPC) that dedicates
one bit to each independent device.

A system supporting TrustZone is always shipped with
additional supportive hardware security modules to better
work with TrustZone, such as secure non-volatile keys [30],
secure storage [18] (28|, secure real-time clock [30, 28] and
cryptographic accelerators |30} [18}|28]. These security mod-
ules work together with TrustZone to enhance system se-
curity and performance. For instance, to prevent rollback
attacks in time-sensitive protocols such as DRM and PKI,
secure real-time clock (SRTC) is introduced. The SRTC is
usually powered by a coin-cell to keep running even when
the platform is powered off.

3. THREAT MODEL AND ASSUMPTIONS

We assume the Rich OS running in the normal domain
may be compromised by malicious code, and further the
compromised OS may be manipulated to attack the one-time
password generator. First, it may attempt to read (steal)
the OTPs directly from the memory or the display device.
Second, it may target at obtaining the seeds that are used
to generate the OTPs by searching both volatile and non-
volatile storage. Third, it may tamper with either the static
code image or the control flow of TrustOTP to steal the gen-
erated OTPs. Lastly, the malicious OS can launch denial-of-

service attacks to prevent the user from successfully obtain-
ing the OTPs. The Rich OS may suspend TrustOTP from
being either executed or displayed correctly. It can even
make the system crash or unbootable, though this does not
happen frequently.

Our OTP solution aims at achieving the same level of
security as the traditional hardware OTP token. The attacks
against the hardware tokens are out of the scope of this
paper; however, we discuss those limitations in Section [7]
We assume the attacker may have physical access to the
mobile devices. We trust the TrustZone hardware security
supports on the ARM processors and assume the code in the
ROM and the secure domain can be trusted. We assume the
cell battery that powers the real-time clock on the board can
last for a long time.

4. TrustOTP DESIGN

4.1 System Overview

We design a secure OTP framework called TrustOTP that
uses ARM TrustZone hardware security extension to trans-
form smartphones into secure one-time password tokens.
The framework of TrustOTP is shown in Figure[[] A mo-
bile operating system called Rich OS runs in the normal
domain to execute normal mobile apps. TrustOTP is in-
stalled in the secure domain and consists of three major
components: OTP generator, secure display controller, and
secure touchscreen driver. The OTP generator is responsi-
ble for continuously generating one-time passwords even if
the Rich OS is malicious or crashes. Since TrustOTP and
the Rich OS share the same set of physical display device,
TrustOTP requires a secure display controller to guarantee
that the one-time passwords can be and only be seen by the
user, but not the Rich OS. A secure framebuffer is reserved
to save the data to be displayed by the touchscreen. In order
to support multiple OTP instances, TrustOTP must provide
a trusted touchscreen driver for users to choose the OTPs
they need.

4.2 Secure OTP Generator

The OTP Generator is responsible for supporting various
OTP algorithms to compute OTPs. It supports two most
popular categories of OTP: the time-based OTP (TOTP)
and the event-based OTP (HOTP). The TOTP generator
reads the current clock time from a secure clock when gener-
ating a time-based OTP, and the HOTP generator maintains
one growing counter to calculate the OTP. Thus, a clock and
a counter are indispensable to the OTP generator.

4.2.1 OTP Generation Code

TrustOTP is flexible to accommodate various OTP algo-
rithms. Since TrustOTP and the authentication server share
the same OTP generation algorithm and the same secret key,
the two parties will generate the same OTP when the gen-
eration code and the keying materials are well protected.
The static code and data of the OTP generator should be
stored and protected on a secure non-volatile storage, which
cannot be accessed or flushed by the Rich OS. The keying
materials used in the OTP algorithms are also stored in the
secure permanent storage. Otherwise, if the static code can
be manipulated by the Rich OS, it may disclose the keying
material and the OTPs to the Rich OS. Moreover, the Rich
OS can compromise the availability of the OTP by flushing

Normal Domain Secure Domain
Rich OS TrustOTP
Non-secure Secure oTP TOTP (<> Secure Clock
Permanent Permanent < > Generator
Storage Storage HOTP <{> Secure Counters
Non-secure
Framebuffer |\« Reliable Switch —>| [Secure
Framebuffer
Secure Secure
' Display Touchscreen
Touchscreen Framebuffer Controller Driver
Driver Driver
User Input of
the Rich OS > Displaywith <
\ Touchscreen | User Input of
TrustOTP

Figure 1: TrustOTP Framework.

the code from the storage. Thus it requires to store the im-
age of the Rich OS in a separate non-volatile storage, which
also serves as the filesystem of the Rich OS. When the sys-
tem boots up, the code and data of the OTP generator will
be loaded into a secure memory region that can only be ac-
cessed in the secure domain. Therefore, the Rich OS cannot
access the sensitive information directly from the memory.

4.2.2 Secure Clock and Counters

Besides protecting the OTP code integrity and the seed
secrecy, we also need to protect the timer and the counter
that are used as input to TOTP and HOTP, respectively.
Since the secure clock serves as the time source of TOTP,
its value should not be modified by the untrusted Rich OS.
Moreover, the clock should keep ticking even if the smart-
phone runs out of power. Typically, a secure clock is powered
by an independent power source such as a dedicated cell bat-
tery. Each event-based HOTP has a corresponding counter,
which increments as the HOTP is updated. Since only the
secure domain has the privilege to access the counters, the
normal domain cannot modify these counters. Moreover,
the counter value is well maintained after the smartphone
is powered down. The secure counters can be real physical
modules that run on independent power source and incre-
ment by one on demand or just numbers stored on the secure
non-volatile storage that are updated each time the corre-
sponding HOTPs are updated.

4.3 Secure OTP Display

TrustOTP requires a trusted graphical user interface (GUT)
to display the continuously changing OTPs to the user im-
mediately, while the Rich OS cannot compromise the GUI
itself and the data that the interface processes. We inte-
grate a secure Display Controller in TrustOTP to securely
copy the image from a secure framebuffer to the display de-
vice, where the framebuffer stores the image of the OTP
to be displayed. To prevent potential OTP leakage, the se-
cure framebuffer is different from the framebuffer used by
the Rich OS and reserved in the secure domain. Since one
smartphone usually has only one video card and one display
screen, those peripheral devices are shared between the Rich

OS and TrustOTP. We must ensure a reliable OTP display
controller to program the video card and the display de-
vice, so that they can work correctly no matter what states
they are before the system switching. Moreover, TrustOTP
should save the states of the video card and the display de-
vice for the Rich OS before resetting them to display the
OTPs. Afterwards, TrustOTP cleans up its states and re-
stores the Rich OS’s states before switching back to the nor-
mal domain.

4.4 Secure Touchscreen for OTP Registration

TrustOTP can support multiple OTP instances that use
the same OTP algorithm but different seeds. To dynami-
cally add a new OTP instance, the user first registers in the
corresponding authentication system and obtains a shared
secret key for TOTP or a counter plus a key for HOTP.
Next, the user needs to input the shared keying information
to the mobile devices. Since the Rich OS cannot be trusted,
we must provide a trusted input interface in the secure do-
main to initiate the OTP. Thus, we include a self-contained
secure touchscreen driver in the secure domain for the user
to input into the secure domain. Moreover, TrustOTP can
be dynamically extended to accommodate new OTP algo-
rithms or upgraded to a new version. It also requires a
trusted input interface that can authenticate the user be-
fore the installation.

4.5 Secure Booting and Reliable Switch

TrustOTP is loaded into the secure domain when the sys-
tem boots up and remains in the secure memory unless the
system restarts or powers down. The boot sequence is de-
picted in Figure The code on the ROM runs first after
the smartphone powers on. It loads the secure bootloader
from the secure permanent storage to the memory of the
secure domain. Then the secure bootloader gains control
and initializes the secure domain. Next it loads TrustOTP
from the secure permanent storage to the memory of the
secure domain, and also loads the non-secure bootloader
into the memory of the normal domain. Finally, the secure
bootloader changes the CPU from the secure state to the
non-secure state and jumps to the non-secure bootloader.

The non-secure bootloader initializes the normal domain and
boots the Rich OS. After that, the Rich OS is running in the
normal domain. Since TrustOTP is loaded before the Rich
OS, it will stay in the memory no matter what the status of
the Rich OS is.

|

|
Normal Domain I Secure Domain

|

|

’ Non-secure Bootloader ’ Secure Bootloader %f > TrustOTP‘

—]

’ Rich OS ‘ ’ ROM ‘

f

Power On

Figure 2: Booting Sequence of TrustOTP.

The OTP is usually demanded when the user performs
an online transaction or logins an authentication system.
Therefore, when this happens, the Rich OS should be sus-
pended for a short time to allow the system switch into the
secure domain to generate and display the OTPs. A reliable
switch ensures that TrustOTP can be triggered on demand
even if the Rich OS is malicious or crashes. In other words,
the interrupt triggering the switch cannot be disabled or
intercepted by the Rich OS. We cannot use any switching
instruction or a software interrupt in the Rich OS to initiate
the switching, since they can be easily disabled or inter-
cepted by the Rich OS. Instead, we can use a non-maskable
interrupt (NMI) that is triggered by a hardware interrupt
to initiate the switching. Since the secure domain is non-
reentrant, after the system enters the secure domain, the
system will switch back to the Rich OS only when TrustOTP
initiates the switching back to the normal domain.

4.6 Security Analysis

Our design can protect the confidentiality, integrity, and
availability of TrustOTP even if the Rich OS is malicious
or crashes. We manage to achieve the same security level
of hardware tokens by using the smartphones, while keeping
the flexible usage of software tokens.

Information Leakage. Since the OTPs are generated in
the secure domain, the Rich OS in the normal domain has no
rights to access any resources of the OTPs. The keying ma-
terials used in the OTP algorithms are stored on the secure
non-volatile storage. When the system boots up, they are
loaded into the secure memory region of the secure domain
by the secure bootloader. Thus, the Rich OS cannot access
the keys from either the permanent storage or the RAM
memory. Moreover, before the system switches back to the
Rich OS, the TrustOTP cleans up its footprint including
CPU registers that may contain sensitive data for the OTPs.
The Rich OS may target at tampering with the control flow
of TrustOTP; however, since the code of TrustOTP runs in
the secure domain, the Rich OS cannot modify TrustOTP’s
code. Moreover, since all the secure interrupts triggered by
TrustOTP are handled in the secure domain, the Rich OS
cannot intercept the execution of TrustOTP through inter-
rupts.

Though TrustOTP shares the same display device with
the Rich OS, TrustOTP has its own independent display
controller to guarantee that the OTPs displayed on the screen
cannot be accessed by the Rich OS. We allocate a dedi-
cated framebuffer for TrustOTP in the secure memory re-
gion, which is not accessible to the normal domain. More-
over, a dedicated display controller maintains a secure con-
text switching on the display device, so that the Rich OS’s
display states are saved and stored during the system switch-
ing and TrustOTP’s display states are flushed before return-
ing to the Rich OS.

Denial-of-Service Attacks. Since we attempt to use
smartphones as physical hardware OTP tokens and the mo-
bile OS may have been compromised, denial-of-service (DoS)
attacks are the largest threat on the usability of our solu-
tion. First, when the user needs to trigger TrustOTP and
get the OTP, the Rich OS may intercept and discard the re-
quests. Our reliable switching mechanism can prevent this
type of DoS attack by using a hardware-based non-maskable
interrupt, which cannot be bypassed by the Rich OS. The
interrupt handler of the NMI is in the secure domain, so the
Rich OS cannot manipulate the handler either. Therefore,
we can guarantee that the system will switch into the secure
domain as soon as the NMI is triggered.

Second, a malicious Rich OS may delete the binary code
of TrustOTP from the permanent storage. We solve this
problem by saving the TrustOTP code in an isolated storage
medium that can only be accessed by the secure domain.
Note we cannot use the solution that saves the encrypted
TrustOTP code on the same storage medium as the Rich OS
and decrypts/verifies the TrustOTP code during the system
booting, since the Rich OS has the privilege to delete the
TrustOTP files so that TrustOTP cannot be loaded after
the system reboots. Similarly, since the TrustOTP code in
the memory is protected by TrustZone, the Rich OS cannot
tamper with it. Moreover, the inputs of the OTP algorithms
including the clock and counters cannot be manipulated by
the Rich OS either, since we use a dedicated secure clock
only accessible in the secure domain and store the counters
in the secure storage, respectively.

Third, the Rich OS may prevent the OTP results from
being displayed to the user. When the Rich OS is running,
it may disable the display device, misconfigure the video
card, or even powering down the display device. However,
since TrustOTP includes a self-contained display controller,
we can guarantee that the OTP will be shown on the display
device even if the Rich OS is malicious.

S. IMPLEMENTATION

We implement a TrustOTP prototype using Freescale
1.MX53 QSB, a TrustZone-enabled mobile System on Chip
(SoC) [31]. .MX53 QSB has an ARM Cortex-A8 1 GHz ap-
plication processor with 1 GB DDR3 RAM memory. i.MX53
QSB is inserted a SanDisk 4GB MicroSD memory card and
a Kingston DTSE9 32GB USB 2.0 Flash Drive. We use a
4.3 inch seiko touchscreen LCD. We deploy an Android 2.3.4
source code from Adeneo Embedded [14] in the normal do-
main. We use a Thinkpad T430 laptop with Ubuntu 12.04
LTS installed to debug and test the developing board.

5.1 Secure Non-volatile Storage

It is a key feature for TrustZone to protect a secure perma-
nent storage from the non-secure domain; however, Trust-

Zone leaves it to the SoC vendors to decide which storage pe-
ripherals are subject to this mechanism. Thus, each vendor
may have different designs on assigning or partitioning stor-
age resources for the access of either world. In cases when
the vendor does not provide a dedicated secure permanent
storage, we can convert one available permanent storage to
secure storage.

It is common for a smartphone to have more than one
type of permanent storage. For instance, a smartphone usu-
ally uses a NAND flash as its primary permanent storage
and has a MicroSD card as an extended permanent storage.
Thus, we can dedicate one storage medium for the secure
domain and another one for the normal domain. However,
on our development board i.MX53 QSB, it has no NAND
flash memory, but equipped with a MicroSD card port and a
USB port. Therefore, we build a prototype by assigning the
MicroSD card to the secure domain and the USB flash drive
to the normal domain. On the secure MicroSD card, we
store the static images of the secure bootloader, TrustOTP,
the non-secure bootloader, and the kernel of the Rich OS.
On the non-secure USB flash, we only store the filesystem of
the Rich OS. By saving the static images of the non-secure
bootloader and the Rich OS kernel on the MicroSD card, we
can guarantee that even if the Rich OS is compromised when
running in the normal domain, its static kernel image is still
protected, so the system can be recovered after rebooting.

The privilege of peripherals are set in the Configure Slave
Level (CSL) Registers of CSU [30]. Each peripheral has
four access modes: non-secure user, non-secure supervisor,
secure user and secure supervisor. The secure mode only
allows the access from the secure domain, and the supervisor
mode only allows the access from the privileged mode of
CPU. Therefore, in our prototype, the MicroSD port is set
to secure user mode while the USB port is set to non-secure
user mode. We set the Rich OS to mount the USB flash
drive as the filesystem in the init.rc file of Android.

5.2 Memory Isolation

i.MX53 QSB provides a watermark mechanism to isolate
secure memory regions from non-secure memory ones. This
mechanism is managed by Multi Master Multi Memory In-
terface (MAIF) [30]. There are two banks of RAM on i.MX53
QSB, and each bank is 512 M B. M4IF can watermark one
continuous region of up to 256 M B on each bank. The start
and end address of one watermark are stored in the Water-
mark Start Address Register and Watermark End Address
Register, respectively. The watermark region cannot be ac-
cessed by the normal domain. The watermark controller
inside M4IF' is not accessible to the normal domain, either.
In our prototype, we reserve the highest 1 M B RAM as the
secure memory. In the 1 M B secure memory, 750 KB is
reserved as the secure framebuffer.

The framebuffer contains 800*480 pixels, and each pixel is
expressed by a 2-byte RGB565 value. To display the OTP,
we save the pictures of number from 0 to 9 that occupy
156.25 K B memory. Each number picture has 100*80 pixels.
The number pictures are preloaded into memory when the
system boots. Since there’s no need to copy the picture data
from the MicroSD card to memory, it shortens the displaying
latency when TrustOTP is running. Though the required
memory space is small compared to the 1 GB memory space
of .MX53 QSB, we can further reduce it by using small-sized
number pictures.

5.3 TrustOTP Booting

Figure [3]shows the detailed booting process of TrustOTP.
When the system powers on, the code in the ROM runs first,
and it loads the secure bootloader from the MicroSD card
into the secure memory. Then, the secure bootloader is re-
sponsible for loading TrustOTP from the MicroSD card into
the secure memory. Next, the secure bootloader also loads
the images of the non-secure bootloader and the Rich OS
kernel from the MicroSD card into the non-secure mem-
ory. At last, the secure bootloader switches the system
into the normal domain to run the non-secure bootloader,
which sets the execution environment in the normal domain
and then runs the already loaded Rich OS kernel to mount
the USB flash drive as filesystem. High Assurance Boot
(HAB) of i.MX53 QSB [30] is used to ensure a secure boot-
ing through checking the integrity of the secure bootloader
and the TrustOTP image before loading them. Therefore,
our system can detect any malicious attempts on tampering
with the static image on the MicroSD card.

Normal Domain Secure Domain

|
|
|
|
USB Flash | MicroSD
Drive | card
|
I
|
|
|

Non-secure Secure
Bootloader TrustOTP‘ ’ Bootloader ‘
| Non-secure |
| Memory """ """ N /T -
| i Kernel k | | Secure |
M T { 1 | Memory — ___Y___ R A !
| '"Non-secure } | | | . TrustOTP ' ! Secure ! |
' ! Bootloader | | | ! Lo ! L Bootloader ; !
I Lo EEE P
| |

Figure 3: TrustOTP Booting Process.

5.4 Reliable Switch

Our reliable switch is based on the non-maskable interrupt
(NMI) mechanism; however, since . MX53 QSB does not ex-
plicitly provide any NMI, we propose a method to construct
an NMI on i.MX53 QSB. First, we set the interrupt type of
the targeted NMI source as secure in the Interrupt Security
Register (TZIC_INTSEC), which prevents the Rich OS from
configuring the NMI in the TZIC [30]. Second, we enable
FIQ exception by setting the F' bit of Current Program Sta-
tus Register (CPSR) to 0. To ensure the F' bit of CPSR
cannot be tampered with by the Rich OS, we then set the
FW bit of Secure Configuration Register (SCR) to 0. After
these two bits are set, the Rich OS cannot disable or block
the FIQ requests to the ARM processor. Third, we enforce
the ARM processor to switch to the monitor mode on an
FIQ exception by setting the FIQ bit in SCR to 1. This
enforcement ensures that the FIQ request to the secure do-
main does not need to go through the normal domain, and
thus cannot be intercepted or blocked by the Rich OS. Fi-
nally, we configure the NMI source as a secure peripheral in
the CSU that cannot be accessed by the Rich OS.

In our prototype, we choose the user-defined button 1 on
i.MX53 QSB to trigger the reliable switch. Since the button
is connected to the fifteenth pin of GPIO-2, we use GPIO-
2 as our NMI source. After the above steps, the system

will switch into the secure domain as soon as the button is
pressed.

5.5 OTP Generator

In our prototype, we implement two types of OTP
generation algorithms: the event-based HOTP based
on RFC4226 [12] and the time-based TOTP based on
RFC6238 [13]. We adopt the source code from OATH
Toolkit [46] that provides components for building one-time
password authentication systems. It supports OTP genera-
tion, validation, and control through a command line. We
only port the OATH Toolkit parts that implement OTP gen-
eration to the secure domain.

To reduce the system’s trusted computing base (TCB),
there is no operating system in the secure domain, so the
OTP code must be self-contained and run directly on the
bare-metal environment. Since the source code from OATH
Toolkit relies on the C standard library to call the output
functions such as printf and the memory operation func-
tions such as memcpy, we port these functions in the secure
domain to eliminate the dependency on the C library.

Listing 1: OTP Generation Functions

int oath_hotp_generate (const char =*secret,
size_t secret_length,
uint64_t moving_factor,
unsigned digits,
char *output_otp)

int oath_totp_generate (const char *secret,
size_t secret_length,
time_t now,
unsigned time_step_size,
unsigned digits,
char *output_otp)

The two major functions are oath_hotp_generation()
and oath_totp_generation(), whose declarations are shown
in Listing [II The explanation of the function parameters
is listed in Table Secret is the shared key and se-
cret_length is the key’s length. The algorithms are able
to support 6-digit, 7-digit and 8-digit OTP, and the digits
defines the length of the OTP. The generated OTP output
is stored in output_otp in the form of characters. In the
event-based HOTP generation, the moving_factor is the
counter used for calculating the one-time password. In the
TOTP, now is the current Unix time value and a new TOTP
is generated every time_step_size seconds.

Table 1: Parameters of HOTP and TOTP.

| Parameter || Explanation |

secret the secret key
secret_length the length of secret Key
moving_factor the secure counter in HOTP
now the secure clock in TOTP
time_step_size time period
between two TOTPs
the length of the generated OTP

the generated OTP

digits
output_otp

5.5.1 Secure Key Management

The secret key (seed) must be protected both in the per-
manent storage and in the RAM memory. We store the
key for one OTP on the secure MicroSD card, so that the
Rich OS cannot read, write, or delete it. Furthermore, we
can add another level of protection by storing the keys in
ciphertext, which is encrypted by hardware SCC-AES sup-
port on i.MX53 QSB, where the encryption key is protected
in the e-FUSE based secure storage. Since the key will only
be loaded into the secure memory by the secure bootloader,
the Rich OS cannot access it. Moreover, to prevent infor-
mation leakage, all the CPU registers are flushed to remove
the residual keying materials before switching back from the
secure domain to the normal domain.

5.5.2 Clock and Counter Protection

For the time-based TOTP, a synchronized clock time is
required to generate the OTP, so the clock on the smart-
phone should continue to run even if the system is powered
off. Moreover, the clock cannot be manipulated by the Rich
0OS. On i.MX53 QSB, a secure real-time clock (SRTC) is in-
cluded. The SRTC clock is served by a 32.768KHz crystal,
and it consists of two domains: low power domain and high
power domain. The low power domain of SRTC (SRTC LP)
is powered by a coin cell battery. Therefore, the SRTC LP is
always powered up as long as the battery works. Moreover,
the SRTC LP can only be accessed by the secure domain.
Therefore, we use the SRTC LP as the secure clock for our
time-based OTP solutions.

For the event-based HOTP, the counter changes each
time an OTP is generated. Since the value of the counter
should be maintained even after the system is reset, we
use the Low Power Secure Monotonic Counter Register
(SRTC_LPSMCR) on our board to store the counter. The
counter cannot be accessed by the normal domain and is
able to retain its value after the system reboots.

5.5.3 Multiple OTPs

TrustOTP is flexible to accommodate different OTP algo-
rithms. Due to the OTP standardization work, most OTP
instances use the same algorithms but different seeds and
other parameters such as counters. Thus, we can support a
large number of OTP instances in our system. When a user
wants to add a new OTP instance, the user usually first re-
quests a new key from the corresponding authentication sys-
tem or through other secure communication channels. Then,
the user can use a trusted user input interface using touch-
screen to upload the new key into the secure storage and
update TrustOTP with the new instance. Since the secret
key is usually 20 bytes, it may be tedious and error-prone
to input 40 hexadecimals manually. Instead, the user can
use a MicroSD card reader to upload the new key. More-
over, an alias is given when a new OTP instance is created.
Thus, the user can choose the needed instance according to
its alias shown on the screen.

For the TOTP instances, they can share the same SRTC
clock time; while the HOTP instances may require to pro-
tect different counters besides the different secret keys. In
our prototype, since i.MX53 QSB only provides one secure
counter register, to support multiple HOTP instances, we
choose to save those counters on the secure MicroSD card.
To minimize the counter synchronization error, we update

the counter on the MicroSD card each time an OTP is gen-
erated.

5.6 Secure Touchscreen Driver

Since the user needs to input the key in the secure do-
main to register an OTP and choose which OTP to update
both on the touchscreen, a secure touchscreen drivers must
be included to ensure the input will not be intercepted or
blocked by the Rich OS. In our prototype, a 4-wire resistive
touchscreen is connected to the Power Management Inte-
grated Circuit (PMIC) [27]. The PMIC collects the voltage
of the touchscreen and converts the analog value to digital
one that represents the X-Y coordinate of the touch on the
screen. The value of each coordinate is stored in an Analog-
to-Digital Converter (ADC) register in PMIC and is zero
when there is no touch event.

When the touchscreen is touched, a PMIC interrupt arises.
The interrupt handler calls the touchscreen driver to read
the ADC registers to get the location of the touch. Next the
driver parses the user’s intention based on the input and
the display. Since the touchscreen is used by both the Rich
OS and TrustOTP, it has two interrupt handlers: one for
the normal domain and the other for the secure domain.
After TrustOTP is triggered by NMI, the interrupt of the
touchscreen is set to secure. Then if there is a touch on the
screen, an interrupt will arise in the secure domain. After
all the activities end in the secure domain, the interrupt of
the touchscreen is configured back to non-secure.

5.7 Secure Display Controller

Since the LCD is shared between the secure domain and
the normal domain, TrustOTP shares the same display de-
vice with the Rich OS. Therefore, we must prevent the
Rich OS from stealing the keying materials from TrustOTP
through inspecting the shared display device. Moreover,
since the Rich OS may be compromised or simply crashes,
we cannot rely on the Rich OS’s framebuffer driver to dis-
play the OTP to the users.

In our prototype, we include a self-contained secure dis-
play controller in the secure domain to reset the IPU in the
secure domain and program the IPU to display the secure
framebuffer. We adopt a stand-alone IPU driver from an
on-board diagnostics suite of .MX53 QSB [32]. Our display
system consists of two major components: the Image Pro-
cessing Unit (IPU) and the LCD. The IPU is responsible for
sending the data flow from the display framebuffer to the
external display device. It can also conduct certain image
processing and manipulation on the data flow. The size of
the framebuffer, the pixel format, and the location of the
framebuffer are all set in the Channel Parameter Memory
(CPMEM). The LCD is the display device and it requires
initialization before being used.

When the Rich OS is running, the IPU is set as a non-
secure device and can transfer data from the non-secure
framebuffer to the LCD. When the system switches to the
secure domain, the secure display controller saves the state
of the IPU and uses the self-contained touchscreen driver
to reset the IPU. In i.MX53 QSB, the normal domain can
choose to use either one framebuffer or three framebuffers in
a round-robin fashion to improve the display performance.
By default, the Rich OS uses all three framebuffers. There
is a control interface between the GPU and the IPU to syn-
chronize the usage of the framebuffers. After switching into

the secure domain, the secure display controller only uses the
secure framebuffer to transfer pixel data to the LCD. Since
the IPU is set as a non-secure peripheral when working in
the normal domain, the controller needs to set the IPU as
secure to transfer the data from the secure framebuffer to
LCD. Before returning to the Rich OS, the controller erases
the footprint in the device to prevent the information leak-
age, and then restores the device states for the Rich OS. An
alternative method to achieve a secure display is to reuse the
Rich OS’s IPU driver after verifying its integrity. However,
it cannot guarantee to provide a reliable display for OTP
when the Rich OS crashes. Therefore, we choose to provide
a self-contained display controller to show the OTPs in our
prototype.

We reserve the highest 1 M B RAM as the secure memory.
In the 1 M B secure memory, 750 K B is reserved as the se-
cure framebuffer. Since the secure framebuffer contains the
information of the displayed OTP, we protect it in the se-
cure domain. The framebuffer contains 800*480 pixels, and
each pixel is expressed by a 2-byte RGB565 value. To dis-
play the OTP, we save pictures of numbers from 0 to 9 that
occupy 156.25 KB memory, which may be further reduced
by using smaller pictures. These pictures are preloaded into
the memory when the system boots.

5.8 User Friendly Display

When TrustOTP is running, the Rich OS will be sus-
pended until TrustOTP exits. Therefore, if the OTPs are
being displayed for a long time, the user cannot perform any
operations in the Rich OS. It is fine for some usage scenar-
ios. For instance, if the user wants to input an OTP on a
laptop, he can keep showing the OTP on the smartphone’s
screen. However, if the user needs to input the OTPs into
apps running on the smartphones, she has to remember the
OTP before TrustOTP exits and then input it in the Rich
OS. To make it convenient for the user to use the OTP lo-
cally on the smartphone, we develop a user-friendly display
method. The basic idea is to display the OTP only for a
very short time and repeat this display operation with a
time interval until the user stops the display by pressing the
user-defined button 1 again. The OTP needs only to be cal-
culated once at the first entry of the secure domain. In next
entries, TrustOTP just needs to display the generated OTP
if no new OTPs are generated.

i.MX53 QSB provides two identical Watchdog Timer
(Wdog) modules with different privilege: one for normal use
and the other for TrustZone use. The Wdog 2 on our board
is used for periodically displaying OTP. After being acti-
vated, a Wdog starts the time-out counter with a config-
urable period from 0.5 second to 128 seconds in a resolution
of 0.5 second. The Wdog will generate an interrupt after
the time period expires unless the counter is reset before
the time out. The interrupt of Wdog 2 is configured as an
NMI and Wdog 2 starts to count since the system boots up;
however, the interrupt is disabled by TrustOTP. Hence, the
Wdog 2 will not raise interrupt when it times out in the
normal domain. After the user-defined button 1 is pressed,
TrustOTP draws the generated OTPs into the framebuffer
and enables the interrupt of Wdog 2. Then TrustOTP re-
turns to the normal domain to run the Rich OS. When the
Wdog 2 times out, it raises an NMI that suspends the Rich
OS and switches the system into the secure domain uncon-
ditionally. Then the generated OTPs are displayed on the

screen for a while. After the display ends, TrustOTP re-
sets the counter of Wdog 2 to make it continue running and
switches back to the Rich OS. In this manner, TrustOTP
and the Rich OS runs in turn until the user-defined button
1 is pressed again. Then, TrustOTP disables the interrupt
of Wdog 2 to stop switching into the secure domain after
TrustOTP transfers the control back to the Rich OS.

The time interval between two rounds of OTP display is
configurable. It should be short enough so the user will not
waste time waiting for the next display. The OTP display
time should be short enough so the user will not waste time
waiting for the Rich OS to run. However it should be long
enough for the user to recognize the OTP clearly. OTP
display time should be longer than 1/24 second due to phi
phenomenon |9]. In our prototype, the time interval between
two displays is set to 1.5 seconds. The length of OTP display
time is determined by a while loop. In the loop an integer
i increases by one from 0 until i reaches a threshold, which
is set to Ox4ffffff in our prototype.

6. PERFORMANCE EVALUATION

We measure the performance overhead and the power
consumption for generating and displaying the OTPs in
TrustOTP. We use the performance monitor in the Cortex-
A8 processor to count the CPU cycles and then convert the
cycles to time by multiplying 1 ns / cycle. We conduct
each experiment 50 times and report the average value. We
use Monsoon Power Monitor [45] to evaluate the power con-
sumption of TrustOTP.

6.1 Time Breakdown

In our prototype, when the user presses the physical but-
ton, an NMI is triggered and the Rich OS is suspended.
OTPs are generated and displayed periodically (e.g. 1 sec-
ond) until the user presses the button again. Before the
OTPs are displayed, there is preparation time when the
Rich OS is suspended but TrustOTP is not ready for use.
We break down the preparation time between the NMI trig-
gered and the OTP displayed on the monitor into 7 parts,
as shown in Table

It takes less than 2 us to switch from the normal domain
to the secure domain. We measure the switching times us-
ing both the user-defined button 1 and the Wdog 2. When
the button is pressed, it takes 1.7 us for the system to en-
ter the secure domain; it takes 1.8 us to enter the secure
domain after Wdog 2 is triggered. TrustOTP saves the con-
text information of the Rich OS in 0.6 us. It saves all the
33 general-purpose registers of the processor into the secure
memory. It takes 48 us to generate a TOTP and 44 us
to generate a HOTP. Then to create a smooth user friendly
display of the OTPs, TrustOTP copies the non-secure frame-
buffer to the secure framebuffer. It takes 49.85 ms to finish
the background matching. This step is the largest overhead
in the preparation of the display. Next, TrustOTP draws the
numbers of OTP in the secure framebuffer. It takes 8.029
ms to copy twelve 100*80-pixel pictures in the secure frame-
buffer to show two OTPs (one HOTP and one TOTP) at
the same time. Then TrustOTP takes 2.22 ms to check all
the internal registers and memory of IPU. At last, it takes
0.28 ms to change the framebuffer pointer of IPU from the
non-secure framebuffer to the secure framebuffer.

The overall time for preparing the OTP display is 60.4716
ms. After displaying the OTP, the time to recover the Rich

Table 2: Time breakdown of OTP Display.

[Step [| Operation | Time (ms) |

1 Domain Switching 0.002

2 Context Saving 0.0006

3 TOTP/HOTP Generation | 0.048/0.044
4 Background Matching 49.85

5 OTP Drawing 8.029

6 IPU Check 2.22

7 Framebuffer Replacement 0.28

OS is 7.52 ms, which consists of flushing the FIFO buffer of
IPU and changing the framebuffer pointer back to the non-
secure framebuffer. The flushing is done by replacing the
generated OTPs with value 000000 (6-digit OTP is chosen in
our prototype) in the secure framebuffer. In our prototype,
it takes 7.47 ms to drawing two all-zero 6-digit value in the
secure framebuffer. Since the picture of the zero number
will be cached due to frequent usage, it is shorter than OTP
drawing in the preparation stage. We can see these two time
periods are small and the OTP can be shown quickly after
being requested.

6.2 Impacts on Rich OS

TrustOTP resides in the secure domain and does not run
most of time. We evaluate the impacts on the Rich OS when
TrustOTP is triggered by running Android benchmark tools
including Antutu [3] and Vellamo [47]. Then, we compare
the results to those when TrustOTP is not triggered in Fig-
ure @ Antutu measures the performance of CPU, RAM,
GPU and Database, while Vellamo integrates five bench-
marks and runs every benchmark to get an overall score in
one test. The vertical axis is the score of each item, and
higher scores indicates better performance. We can see that
the performance of the Rich OS decreases during the short
time when TrustOTP is running. It is reasonable because
the same operation takes more time to complete in the Rich
OS when TrustOTP is running. Particularly, the perfor-
mance of CPU and RAM decrease more than that of the
peripherals. This is because when TrustOTP is running,
CPU and RAM are fully controlled by the secure domain,
but the peripheral can continue the tasks of the Rich OS .

6.3 Power Consumption

The Monsoon Power Monitor and Power Tool Software [45)
enable a robust power measurement solution for mobile de-
vices rated at 4.5 volts (maximum 3 amps) or lower. The
monitor is able to measure the instant and average volt-
age, current, and power. We use the power monitor to first
measure the power of the board when only the Rich OS
is running. We run the experiment 5 times. In each ex-
periment the board is restarted and runs for ten minutes.
When only the Rich OS is running, the average power of
the board is 2,128 mW. The sample of the instant power
data is shown in Figure [fa] The vertical axis is the value of
the power in the unit of watt. When only the Rich OS is
running, the LCD is on but there is no input from the user.
When TrustOTP runs together with the Rich OS, the aver-
age power of the board increases a little bit to 2,230 mW.
In our experiments, we see that the power consumption goes
up when the system switches into the secure domain. The
sample of the power data when TrustOTP is running is in

Figure

® TrustOTP Running

Antutu Benchmark
OTrustOTP Stopped
2500
2000
1500
1000
500]

Overall RAM CPU CPU float- 2D 3D Database

integer point graphics graphics 10

B TrustOTP Runnin
Vellamo Benchmark ¢
OTrustOTP Stopped
200 —
180
160
140
120 +
100
80
60
40 -
20
0] == w1 W
Overall ~ Dhrystone Linpack Brank-K Stream RamJam

Figure 4: Performance Impacts on Rich OS.

0 : = = : ' : : = 1

4

t
2 4 6 8 10 12 14 16 18 20

Time(s)

(a) TrustOTP Stopped

10 12 14 18 18 20
Time(s)

(b) TrustOTP Running

Figure 5: Samples of Power Usage Data.

In Figure the power curve remains the same in each
display cycle since it performs the similar OTP operations.
In each cycle TrustOTP goes through the above seven steps
in Section m There is a peak at the start of each cycle and
then the power keeps at a high level due to a busy while
loop until TrustOTP exits. After removing the loop, the
sample of the power data is depicted in Figure@ which only
shows a peak in the beginning of every cycle.

Since the power is mainly subject to the ratio of the time
when OTPs are displayed in each cycle, the time period
when OTPs are displayed determines the power consump-
tion when the display cycle is fixed. When the time pe-
riod decreases, the power consumption of TrustOTP also
decreases. The time period of the while loop can be ad-
justed by changing the threshold of the integer counter. A
suitable time could be chosen through experimental tests to
both save energy and remain the user perception. We test
the length of the while loop from Oxffffff to Ox8ffffff
in the resolution of Oxffffff. Finally we pick Ox4ffffff,
which guarantees that the user can see the OTPs clearly
and the Rich OS is suspended for only a minimal time pe-
riod. According to the OTP display time, we choose the
time between two displays as 1.5 seconds. It leaves the user
approximate 1 second to input 2 to 3 of the OTP numbers
into the Rich OS.

7. LIMITATIONS AND DISCUSSION

We aim at using commercial off-the-shelf (COTS) smart-
phones to achieve a secure one-time password solution with
the same security level as hardware OTP tokens. However,
currently the major smartphone vendors like Samsung lock
the TrustZone in their commercial products to protect their
OEM software in the TrustZone, so it is difficult for third
parties to develop and deploy Trustzone-based mechanisms
on real products. Instead, researchers choose to build their

4

0 : : : ‘ : : : : :

0 2 4 8§ 12 14 18 18 20

10
Time(s)

Figure 6: TrustOTP without Display

system using development boards [29, |7] or emulators [56]
that have TrustZone support enabled. Our prototype is built
on a Freescale . MX53 development board [29].

When comparing our smartphone-based token to tradi-
tional hardware tokens, one major difference is the battery.
For most hardware tokens, the life of battery is typically 5-8
years [52]. TrustOTP depends on the battery of the smart-
phone, which needs to be recharged every one or two days.
When the smartphone is out of battery, TrustOTP cannot
work until being charged by a computer or a power outlet.
However, for most working scenarios such as when the user
needs to retrieve the OTP from the smartphone and then
input it into a computer, it is easy to find a power supply to
the smartphone even if it is out of power. Hopefully, wireless
charging (i.e., inductive charging) solutions can further mit-
igate this problem. On the other hand, it is complicated to
replace the batteries in hardware tokens due to the tamper-
resistant design.

Hardware OTP tokens are designed to be tamper-resistant
to protect the seed (secret key). In TrustOTP, we save all
the encrypted OTP secret keys on the MicroSD card. Even
if attackers may have access to the MicroSD card, they still
cannot decrypt the OTP secret keys without knowing the

key in the tamper-resistant e-Fuse register that is responsi-
ble for decrypting the secret keys when loading them into
the secure memory. As portable password containers, both
hardware tokens and the smartphones have the same practi-
cal vulnerability — they may be lost or stolen. For a hardware
token, a user will typically wait more than one day before re-
porting the missing, which gives the attacker plenty of time
to breach the unprotected system. However, when a smart-
phone is stolen, the users may discover it at an early stage
and report it quickly to reduce the risk of misuse.

Similar to the usage of physical tokens, our TrustOTP
may suffer from man-in-the-middle attacks when used alone.
If the attacker can intercept the current password and block
the authorized user from being authenticated by the server
until the next token code becomes valid, the attacker is able
to log into the server. We can prevent this attack by adopt-
ing the risk-based authentication mechanism from RSA Se-
curID [38]. Moreover, both hardware tokens and TrustOTP
cannot work correctly if the authentication server’s clock is
out of sync with the clocks built into the tokens or smart-
phones. Normal clock drift on hardware tokens and smart-
phones can be accounted for automatically by the server
through adjusting a stored “Drift” value over time. In
TrustOTP, even if the server clock or the smartphone clock
had drifted or been changed, the dedicated SRTC clock on
the smartphone can be resynchronized manually.

Each hardware token typically only provides one instance
of one-time password, so a user may bring multiple physical
tokens to authenticate to different servers. In TrustOTP,
if two OTP instances share the same OTP algorithm such
as the open OATH HOTP standard, we can support them
by simply adding the keying materials for the new instance.
Also, it is easy to integrate various OTP algorithms in the se-
cure domain after converting them into self-contained mode.
One remaining challenge is to isolate all OTP instances from
each other, so one malicious OTP algorithm cannot com-
promise other OTP instances. It could be solved by run-
ning each OTP in a lightweight container [5]. It is a gen-
eral problem on how to install and upgrade secure apps into
TrustZone, since the TrustZone is controlled by phone man-
ufactures. With careful code review and PKI certification
chain technology, OTP service providers may collaborate
with phone manufactures to customize a secure API for in-
stalling and upgrading OTP software in the secure domain.
We leave it as our future work when commercializing our
system.

8. RELATED WORK

There are several types of OTP tokens in use, and they can
be divided into software-based token and hardware-based
token. Software-based OTP tokens have been widely used
on desktops and laptops, incorporating the convenient OS
supports and functionalities [50} |44} 52] to provide OTPs
for user authentication. Software tokens have been widely
ported to mobile devices too. For instance, Google develops
a software OTP token called Google Authenticator [34] as an
app supporting both iOS and Android. Moreover, smart-
phones can receive OTPs from the authentication server
through an out-of-band channel such as SMS or email. In
general, software-based OTP tokens are vulnerable to mali-
cious apps and compromised OS running on the same ma-
chine. Hardware virtualization supports on x86 and ARM

processors are promising to help protect the OTP generator
from other malicious software |20} |39, [54] [1].

Hardware-based OTP tokens use a dedicated physical fob
to calculate and display the OTP on an integrated screen |24}
58]. Contrast to RSA SecurID that provides proprietary
hardware OTP solution [24], OATH Token is an open-source
software token that implements the RFC 4226 HOTP/OATH
algorithm standard and is not tied to any proprietary server
software. A number of commercial hardware tokens sup-
port the OATH standards [8], including Vasco Digipass GO
6 OATH [6]. Yubikey [58] has a USB interface with cus-
tomized software to provide OTP on a laptop. The major
drawback of these hardware tokens is that the user needs to
carry an extra hardware that is prone to being lost or stolen.
It is not convenient to upgrade the software in the physical
tokens either. Moreover, a hardware token can cost around
100 dollars. Intel Identity Protection Technology with One-
Time Password [36] integrates a built-in OTP hardware to-
ken into the CPU core. The integrated hardware token is
tamper-proof and isolated from the operating system. How-
ever, such OTP solution is based on Intel Core processors
and is not available on ARM processors. TrustOTP achieves
both the flexibility of the software tokens and the security
of the hardware tokens.

Alexandra et al. [21] analyzed potential attacks on mo-
bile two-factor authentication (2FA) schemes and provided
a number of valuable high-level research directions against
those attacks. Our work falls into the countermeasure cat-
egory of leveraging secure hardware on mobile platforms to
provide a trusted user input/output to a trusted OTP app
when the Rich OS and the trusted OTP application share
the same touchscreen and display. Our solution leverages
ARM TrustZone to isolate TrustOTP from an untrusted
Rich OS.

ARM TrustZone can isolate a secure OS from a Rich
OS into two computing domains. Thus, untrusted appli-
cations in a compromised Rich OS cannot access secure
applications in the secure OS [55, (15, |53, |33]. Several
TrustZone-based systems (e.g., Mobicore/Trustonics |33,
Trusted Logic [53], ObCs [40, 23], and KNOX [48]) have
been developed to enhance the security of mobile devices.
For instance, MobiCore/Trustonics [33] is a secure Operat-
ing System for TrustZone-enabled ARM controllers includ-
ing ARM1176 or CortexA8/A9. It provides development
tools called Trustlets for third-party application developer.

A number of research efforts have been done on TrustZone.
Jang et al. [37] build a secure channel between the normal
domain and the secure domain. Azab et al. [17] leverage the
secure domain to protect the integrity of the Rich OS kernel
in real time. Sun et al. [51] perform reliable memory dump
of the Rich OS in the secure domain. Santos et al. [49] use
TrustZone to build a trusted language runtime that support
.NET Framework in the secure domain. Marforio et al. [43)]
propose a new location-based second-factor authentication
solution by using smartphone as location verification token
for payments in point of sale transaction. Pawel et al. [22]
combine TrustZone with a customized PANTA display pro-
cessor [25] to provide trusted input and output. It can ensure
a strong I/O isolation between the two execution environ-
ments; however, since it depends on integrating a dedicated
co-processor, it may have compatible issues and increase the
cost. Li et al. |[41] provide a verifiable mobile ad framework
to detect and prevent advertisement frauds. Their verifiable

display techngiue can achieve a trusted display as TrustOTP
does.

Winter et al. [56] develop a flexible software emulation
framework for TrustZone development. Since the major
smartphone vendors lock the TrustZone in their commercial
products to protect their OEM software, researchers choose
to develop their prototypes using development boards [29} |7}
19] or emulators [56] that have TrustZone support enabled.
Our prototype is built on a Freescale i.MX53 development
board [29].

9. CONCLUSIONS

We design a secure OTP token solution called TrustOTP
using smartphones, with the goal to achieve both the secu-
rity of the hardware tokens and the flexibility of the software
tokens. Our design can prevent all types of attacks from the
malicious mobile OS and continue to display the OTP even
if the mobile OS crashes. It is flexible to support various
OTP algorithms and multiple OTP instances on one smart-
phone. It requires no changes of the mobile OS and has
small impacts on the mobile OS’s performance. A proto-
type shows that TrustOTP works efficiently with tiny extra
power consumption.

10. ACKNOWLEDGMENT

The authors would like to thank the shepherd, Brent
Byunghoon Kang from Korea Advanced Institute of Science
and Technology (KAIST), and the anonymous reviewers for
their valuable comments and suggestions. He Sun and Kun
Sun are supported by U.S. Office of Naval Research under
Grant N00014-15-1-2396 and N00014-15-1-2012. He Sun,
Yuewu Wang and Jiwu Jing are supported by National 973
Program of China under Award No. 2013CB338001 and
Strategy Pilot Project of Chinese Academy of Sciences un-
der Award No. XDA06010702. Yuewu Wang is the corre-
sponding author.

11. REFERENCES

[1] AMD Virtualization. http://www.amd.com/en-us/
solutions/servers/virtualization.

[2] Android OATH Token.
https://code.google.com/p/androidtoken/|

[3] Antutu Benchmark.
http://www.antutu.com/en/Ranking.shtml.

[4] ARM. http://www.arm.com/!

[5] Booting the Android LXC container. https:
//wiki.ubuntu.com/Touch/ContainerArchitecture.

[6] DIGIPASS GO 6.
https://www.vasco.com/products/client_products/
single_button_digipass/digipass_go6.aspx.

[7] Juno ARM Development Platform.
http://www.arm.com/products/tools/development-
boards/versatile-express/juno-arm-development-
platform.php.

[8] OATH Compatible Hardware Tokens.
http://www.rcdevs.com/tokens/?type=hardware.

[9] Phi phenomenon.
http://en.wikipedia.org/wiki/Phi_phenomenon.

0] RFC1760. https://tools.ietf.org/html/rfc1760.

1] RFC2289. https://tools.ietf.org/html/rfc2289.

2] RFC4226. https://tools.ietf.org/html/rfc4226.

[13] RFC6238. https://tools.ietf.org/html/rfc6238.

[14] Adeneo Embedded. Reference BSPs for Freescale
i.MX53 Quick Start Board.
http://www.adeneo-embedded.com/en/Products/
Board-Support-Packages/Freescale-i.MX53-QSB.

[15] T. Alves and D. Felton. Trustzone: Integrated
hardware and software security. ARM white paper,
3(4), 2004.

[16] S. Arzt, S. Rasthofer, and E. Bodden. Instrumenting
android and java applications as easy as abc. In
Runtime Verification - 4th International Conference,
RV 2013, Rennes, France, September 24-27, 2013.
Proceedings, pages 364—-381.

[17] A. M. Azab, P. Ning, J. Shah, Q. Chen, R. Bhutkar,
G. Ganesh, J. Ma, and W. Shen. Hypervision across
worlds: Real-time kernel protection from the ARM
trustzone secure world. In Proceedings of the 201/
ACM SIGSAC Conference on Computer and
Communications Security, Scottsdale, AZ, USA,
November 3-7, 2014, pages 90—-102.

[18] J. Azema and G. Fayad. M-shield mobile security
technology: making wireless secure. Texas Instruments
Whitepaper, 2008.

[19] O. Board. Origen exynos4 quad evaluation board.
http://www.origenboard.org/wiki/index.php/
Introduction.

[20] C. Dall and J. Nieh. KVM/ARM: the design and
implementation of the linux ARM hypervisor. In
Architectural Support for Programming Languages and
Operating Systems, ASPLOS ’14, Salt Lake City, UT,
USA, March 1-5, 2014, pages 333—-348.

[21] A. Dmitrienko, C. Liebchen, C. Rossow, and
A. Sadeghi. Security analysis of mobile two-factor
authentication schemes. Intel Technology Journal,
18(4), 2014.

[22] P. Duc. Secure Mobile Payments - Protecting display
data in TrustZone-enabled SoCs with the Evatronix
PANTA Family of Display Processors.
http://www.design-reuse.com/articles/30675.

[23] J. Ekberg, K. Kostiainen, and N. Asokan. Trusted
execution environments on mobile devices. In 2013
ACM SIGSAC Conference on Computer and
Communications Security, CCS’13, Berlin, Germany,
November 4-8, 2013, pages 1497-1498.

[24] EMC?. RSA SecureID Hardware Tokens.
http://www.emc.com/security/rsa-securid/rsa-
securid-hardware-tokens.htm.

[25] Evatronix. Evatronix Launches Display Processor
based on Latest ARM Security Technology. http://
www.electronicsweekly.com/noticeboard/general/
evatronix-launches-display-processor-based-on-
latest-arm-security-technology-2012-05/.

[26] Fortinet. FortiToken. http://www.fortinet.com/
products/fortitoken/index.html.

[27] Freescale. Hardware Reference Manual for . MX53
Quick Start-R. http://cache.freescale.com/files/
32bit/doc/ref_manual/IMX53RQSBRM-R.pdf?fr=g.

[28] Freescale. i.MX 6Solo/6DualLite Applications
Processor Reference Manual.
http://cache.freescale.com/files/32bit/doc/
ref_manual/IMX6SDLRM.pdf ?fpsp=1&WT_TYPE=
Reference},20Manuals&WT_VENDOR=

http://www.amd.com/en-us/solutions/servers/virtualization
http://www.amd.com/en-us/solutions/servers/virtualization
https://code.google.com/p/androidtoken/
http://www.antutu.com/en/Ranking.shtml
http://www.arm.com/
 https://wiki.ubuntu.com/Touch/ContainerArchitecture
 https://wiki.ubuntu.com/Touch/ContainerArchitecture
https://www.vasco.com/products/client_products/single_button_digipass/digipass_go6.aspx
https://www.vasco.com/products/client_products/single_button_digipass/digipass_go6.aspx
 http://www.arm.com/products/tools/development-boards/versatile-express/juno-arm-development-platform.php
 http://www.arm.com/products/tools/development-boards/versatile-express/juno-arm-development-platform.php
 http://www.arm.com/products/tools/development-boards/versatile-express/juno-arm-development-platform.php
http://www.rcdevs.com/tokens/?type=hardware
http://en.wikipedia.org/wiki/Phi_phenomenon
https://tools.ietf.org/html/rfc1760
https://tools.ietf.org/html/rfc2289
https://tools.ietf.org/html/rfc4226
https://tools.ietf.org/html/rfc6238
http://www.adeneo-embedded.com/en/Products/Board-Support-Packages/Freescale-i.MX53-QSB
http://www.adeneo-embedded.com/en/Products/Board-Support-Packages/Freescale-i.MX53-QSB
http://www.origenboard.org/wiki/index.php/Introduction
http://www.origenboard.org/wiki/index.php/Introduction
http://www.design-reuse.com/articles/30675
http://www.emc.com/security/rsa-securid/rsa-securid-hardware-tokens.htm
http://www.emc.com/security/rsa-securid/rsa-securid-hardware-tokens.htm
http://www.electronicsweekly.com/noticeboard/general/evatronix-launches-display-processor-based-on-latest-arm-security-technology-2012-05/
http://www.electronicsweekly.com/noticeboard/general/evatronix-launches-display-processor-based-on-latest-arm-security-technology-2012-05/
http://www.electronicsweekly.com/noticeboard/general/evatronix-launches-display-processor-based-on-latest-arm-security-technology-2012-05/
http://www.electronicsweekly.com/noticeboard/general/evatronix-launches-display-processor-based-on-latest-arm-security-technology-2012-05/
http://www.fortinet.com/products/fortitoken/index.html
http://www.fortinet.com/products/fortitoken/index.html
http://cache.freescale.com/files/32bit/doc/ref_manual/IMX53RQSBRM-R.pdf?fr=g
http://cache.freescale.com/files/32bit/doc/ref_manual/IMX53RQSBRM-R.pdf?fr=g
http://cache.freescale.com/files/32bit/doc/ref_manual/IMX6SDLRM.pdf?fpsp=1&WT_TYPE=Reference%20Manuals&WT_VENDOR=FREESCALE&WT_FILE_FORMAT=pdf&WT_ASSET=Documentation
http://cache.freescale.com/files/32bit/doc/ref_manual/IMX6SDLRM.pdf?fpsp=1&WT_TYPE=Reference%20Manuals&WT_VENDOR=FREESCALE&WT_FILE_FORMAT=pdf&WT_ASSET=Documentation
http://cache.freescale.com/files/32bit/doc/ref_manual/IMX6SDLRM.pdf?fpsp=1&WT_TYPE=Reference%20Manuals&WT_VENDOR=FREESCALE&WT_FILE_FORMAT=pdf&WT_ASSET=Documentation

31

32

[41]

FREESCALE&WT _FILE_FORMAT=pdf&WT_ASSET=
Documentation.

Freescale. i.MX53 Processors.
http://wuw.freescale.com/webapp/sps/site/
taxonomy.jsp?code=IMX53_FAMILY.

Freescale. . MX53 Reference Manual with fusemap
addendum. http://www.freescale.com/webapp/sps/
site/prod_summary.jsp?code=1.MX537&fpsp=1&tab=
Documentation_Tab.

Freescale. Imx53qsb: i.mx53 quick start board.
http://www.freescale.com/webapp/sps/site/
prod_summary.jsp?code=IMX53QSB&tid=
vanIMXQUICKSTART.

Freescale. On Board Diagnose Suit (OBDS).
http://www.freescale.com/webapp/sps/download/
license.jsp?colCode=IMX53QSBOBDS&location=
null&fasp=1.

Giesecke & Devrient. MobiCore.
http://wuw.gi-de.com/en/trends_and_insights/
mobicore/trusted-mobile-services.jsp.

Google. Google Authenticator. http:
//en.wikipedia.org/wiki/Google_Authenticator,
IDC. Worldwide Mobile Worker Population 2011-2015
Forecast. http://cdn.idc.asia/files/5a8911ab-
4c6d-47b3-8a04-01147c3ce06d.pdf, Dec 2011.

Intel. Intel identity protection technology with
one-time password. http://ipt.intel.com/Home/How-
it-works/network-security-identity-management/
ipt-with-one-time-password.

J. Jang, S. Kong, M. Kim, D. Kim, and B. B. Kang.
Ssecret: Secure channel between rich execution
environment and trusted execution environment. In
21st Annual Network and Distributed System Security
Symposium, NDSS 2015, San Diego, California, USA,
February 8-11, 2015.

Jeff Carpenter, EMC. Did You Know: Trends in RSA
Secur]D Two-Factor Authentication. http://
www.emc.com/collateral/rsa/eventpresentations/
04-10-12-Two-Factor_Auth.pdf.|

S. Kalkowski. Virtualization Dungeon on ARM. In
Free and Open Source Software Developers’ European
Meeting, FOSDEM 2014, Brussels, Belgium, February
1-2, 2014.

K. Kostiainen, J. Ekberg, N. Asokan, and A. Rantala.
On-board credentials with open provisioning. In
Proceedings of the 2009 ACM Symposium on
Information, Computer and Communications Security,
ASTIACCS 2009, Sydney, Australia, March 10-12,
2009, pages 104-115.

W. Li, H. Li, H. Chen, and Y. Xia. Adattester: Secure
online mobile advertisement attestation using
trustzone. In Proceedings of the 13th Annual
International Conference on Mobile Systems,
Applications, and Services, MobiSys 2015, Florence,
Ttaly, May 19-22, 2015, pages 75—88.

C. Lin, H. Li, X. Zhou, and X. Wang. Screenmilker:
How to milk your android screen for secrets. In 21st
Annual Network and Distributed System Security
Symposium, NDSS 2014, San Diego, California, USA,
February 23-26, 2014.

C. Marforio, N. Karapanos, C. Soriente,

K. Kostiainen, and S. Capkun. Smartphones as

(44]

(45]

(46]

(47]

(48]

(49]

[50]

[51]

(53]

[54]

[55]

[56]

[57]

[58]

practical and secure location verification tokens for
payments. In 21st Annual Network and Distributed
System Security Symposium, NDSS 2014, San Diego,
California, USA, February 23-26, 201/4.

McAfee. Mcafee one time password.
http://www.mcafee.com/us/products/one-time-
password.aspx.

Monsoon Solutions. Monsoon Power Monitor. https:
//www.msoon.com/LabEquipment/PowerMonitor/.
Open AuTHentication. OATH Toolkit.
http://www.nongnu.org/oath-toolkit/.

Qualcomm Innovation Center. Vellamo Mobile
Benchmark.
https://play.google.com/store/apps/details?id=
com.quicinc.vellamo&hl=en.

Samsung Electronics. White Paper: An Overview of
Samsung KNOX. http://www.samsung.com/global/
business/business-images/resource/white-paper/
2013/06/Samsung_KNOX_whitepaper_June-0.pdf.

N. Santos, H. Raj, S. Saroiu, and A. Wolman. Using
ARM trustzone to build a trusted language runtime
for mobile applications. In Architectural Support for
Programming Languages and Operating Systems,
ASPLOS ’14, Salt Lake City, UT, USA, March 1-5,
2014, pages 67-80.

SolidPass. Desktop soft token. http:
//wwu.solidpass.com/authentication-methods/one-
time-password-generator-otp-token.html.

H. Sun, K. Sun, Y. Wang, J. Jing, and S. Jajodia.
Trustdump: Reliable memory acquisition on
smartphones. In Computer Security - ESORICS 201/
- 19th European Symposium on Research in Computer
Security, Wroclaw, Poland, September 7-11, 2014.
Proceedings, Part I, pages 202-218.

Symantec. Whitepaper: Two-factor Authentication: A
TCO Viewpoiont. https://wwwé.symantec.com/
mktginfo/whitepaper/user_authentication/
whitepaper-twofactor-authentication.pdf.
Trusted Logic. Trusted foundations by trusted logic
mobility. http://www.arm.com/community/partners/
display_product/rw/ProductId/5393/\

R. Uhlig, G. Neiger, D. Rodgers, A. L. Santoni, F. C.
Martins, A. V. Anderson, S. M. Bennett, A. Kagi,

F. H. Leung, and L. Smith. Intel Virtualization
Technology. Computer, 38(5):48-56, 2005.

J. Winter. Experimenting with ARM trustzone - or:
How I met friendly piece of trusted hardware. In 11th
IEEE International Conference on Trust, Security and
Privacy in Computing and Communications,
TrustCom 2012, Liverpool, United Kingdom, June
25-27, 2012, pages 1161-1166.

J. Winter, P. Wiegele, M. Pirker, and R. Togl. A
flexible software development and emulation
framework for arm trustzone. In INTRUST, pages
1-15. 2011.

D. You and B. Noh. Android platform based linux
kernel rootkit. In 6th International Conference on
Malicious and Unwanted Software, MALWARE 2011,
Fajardo, Puerto Rico, USA, October 18-19, 2011,
pages 79-87.

Yubico. Yubikey. https://www.yubico.com/.

http://cache.freescale.com/files/32bit/doc/ref_manual/IMX6SDLRM.pdf?fpsp=1&WT_TYPE=Reference%20Manuals&WT_VENDOR=FREESCALE&WT_FILE_FORMAT=pdf&WT_ASSET=Documentation
http://cache.freescale.com/files/32bit/doc/ref_manual/IMX6SDLRM.pdf?fpsp=1&WT_TYPE=Reference%20Manuals&WT_VENDOR=FREESCALE&WT_FILE_FORMAT=pdf&WT_ASSET=Documentation
http://www.freescale.com/webapp/sps/site/taxonomy.jsp?code=IMX53_FAMILY
http://www.freescale.com/webapp/sps/site/taxonomy.jsp?code=IMX53_FAMILY
 http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=i.MX537&fpsp=1&tab=Documentation_Tab
 http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=i.MX537&fpsp=1&tab=Documentation_Tab
 http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=i.MX537&fpsp=1&tab=Documentation_Tab
http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=IMX53QSB&tid=vanIMXQUICKSTART
http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=IMX53QSB&tid=vanIMXQUICKSTART
http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=IMX53QSB&tid=vanIMXQUICKSTART
http://www.freescale.com/webapp/sps/download/license.jsp?colCode=IMX53QSBOBDS&location=null&fasp=1
http://www.freescale.com/webapp/sps/download/license.jsp?colCode=IMX53QSBOBDS&location=null&fasp=1
http://www.freescale.com/webapp/sps/download/license.jsp?colCode=IMX53QSBOBDS&location=null&fasp=1
http://www.gi-de.com/en/trends_and_insights/mobicore/trusted-mobile-services.jsp
http://www.gi-de.com/en/trends_and_insights/mobicore/trusted-mobile-services.jsp
http://en.wikipedia.org/wiki/Google_Authenticator
http://en.wikipedia.org/wiki/Google_Authenticator
http://cdn.idc.asia/files/5a8911ab-4c6d-47b3-8a04-01147c3ce06d.pdf
http://cdn.idc.asia/files/5a8911ab-4c6d-47b3-8a04-01147c3ce06d.pdf
http://ipt.intel.com/Home/How-it-works/network-security-identity-management/ipt-with-one-time-password
http://ipt.intel.com/Home/How-it-works/network-security-identity-management/ipt-with-one-time-password
http://ipt.intel.com/Home/How-it-works/network-security-identity-management/ipt-with-one-time-password
http://www.emc.com/collateral/rsa/eventpresentations/04-10-12-Two-Factor_Auth.pdf
http://www.emc.com/collateral/rsa/eventpresentations/04-10-12-Two-Factor_Auth.pdf
http://www.emc.com/collateral/rsa/eventpresentations/04-10-12-Two-Factor_Auth.pdf
http://www.mcafee.com/us/products/one-time-password.aspx
http://www.mcafee.com/us/products/one-time-password.aspx
https://www.msoon.com/LabEquipment/PowerMonitor/
https://www.msoon.com/LabEquipment/PowerMonitor/
http://www.nongnu.org/oath-toolkit/
https://play.google.com/store/apps/details?id=com.quicinc.vellamo&hl=en
https://play.google.com/store/apps/details?id=com.quicinc.vellamo&hl=en
http://www.samsung.com/global/business/business-images/resource/white-paper/2013/06/Samsung_KNOX_whitepaper_June-0.pdf
http://www.samsung.com/global/business/business-images/resource/white-paper/2013/06/Samsung_KNOX_whitepaper_June-0.pdf
http://www.samsung.com/global/business/business-images/resource/white-paper/2013/06/Samsung_KNOX_whitepaper_June-0.pdf
http://www.solidpass.com/authentication-methods/one-time-password-generator-otp-token.html
http://www.solidpass.com/authentication-methods/one-time-password-generator-otp-token.html
http://www.solidpass.com/authentication-methods/one-time-password-generator-otp-token.html
https://www4.symantec.com/mktginfo/whitepaper/user_authentication/whitepaper-twofactor-authentication.pdf
https://www4.symantec.com/mktginfo/whitepaper/user_authentication/whitepaper-twofactor-authentication.pdf
https://www4.symantec.com/mktginfo/whitepaper/user_authentication/whitepaper-twofactor-authentication.pdf
http://www.arm.com/community/partners/display_product/rw/ProductId/5393/
http://www.arm.com/community/partners/display_product/rw/ProductId/5393/
https://www.yubico.com/

	Introduction
	Background
	One-Time Password
	ARM TrustZone

	Threat model and Assumptions
	TrustOTP Design
	System Overview
	Secure OTP Generator
	OTP Generation Code
	Secure Clock and Counters

	Secure OTP Display
	Secure Touchscreen for OTP Registration
	Secure Booting and Reliable Switch
	Security Analysis

	Implementation
	Secure Non-volatile Storage
	Memory Isolation
	TrustOTP Booting
	Reliable Switch
	OTP Generator
	Secure Key Management
	Clock and Counter Protection
	Multiple OTPs

	Secure Touchscreen Driver
	Secure Display Controller
	User Friendly Display

	Performance Evaluation
	Time Breakdown
	Impacts on Rich OS
	Power Consumption

	Limitations and Discussion
	Related Work
	Conclusions
	Acknowledgment
	References

