
Secure Distributed Cluster Formation in Wireless Sensor Networks

Kun Sun
Intelligent Automation, Inc.

ksun@i-a-i.com

Pai Peng
Opsware Inc.

ppeng@opsware.com

Peng Ning
NC State University

pning@ncsu.edu

Cliff Wang
Army Research Office

cliff.wang@us.army.mil

Abstract

In wireless sensor networks, clustering sensor nodes into
small groups is an effective technique to achieve scalability,
self-organization, power saving, channel access, routing, etc.
A number of cluster formation protocols have been proposed
recently. However, most existing protocols assume benign
environments, and are vulnerable to attacks from malicious
nodes. In this paper, we propose a secure distributed cluster
formation protocol to organize sensor networks into mutually
disjoint cliques. Our protocol has the following properties:
(1) normal nodes are divided into mutually disjoint cliques;
(2) all the normal nodes in each clique agree on the same
clique memberships; (3) while external attackers can be pre-
vented from participating in the cluster formation process,
inside attackers that do not follow the protocol semantics can
be identified and removed from the network; (4) the commu-
nication overhead is moderate; (5) the protocol is fully dis-
tributed.

1 Introduction

A wireless sensor network typically consists of a poten-
tially large number of resource constrained sensor nodes and
a few relatively powerful control nodes such as mobile lap-
tops. Each sensor node is usually battery powered, and has a
low-end processor, a limited amount of memory, and a low-
power communication module capable of short-range wire-
less communication. The sensor nodes form an ad-hoc net-
work through the wireless links. Wireless sensor networks
are ideal candidates for a wide range of applications, such as
target tracking and monitoring of critical infrastructures.

In large sensor networks, the sensor nodes can be grouped
into small clusters by their physical proximity to achieve bet-
ter efficiency, and each cluster may elect a cluster-head to
coordinate the nodes in the cluster. Many efficient cluster-
based protocols have been developed for sensor networks to
achieve scalability, power saving, channel access, routing,
etc. For example, the cluster structure can prolong the life-

time of the sensor network by making the cluster-head aggre-
gate data from the nodes in the cluster and reduce the data
sent to the base station (e.g., [4,14,30]). As another example,
a cluster-head can arrange a time-slotted scheduling for wire-
less channel access so that message collisions can be reduced
by allowing only one node in the cluster to access the channel
at any time (e.g., [20, 28]).

A randomly deployed sensor network requires a clus-
ter formation protocol to partition the network into clusters.
When cluster heads are required, nodes in each cluster may
also perform a leader election protocol to determine their
cluster head. Several cluster formation protocols have been
proposed for wireless sensor networks (e.g., [2–7, 11, 14, 16–
18, 27, 30]). Based on the order in which cluster formation
and leader election are performed, we can divide the cluster
formation protocols into two categories: Leader-First (LF)
approaches and Cluster-First (CF) approaches. In Leader-
First approaches (e.g., [2, 3, 14, 30], cluster-heads are first
elected based on certain metrics (e.g., degree of connectiv-
ity, remaining energy), and then they agree on how to assign
other nodes to different clusters. In Cluster-First approaches
(e.g., [16, 18, 24, 27]), all the sensor nodes first form clusters,
and each cluster then elects its cluster-head. Such approaches
require all the nodes in one cluster agree on the same mem-
bership before electing their cluster-head, and sensor nodes
are almost always divided into cliques so that nodes in each
clique can directly communicate with each other.

Most existing cluster formation protocols assume benign
environments, and cannot survive attacks from malicious par-
ticipants in hostile environments. In the Leader-First ap-
proaches, malicious nodes may lie about their metrics (e.g.,
increase transmission power for cluster-head advertisement
messages in LEACH [14]) to make themselves elected as
cluster-heads. As a result, they can control all the nodes in
their clusters. Similarly, none of the Cluster-First protocols
can guarantee a consistent view on clique memberships when
malicious nodes send false information.

Vasudevan et al. proposed two secure leader election al-
gorithms by using a trusted authority to certify each node’s
metrics used in the leader election process [26]. However,

these algorithms assume all the participating nodes are reli-
able and no messages are lost or delayed, which cannot be
guaranteed when there are malicious nodes.

In this paper, we propose a Cluster-First, secure and dis-
tributed cluster formation protocol. By exchanging informa-
tion with 1-hop neighbors, normal sensor nodes are divided
into mutually disjoint cliques, in which all the nodes can di-
rectly communicate with each other. Our protocol guarantees
that all the normal nodes in each clique agree on the same
clique membership even under the attacks from both external
and internal malicious nodes. We use the protocol semantics
to distinguish malicious behaviors from normal ones, identify
and remove inside attackers that deviate from the protocol.

Our secure cluster formation protocol is different from the
authenticated Byzantine Agreement algorithms (e.g., [8, 12,
25]), which can successfully solve the traditional Byzantine
General problem [19]. These authenticated Byzantine Agree-
ment algorithms can guarantee all the normal nodes in one
group agree on a single or a set of value(s) by using the
signature-based authentication. Our protocol aims to divide a
sensor network (one large group) into multiple small groups
(cliques) and guarantee all the normal nodes in each small
group agree on the same group membership. All the normal
nodes have to figure out consistently how to partition the net-
work, and the normal nodes in different groups have different
group membership.

Our secure distributed cluster formation protocol has the
following properties even if there are external and insider at-
tackers:

• The protocol is fully distributed. Each node computes its
clique only using the information from its 1-hop neigh-
bors.

• The protocol is guaranteed to terminate. Participating
nodes that do not follow the protocol specification (e.g.,
send conflicting messages) will be identified and re-
moved from all cliques.

• After the protocol terminates, all normal nodes are di-
vided into mutually disjoint cliques. All normal nodes
are guaranteed to have consistent views on their clique
memberships even in hostile environments.

The rest of this paper is organized as follows. Section 2
presents the problem and the system model. Section 3 de-
scribes the secure distributed cluster formation protocol and
proves its security. Section 4 evaluates the performance of the
protocol through simulations. Section 5 discusses the related
work. Section 6 concludes this paper.

2 Problem Statement

Objective: The objective of our clique formation protocol is
to divide the normal nodes in a sensor network into mutu-
ally disjoint cliques so that all the nodes in the same cliques
can directly communicate with each other. Each node should

individually compute its view of clique based on the informa-
tion exchanged with its 1-hop neighbors. We denote the view
of clique for node i as Ci. For brevity, we call Ci as the clique
of node i. We call a node a normal node if it follows our pro-
tocol. Otherwise, it is a malicious node. We would like to
guarantee that all normal nodes have consistent cliques, as
reflected by the following clique agreement property. Clique
agreement for a normal node i is defined as:

Definition 1 (Clique Agreement) For each node j ∈ Ci,
Cj = Ci.

Definition 1 implies that for each normal node j /∈ Ci, i /∈
Cj must hold. That is, each normal node belongs to only one
clique. Clique agreement is broken if Clique Inconsistency is
detected. For node i, clique inconsistency is defined as:

Definition 2 (Clique Inconsistency) There exists a node j ∈
Ci such that Cj �= Ci.

It is desirable that each node can find as large a clique
as possible. We do not consider trivial solutions with which
each node forms a clique that only includes itself.

Threat Model: We assume an adversary may launch arbi-
trary attacks against the cluster formation protocol except for
completely jamming the communication channel. An exter-
nal attacker may eavesdrop, inject, and replay packets to dis-
rupt the cluster formation protocol. However, these attacks
can be easily defeated with message authentication.

An attacker may generate more severe impact by partic-
ipating in the clustering formation process using malicious
nodes (e.g., those compromised by the adversary). The mali-
cious nodes may arbitrarily deviate from the protocol in order
to introduce clique inconsistency. In particular, a malicious
node may use directional antenna to send different messages
to different neighbor nodes. Moreover, it can communicate
with some normal nodes while intentionally keep silence to
others. (We call this silence attack.) The malicious nodes
may launch Sybil attacks [9] or Wormhole attacks [15]. How-
ever, we assume these two kinds of attacks can be detected by
using the techniques proposed in [22] and [15], respectively.

Assumptions: We assume each node knows its 1-hop
neighbors. A message sent by a normal node can be received
correctly by all its (1-hop) neighbors in a finite amount of
time. We assume each sensor node has a unique ID, and each
node can be uniquely identified due to its keying materials
(e.g., unique pairwise keys shared with other nodes, private
keys used for digital signatures). All unicast messages ex-
changed between nodes are authenticated with the key shared
between the two nodes.

We assume the sensor nodes can perform public key based
digital signature operations. It has been shown in recent in-
vestigations [13, 21] that low-end sensor nodes (e.g., MICA2

motes with 8-bit processors) can perform public key cryp-
tographic operations. Moreover, recent development of sen-
sor platforms such as Intel motes1 uses more advanced hard-
ware, and can perform public key cryptographic operations
efficiently.

We use a combination of µTESLA [23] and digital signa-
ture to authenticate broadcast messages. We use digital sig-
natures when non-repudiation is necessary, and µTESLA for
efficient broadcast authentication in other cases. We assume
the clocks of the normal nodes are loosely synchronized, as
required by µTESLA. We also assume the public keys used
by the sensor nodes are properly authenticated. One approach
to ensure this is to issue to each node a certificate for its pub-
lic key so that other nodes can validate the node’s public key
by verifying the certificate.

3 The Secure Distributed Cluster Formation
Protocol

In this section, we first present the details of our protocol,
and then analyze its properties in normal situation and hos-
tile environments, including clique consistency property and
performance overheads.

3.1 Protocol Specification

Our secure distributed cluster formation protocol consists
of five steps. When all the nodes are normal, the cluster for-
mation process terminates after the first four steps. In hostile
environments, when clique inconsistency is detected, the pro-
tocol provides an extra Step 5 to remove the identified mali-
cious nodes from the network and restart the protocol from
Step 1.

The protocol is summarized below:

• Step 1: Each node exchanges its neighbor lists with its
neighbors, and computes its local maximum clique.

• Step 2: Each node exchanges its local maximum clique
with its neighbors, and updates its maximum clique ac-
cording to its neighbor nodes’ local maximum cliques.

• Step 3: Each node exchanges the updated clique with
its neighbors, and derives its final clique.

• Step 4: Each node exchanges the final clique with its
neighbors. If no clique inconsistency is detected, it ter-
minates successfully. Otherwise, it enters Step 5.

• Step 5: Each node performs conformity checking. If it
identifies malicious (neighbor) nodes, it removes them
from the network, and restarts the protocol from Step 1.
Otherwise, it enforces the clique agreement and termi-
nates.

1http://www.intel.com/research/exploratory/
motes.htm

In the following, we will explain these steps in detail.
To facilitate the discussion, we will use the simple example
shown in Figure 1. Figure 1(a) shows a sensor network con-
sisting of 8 sensor nodes. A directional edge from node i to
node j represents node j can receive messages from node i.
Considering asymmetric communication, we assume node 0
can hear from node 3, while node 3 cannot hear from node 0.
Figure 1(b) shows the results of our clique formation protocol
when all the 8 nodes are normal.

0

1

2

4

3

5

6

7

(a) A network with 8 nodes

0

1

2

4

3

5

6

7

(b) Cluster formation

Figure 1. An Example of Cluster Formation

3.1.1 Step 1: Calculating Local Maximum Clique

Based on our assumptions, each node i can obtain a neigh-
bor list Li that contains the IDs of its 1-hop neighbor nodes.
In the first step, all the nodes exchange their neighbor lists
with all their neighbors. As discussed earlier, such messages
should be authenticated with the pairwise key shared between
neighbors.

After receiving its neighbors’ neighbor lists, each node i
can build a neighbor matrix Mi that records the connectiv-
ity between its neighbor nodes. Each element in a neighbor
matrix is either 1 or 0. The element in the ith row and jth col-
umn of the neighbor matrix is 1 if node i contains node j in
its neighbor list, or 0 otherwise. If node i fails to receive the
neighbor list from a (previous) neighbor node j, it removes j
from its neighbor list.

Each node then symmetrizes its neighbor matrix by con-
sidering unidirectional links as no links at all. For example,
in Figure 1, node 1 considers that node 0 and node 3 are not
connected, since node 0 is not in node 3’s neighbor list. The
neighbor matrix of node 1 in Figure 1(a) is shown in Table 1.

Based on the neighbor matrix, each node i individually
computes a local maximum clique that includes itself. Based
on node i’s neighbor matrix, we can construct a graph Gi =
{Vi, Ei}, where Vi consists of node i and its neighbors, and
Ei consists of the bidirectional edges between nodes in Vi.
It is well known that finding the maximum clique in a ran-
dom graph is an NP-complete problem [10]. For node i, it is
also NP-complete [29] to find the maximum clique contain-
ing node i in Gi. To reduce the computation complexity, we

Table 1. Node 1’s Neighbor Matrix
0 1 2 3 4 7

0 1 1 1 1 ⇒ 0 0 0
1 1 1 1 1 1 1
2 1 1 1 1 0 0
3 0 1 1 1 1 0
4 0 1 0 1 1 0
7 0 1 0 0 0 0

propose a heuristic algorithm for node i to compute its local
maximum clique, as shown in Algorithm 1.

Algorithm 1 Heuristic Algorithm to Find the Local Maximum
Clique

INPUT: Gi = {Vi, Ei}, i ∈ Vi

OUTPUT: Ci

STEPS:
Si = {j|(i, j) ∈ Ei}; Ci = {i};
while (Si �= ∅) do

Find k ∈ Si with maximum |Li ∩ Lk|
Li ← Li ∩ Lk

Ci ← Ci ∪ {k}
Si ← Si − {k} − {j|(j, k) /∈ Ei, j ∈ Si}

end while

The heuristic algorithm runs in rounds. Li includes node
i’s 1-hop neighbor nodes that are eligible to be in the same
clique as node i. In each round, node i chooses one neighbor
node and adds it into its local maximum clique Ci. Node i
maintains a set Si containing its neighbor nodes that are eli-
gible to be chosen in the next round. Initially, all the neigh-
bors of node i are included in Si, and Ci only contains node i
itself. In the first round, node i computes the number of com-
mon neighbors between itself and each neighbor, and finds a
neighbor k with the maximum common neighbors |Li ∩Lk|.
We use node ID to break the tie. Then node i removes node
k from Si and adds it into Ci. Node i also removes the nodes
that are not directly connected with k from set Si. In the sec-
ond round, from the updated Si, node i finds the neighbor
node that has the maximum number of common neighbors
with all the nodes in Ci (i.e., nodes i and k). Node i then
removes this node from Si and adds it into Ci. Those nodes
that are not directly connected with this node will then be re-
moved from set Si. Node i continues doing so until the set Si

is empty.
After this algorithm finishes, node i sorts the nodes in Ci

ascendingly by node IDs and gets its local maximum clique
C1

i . In our protocol, we use Ck
i to denote the clique derived

by node i in the kth step (1 ≤ k ≤ 4). Our heuristic algorithm
cannot guarantee to find the optimal clique; however, it pro-
vides a sub-optimal solution with less computation overhead.
We show it through the simulation result in Section 4

Let us see how this algorithm works on node 1 in Fig-
ure 1. Initially, node 1 has C1 = {1}, L1 = {0, 2, 3, 4, 7},
and S1 = {0, 2, 3, 4, 7}. In the first round, node 2 has 2 com-
mon neighbors L1 ∩ L2 = {0, 3} with node 1; node 3 also

has 2 common neighbors L1 ∩ L3 = {2, 4} with node 1.
Because node 2 and node 3 have the same maximum num-
ber of common neighbors with node 1, we prefer the smaller
ID to break the tie. Thus, node 1 adds node 2 into C1, and
C1 = {1, 2}. Then, node 1 removes node 2 from S1, i.e.,
S1 = {0, 3, 4, 7}. Because nodes 4 and 7 cannot directly
communicate with node 2, node 1 also removes nodes 4 and
7 from S1 and S1 = {0, 3}. In the second round, node 0
and node 3 have the same number of common neighbors with
both node 1 and node 2. Node 1 chooses node 0 that has a
smaller ID into C1. Then, C1

1 = {0, 1, 2}, and S1 = ∅ after
removing node 0 and node 3. Node 3 is removed from S1

since node 3 is not connected with node 0. Finally, node 1’s
local maximum clique is C1

1 = {0, 1, 2}. Similarly, we have
C1

0 = C1
2 = {0, 1, 2}, C1

3 = C1
4 = C1

5 = C1
6 = {3, 4, 5, 6},

and C1
7 = {1, 7}.

3.1.2 Step 2: Ordering and Updating Maximum Cliques

The local maximum clique computed in step 1 at different
nodes are likely to be different. In step 2, each node looks
at the local maximum cliques derived by its neighbors, and
updates its local maximum clique to prepare for final clique
agreement.

In this step, each node i broadcasts its local maximum
clique C1

i to all its neighbors. For efficiency, such broad-
cast messages can be authenticated with µTESLA. Because
node i calculates its local maximum clique C1

i by a heuristic
algorithm based on its local neighbor information, it is pos-
sible for node i to receive a larger local maximum clique C1

j

that contains i from a neighbor j. Therefore, after receiving
the local maximum cliques from its neighbors, node i checks
if there exists any clique C1

j which is “better” than its clique
C1

i . To compare cliques computed by different nodes, we

define a relation “
i≺” on cliques as follows:

Definition 3 Cj
i≺ Ck if and only if

1. i ∈ Cj , i ∈ Ck, and

2. a). |Cj | < |Ck|, or

b). |Cj | = |Ck|, but cj < ck, where cj =
min{ai|ai ∈ Cj ∧ ai /∈ Ck} and ck =
min{bi|bi ∈ Ck ∧ bi /∈ Cj}, or

c). Cj = Ck, but j < k.

The relation
i≺ gives a total order for the local maximum

cliques received by node i. We can compare two cliques Cj

and Ck by relation
i≺ only if both cliques contain node i. We

have Cj
i≺ Ck if the number of nodes in Ck is greater than

that in Cj ; or both cliques contain the same number of nodes,
but for the first two different IDs cj ∈ Cj and ck ∈ Ck we
have cj < ck; or Cj contains the same nodes as Ck, but
j < k. In two ascendingly ordered local maximum cliques,
the first two different IDs are also the smallest two different

IDs. For example, if Cj = {1, 2, 3} and Ck = {1, 3, 4}, then

cj = 2 and ck = 3, and Cj
1≺ Ck.

Suppose node i receives n cliques that contain node i.

Node i orders these cliques as C1
α1

i≺ . . .
i≺ C1

i

i≺ . . .
i≺

C1
αn

, and updates its clique to the “best” clique C1
αn

. After
Step 2, node i has an updated clique C2

i = C1
αn

. We call C2
i

as node i’s updated clique.
Let us illustrate this step with the example in Figure 1.

After receiving the local maximum cliques from neighbor
nodes, node 1 has C1

0 = C1
1 = C1

2 = {0, 1, 2}, C1
3 = C1

4 =
{3, 4, 5, 6}, and C1

7 = {1, 7}. Node 1 can immediately drop
the cliques from nodes 3 and 4, since they do not contain

node 1. Because |C1
7 | < |C1

0 |, node 1 has C1
7

1≺ C1
0 . Be-

cause C1
0 = C1

1 = C1
2 but node IDs 0 < 1 < 2, we have

C1
0

1≺ C1
1

1≺ C1
2 . Therefore, node 1 orders the cliques from

node 0, 1, 2 and 7 as C1
7

1≺ C1
0

1≺ C1
1

1≺ C1
2 , and updates its

clique to C2
1 = C1

2 = {0, 1, 2}. Consider node 7. It will keep
its clique unchanged since node 1’s clique C1

1 = {0, 1, 2}
does not contain node 7. After Step 2, we have C2

0 = C2
1 =

C2
2 = {0, 1, 2}, C2

3 = C2
4 = C2

5 = C2
6 = {3, 4, 5, 6}, and

C2
7 = {1, 7}. We can see that node 7 still has clique incon-

sistency with node 1.

3.1.3 Step 3: Obtaining Final Clique

In this step, each node i broadcasts its updated clique C2
i to

its neighbors. Similarly to the broadcast messages in step 2,
these messages should also be authenticated with µTESLA.
For every node j in C2

i , node i checks if it is included in j’s
clique C2

j . If not, node i removes j from its clique C2
i . After

this step, each node i obtains its final clique C3
i . If node i

does not receive node j’s updated clique, node i simply keeps
node j in its clique.

For our example in Figure 1, because C2
1 = {0, 1, 2} does

not contain node 7, node 7 removes node 1 from C2
7 = {1, 7},

and obtain its final clique C3
7 = {7}. Finally, all the nodes

are grouped into 3 cliques, which are C3
0 = C3

1 = C3
2 =

{0, 1, 2}, C3
3 = C3

4 = C3
5 = C3

6 = {3, 4, 5, 6} and C3
7 =

{7}.
If all the nodes are normal, after the first three steps, we

can guarantee the clique agreement. We prove this in Sec-
tion 3.2. However, in hostile environments, since compro-
mised nodes may deviate from the protocol, we need extra
steps to detect the potential clique inconsistency and identify
the malicious nodes.

3.1.4 Step 4: Checking Clique Agreement

All the nodes broadcast their final cliques to their neighbors.
Each node i also calculates a secure hash over all the four
messages sent in the first four steps, sign this hash value,
and append it into the message that contains the final clique.
When a normal node i receives the first copy of a final clique
C3

j from its neighbor j or forwarded by another neighbor, if
j ∈ C3

i , node i rebroadcasts the clique C3
j . The goal of this

rebroadcast is to prevent silence attacks.
Each node i verifies the clique agreement. That is, node i

verifies for all j ∈ C3
i , whether C3

j = C3
i holds. When clique

inconsistency is detected, node i enters Step 5; otherwise, it
terminates the clique formation process.

3.1.5 Step 5: Identifying Insider or Enforcing Clique
Agreement

This step consists of two stages. In Stage I, node i performs
conformity checking to identify malicious nodes that send in-
consistent messages in the previous four steps. The basic idea
is to use the protocol semantics to distinguish malicious be-
haviors from normal ones. When malicious nodes are identi-
fied, node i sends an alert to other nodes, using the malicious
nodes’ signatures as proofs. After removing the malicious
nodes from the network, all the remaining nodes restart the
protocol from Step 1 again. The malicious nodes that have
been identified will be removed from normal nodes’ neigh-
bor list and thus cannot launch further attacks.

A malicious node may send messages to some normal
neighbor nodes, but keep silence to others. According our
assumptions, the messages sent from normal nodes can be
received in a finite amount of time. Thus, a normal node may
detect a malicious node if certain messages are not received
from the malicious node. However, the normal node does not
have any proof to convince other normal nodes who do re-
ceive the messages from the malicious node. A normal node
cannot distinguish a normal node who really detects a ma-
licious node from a malicious node who forges a false alert
on a normal node. In such cases, node i enters Stage II to
enforce the clique agreement, and finish the clique formation
protocol.

We describe these two stages in detail below.

Stage I: Conformity Checking.

Suppose a normal node i detects a clique inconsistency with
node j. Node i requests node j to forward the messages that
node j received in the first four steps. Because node j has re-
ceived node i’s authenticated final clique C3

i in Step 4, only
if C3

i �= C3
j , node j will provide its previously received mes-

sages to node i. Node j need sign these messages to prove
that these messages are forwarded by node j. For efficient
signing, node j may calculate a secure hash over all the mes-
sages, and simply sign and send this hash value in one mes-
sage. After verifying node j’s signature, node i performs the
following conformity checking for node j.

Conformity Checking 1 Node j follows the clique forma-
tion protocol correctly in the first four steps.

In the above checking, node i re-computes the first three
steps of the cluster formation protocol for node j. If the de-
rived final clique is not the same as what node i received from
node j in Step 4, node j is a malicious node. Node i can use
node j’s signatures as a proof to notify other normal nodes in
the network. If node j passes checking 1, node i performs the

following checking on all the common neighbors of nodes i
and j.

Conformity Checking 2 For any node k ∈ Li ∩Lj , k sends
the same messages to i and j in every step.

Because node i has messages directly received from node
k and the message from node k received and forwarded by
node j, if node k sends different messages to nodes i and j
in any step, node i can detect the malicious node k and use
the conflicting messages from node k as proofs to convince
all the other nodes.

Conformity Checking 1 and 2 guarantee to detect the ma-
licious nodes if clique inconsistency is caused by malicious
nodes sending inconsistent messages. It is proved by Theo-
rem 2 in Section 3.3.1. Node i enters Stage II when no mali-
cious node is identified.

Stage II: Consistency Enforcement

When a malicious node launches silence attacks, a normal
node may detect the malicious node if certain messages are
not received from the malicious node. However, the normal
node does not have any proof to convince other normal nodes
who do receive the messages from the malicious node. More-
over, a normal node cannot distinguish a normal node who
really detects a malicious node from a malicious node who
forges a false alert on a normal node.

In such cases, our protocol can ensure that all the normal
nodes achieve clique agreement by performing the following
consistency enforcement. Suppose two normal nodes i and
j find inconsistency, i.e., j ∈ C3

i , i ∈ C3
j (which is proved

in Lemma 3) and C3
i �= C3

j . Without loss of generality, we
assume k ∈ C3

i and k /∈ C3
j .

Consistency Enforcement 1 If k ∈ C2
i , k /∈ C2

j , node i re-
ceives C1

k , and node j does not receive C1
k , then node i re-

moves j from C3
i , node j removes i from C3

j .

Consistency Enforcement 1 deals with the silence attack
in Step 2, when a malicious node k sends its local maximum
clique to node i and keep silence to node j. However, simply
removing k from C3

i is not a good option, because node j
may be malicious and lie about the receipt of C1

k . As a result,
a normal node k may become isolated. Thus, the safest way
is to split nodes i and j into different cliques.

Consistency Enforcement 2 If k ∈ C2
i ∩C2

j , node j receives
C2

k and j /∈ C2
k , node i does not receive C2

k , then node i
removes k from C3

i .

Consistency Enforcement 2 deals with the silence attack
in Step 3, when a malicious node k sends its updated clique
to node j, but does not send it to node i. Since node k is the
only possible malicious node (among nodes i, j, and k), node
i simply removes it from C3

i .
After performing the above two enforcements, we name

the new cliques as C∗
i and C∗

j for i and j, respectively. In
Section 3.3.2, we prove that our protocol can guarantee clique
agreement through these enforcements.

3.2 Effectiveness in Benign Environments

When all the nodes are normal, our protocol guarantees all
the nodes in one clique agree on the same clique membership
by following the first three steps.

Lemma 1 For two nodes i and j, if i ∈ C2
j and j ∈ C2

i , then
C2

i = C2
j .

PROOF. In Step 2 of our protocol, after node i receives

cliques from all its neighbors, it orders these cliques as C1
α1

i≺
. . .

i≺ C1
i

i≺ . . .
i≺ C1

αn
, and updates its clique to the “best”

clique C2
i = C1

αn
. Similarly, node j can have an updated

clique C2
j = C1

βn

From i ∈ C2
j = C1

βn
, node i can compare C1

βn
with C1

αn
.

Node i has C1
βn

i≺ C1
αn

since C1
αn

is the best clique among
from the cliques from all the neighbors. Because j ∈ C2

i =

C1
αn

, node i can also derive C1
βn

j≺ C1
αn

. However, from

j ∈ C2
i , node j has C1

αn

j≺ C1
βn

. This can happens only if
αn = βn, so we can prove C2

i = C2
j . �

Lemma 1 guarantees that if node i and node j contain each
other in their updated cliques at the end of Step 2, then their
updated cliques must contain the same clique membership.

Lemma 2 Consider nodes i, j and k, where k ∈ C2
i = C2

j .
If i /∈ C2

k , then j /∈ C2
k .

PROOF. We prove it by contradiction. Suppose j ∈ C2
k .

Because i /∈ C2
k and i ∈ C2

i = C2
j , we have C2

k �= C2
j .

Because k ∈ C2
i = C2

j , by Lemma 1, we have C2
j = C2

k .
Since C2

k = C2
j = C2

i , it contradicts to i /∈ C2
k . �

From Lemma 1, when node k is included in both node i
and node i’s updated cliques at the end of Step 2, if node i
is not included in node k’s updated clique, node j will not
be included either. Based on Lemmas 1 and 2, we have the
following clique agreement theorem that guarantees all the
normal nodes in each clique agree on the same clique mem-
bership.

Theorem 1 For node i and any node j ∈ C3
i , if all the nodes

are normal, we must have C3
i = C3

j .

PROOF. For any node j ∈ C3
i , j ∈ C2

i must hold. We also
have i ∈ C2

j , otherwise j should be removed from C3
i . By

Lemma 1, we have C2
i = C2

j . For any node k that k ∈ C2
i

but k /∈ C3
i , we know i /∈ C2

k . Then by Lemma 2, we have
j /∈ C2

k . Then k will not appear in C3
j . It means for every

node that is removed from C3
i , it must also be removed from

C3
j . Therefore, we can prove that C3

i = C3
j . �

3.3 Security Analysis in Hostile Environ-
ments

Malicious nodes may employ different methods to com-
promise clique agreement among normal nodes. Our protocol
can prevent external attacks by using (unicast and broadcast)
message authentication. Thus, a malicious node cannot use
a fake identity in our protocol without grasping the keying
materials. In the following, we focus on the insider attacks in
which some participating nodes are malicious.

If malicious nodes broadcast the same false messages or
keep silence to all the normal neighbors, they cannot intro-
duce clique inconsistency. Malicious nodes may send incon-
sistent messages in different steps, so that the cliques are not
correctly derived. However, since such attacks generate the
same impact on all the normal neighbors, they cannot intro-
duce clique inconsistency either. Therefore, clique inconsis-
tency can only result from sending different messages to dif-
ferent normal nodes, or launching silence attacks from mali-
cious nodes.

In Section 3.3.1, we prove that malicious nodes will be
detected and identified if clique inconsistency is caused by
sending inconsistent messages. In Section 3.3.2, we prove
that our protocol can tolerate silence attacks and clique agree-
ment can be enforced by removing the conflicting nodes.

3.3.1 Identifying Malicious Nodes

We first introduce Lemma 3, and then use it to prove Theo-
rem 2.

Lemma 3 For two normal nodes i and j, if j ∈ C3
i , then we

must have i ∈ C3
j .

PROOF. We prove it by contradiction. Suppose i /∈ C3
j . Since

j ∈ C3
i , we must have j ∈ C2

i . We consider two cases. If
i /∈ C2

j , j will send C2
j to i, then i should remove j from

C3
i in Step 3. It is contrary to our condition that j ∈ C3

i .
Otherwise, if i ∈ C2

j but i /∈ C3
j , it means j has removed

i from C2
j . The only reason is that i’s clique C2

i does not
include j, i.e., j /∈ C2

i . It contradicts to j ∈ C2
i . �

Lemma 3 guarantees that if node j is included in node i’s
final clique, then node j must include node i in its final clique,
even in hostile environments.

Theorem 2 If clique inconsistency is caused by malicious
nodes sending inconsistent messages to different normal
nodes, our protocol can identify the malicious nodes.

PROOF. Suppose a normal node i detects clique inconsis-
tency with node j in Step 4, i.e., j ∈ C3

i but C3
i �= C3

j .
To detect the malicious nodes, node i asks node j to provide
its previously received messages and performs Conformity
Checking 1 on j. If j passes this checking, it means j follows

the protocol correctly, and the inconsistency must come from
other nodes. Otherwise, j is malicious.

Consider the case when j performs normally. By
Lemma 3, if normal node j ∈ C3

i , we must have i ∈ C3
j .

So any node k that is not a common neighbor of both node
i and j cannot appear in either C3

i and C3
j . Therefore the

inconsistency must come from common neighbors of nodes i
and j. By performing Conformity Checking 2 on all the com-
mon neighbors of i and j, we will find the different messages
sent to i and j, and identify the malicious nodes. �

If node j is malicious, node i can detect the conflicts be-
tween the messages received from node j in Step 4 and the
messages received from node j in Step 5. Because node j
provides signatures on these messages, other nodes cannot
impersonate it to send fake messages. Thus, node i can use
these messages from node j as proofs to inform other nodes
in the network. The malicious node j will be removed from
the network. Similarly, if a common neighbor node k of node
i and node j is malicious, node i can use the messages di-
rectly received from node k and node k’s messages received
and forwarded by node j as proof to remove node k from the
network.

3.3.2 Enforcing Clique Agreement

We observe that silence attacks can introduce clique incon-
sistency only in Steps 2 and 3. In Step 1, a malicious node
may send its neighbor list to some neighbor nodes, but with-
hold it from other neighbor nodes. However, in Step 2, our
protocol allows a normal node i update its clique to a “better”
clique, even if the better clique contains some nodes that did
not send their neighbor lists to node i in Step 1. Thus, the
silence attack in Step 1 will not cause clique inconsistency.

In Step 2, clique inconsistency can only come from the
“better” cliques sent by malicious nodes, since a normal node
will update its clique to a “better” clique. Suppose nodes i
and j are normal. A malicious node k may send i a “better”
clique C1

k that includes i and j, but withhold the message
from node j. Then node i updates its clique to C1

k . If node j
receives the “better” clique from node i, it updates its clique
to C1

i . Therefore, node i and j include each other in their
cliques that are inconsistent. However, Consistency Enforce-
ment 1 can remove such clique inconsistency.

In Step 3, clique inconsistency can only be introduced by
removing nodes from cliques. Suppose k ∈ C2

i ∩C2
j . In Step

3, node k can send a clique to remove itself from i’s clique,
while keeping silence to j. Then the final clique of j contains
k, which is not in node i’s final clique.

In Step 4, after a normal node i receives a final clique C3
k

from node k, node i rebroadcasts C3
k if k ∈ C3

i . Because
we assume the messages from a normal node can be received
correctly by its normal neighbors, this rebroadcast can guar-
antee that if one normal node receives C3

k from node k, all the
other normal nodes in the same clique can receive C3

k . Thus,
it can prevent silence attacks in Step 4.

In the following Theorem 3, we prove that by removing
the inconsistent nodes from cliques through the consistency
enforcement, all the normal nodes can achieve clique agree-
ment even if malicious nodes intentionally keep silence to
certain normal nodes.

Theorem 3 For any two normal nodes i and j, after Step 5,
if j ∈ C∗

i , we have C∗
i = C∗

j .

PROOF. We prove it by contradiction. Suppose C∗
i �= C∗

j .
Since our protocol can only remove nodes from cliques when
inconsistency is detected, C3

i must contain all the nodes in
C∗

i . Therefore j ∈ C3
i . By lemma 3, we have i ∈ C3

j . We
consider two cases.

First, suppose C3
i �= C3

j and C∗
i �= C∗

j . Without loss of
generality, we assume node k ∈ C3

i but k /∈ C3
j . Nodes

i and j find inconsistency after exchanging C3
i and C3

j . By
Consistency Enforcement 1, node i removes j from its clique,
and node j also removes i from its clique. Therefore we have
j /∈ C∗

i . It is contrary to the condition j ∈ C∗
i .

Second, we assume C3
i = C3

j , but C∗
i �= C∗

j . Without loss
of generality, suppose node k ∈ C∗

i but k /∈ C∗
j . Because

nodes can only be removed to enforce clique agreement in
Step 5, k cannot be added to C∗

i , but removed from C∗
j . This

means C3
k is inconsistent with C3

j . Since C3
i = C3

j , C3
k is

also inconsistent with C3
i . Because node j re-broadcasts the

clique C3
k received from k, node i will receive C3

k even if
node k keeps silence to i. Thus, i should remove k from C∗

i .
We find contradiction. �

In our protocol, the clique consistency checking is only
performed in Step 4, though it can be executed in each step.
The reason is to reduce the computation overhead by decreas-
ing the number of signature generation/verification. Each
node need not verify the signatures from other nodes unless it
detects clique inconsistency. Even if clique inconsistency is
detected, each node only generates and verifies the signatures
of the messages exchanged in Step 4 and Step 5. If the pro-
tocol checks the consistency in every step, malicious nodes
may be detected in an earlier step. However, the computation
overhead will be increased a lot.

3.4 Performance Analysis

Computation Overhead: We make several efforts to lower
the computation overhead in our protocol. In all the five steps,
each node i uses µTESLA to authenticate its broadcast mes-
sages. Because µTESLA uses secure key cryptography that
has much less computation overhead than public key cryptog-
raphy, we only analyze the computation overhead on public
key operations.

In Step 4, each node i signs the secure hash of its local
messages sent in the first four steps, instead of signing each
message individually. Each node need not verify the signa-
tures from other nodes unless it detects clique inconsistency
with them. Therefore, in benign environments, no signature

verification is necessary. In hostile environments, after de-
tecting a clique inconsistency with node j, node i verifies the
signature from node j. In Step 5, after receiving node i’s re-
quest, node j generates a signature on the secure hash over
the previous received messages from its neighbors. Then,
node i needs to verify node j’s signature on the forwarded
messages. If node j passes Conformity Checking 1, node i
needs to verify |Li ∩Lj | signatures from the common neigh-
bors of i and j.

Because a node may verify more messages than those it
signs, we propose to choose public key cryptosystems with
a fast decryption speed, such as RSA, which can verify one
signature in 0.43s on ATmega128 [13]. Since the clique for-
mation process will not be performed frequently, the compu-
tation overhead is acceptable for sensor nodes.
Communication Overhead: Each node i broadcasts one
message in each of the first three steps. In Step 4, besides
broadcasting its final clique, node i also rebroadcasts the first
copy of the final clique message about a neighbor in node i’s
final clique C3

i . In total, node i sends |C3
i | + 3 messages.

Suppose node j has |Lj| neighbors. When node i detects
a clique inconsistency and requests node j to forward its pre-
viously received messages in Step 5, node j needs to forward
4|Lj| messages received in the first four steps, plus one mes-
sage including the signature for the secure hash over all the
forwarded messages.
Storage Overhead: According to the analysis of the com-
putation overhead, each node i should store all the 4|Li| mes-
sages received in the four steps, where |Li| is the neighbor
number of node i. When node i detects a clique inconsis-
tency with node j, node i needs to store 4|Lj| + 1 messages
from node j. Node i can release the memory after verifying
these messages.

4 Experimental Results

Through simulation, we show that our protocol can pro-
vide secure cluster formation without sacrificing the perfor-
mance of the clusters. We use the following metrics to evalu-
ate the cluster characteristics: average cluster size, maximum
size of clusters, variance of the cluster size, and number of
single-node clusters.

The average cluster size depends on the density of the net-
works and the transmission range of the sensor nodes. The
average cluster size should not be too small. In sensor net-
works, it is not desirable to include too many nodes in a large
cluster due to the increasing message collisions and trans-
mission delay in a large cluster. We use Coefficient of Vari-
ance (CV) = 100*(Standard Deviation)/(mean value of set)
to evaluate the variance of the cluster size. We expect to di-
vide nodes into clusters with a low coefficient of variance. A
cluster formation protocol should minimize the clusters with
a single node.

In our simulation, we uniformly deploy 100, 200, 300, 400
and 500 sensor nodes in a 100 × 100 (m2) simulation area,
respectively. The transmission range of all the sensor nodes

0
5

10
15
20
25
30
35
40
45

100 200 300 400 500
Number of Nodes

A
ve

ra
g

e
C

lu
st

er
 S

iz
e

LCA
Centralized Clique Formation
Our Protocol

(a) Average Cluster Size

0

10

20

30

40

50

60

100 200 300 400 500
Number of Nodes

C
o

ef
fi

ci
en

t
o

f
V

ar
ia

n
ce

 (
%

)

LCA
Centralized Clique Formation
Our Protocol

(b) CV (%) on Cluster Size

0

10

20

30

40

50

60

70

100 200 300 400 500
Number of Nodes

S
iz

e
o

f
M

ax
im

u
m

 C
lu

st
er LCA

Centralized Clique Formation
Our Protocol

(c) Size of the Maximum Cluster

0
1
2
3
4
5
6
7
8
9

10

100 200 300 400 500
Number of Nodes

o

f
S

in
g

le
 N

o
d

e
C

lu
st

er
s LCA

Centralized Clique Formation
Our Protocol

(d) # of Single-Node Clusters

Figure 2. Comparison of Cluster Metrics

is fixed to 20 meters. Each point in the result figures is the
average result of 1000 experiments.

We compare the cluster characteristics of our distributed
protocol to LCA [3], one typical Leader-First based cluster
formation protocol, and a centralized clique formation pro-
tocol. In LCA, from the lowest ID node to the highest ID
node, a node declares itself to be a cluster-head if it has the
lowest ID among the non-covered neighbor nodes. A node is
covered if it is in the 1-hop neighborhood of a node who has
declared itself to be a cluster-head. In the centralized clique
formation protocol, we assume a sink node has obtained the
topology graph G of the whole network. The sink node first
finds the maximum clique C1 in G, and updates G by remov-
ing C1 from G. Then, it finds the maximum clique C2 in the
remaining G, and then removes C2 from current G. The algo-
rithm completes when G becomes empty. We borrow the C
implementation (dfmax) from [1] to find a maximum clique
in a random graph.

Figure 2 compares the cluster characteristics of three pro-
tocols. As Figure 2(a) shows, the average cluster sizes of the
three protocols increase with the node density of the network.
Our protocol has a smaller average cluster size than the other
two protocols. The reason is that our protocol requires all
the nodes in a clique be able to directly communicate with
each other. While, in LCA, the maximum distance between
any two nodes in one cluster is two hops. Compared to the
centralized clique formation protocol, our heuristic protocol
in Step 1 may not find the maximum local clique. Thus, the
average cluster number is a little smaller.

Figure 2(b) shows the variance of the cluster sizes. Our
protocol has a smaller coefficient of variance than the other
two protocols, which means our protocol generates more uni-

form clusters. Figure 2(c) presents the maximum cluster sizes
in three protocols. Our protocol has a moderate maximum
cluster size. As Figure 2(d) shows, our protocol has fewer
single-node clusters than the other two protocols. The reason
is that LCA and the centralized clique formation protocol at-
tempt to form the largest cluster first, and thus leave some
nodes into small clusters. While in our protocol, because
all the nodes choose their clusters in a distributed and par-
allel way, it decreases the chances to form large clusters and
single-node clusters.

5 Related Work

The cluster structure in sensor networks can help to
achieve scalability, power saving, channel access, routing,
etc. In recent years, many Leader-First cluster formation
protocols have been proposed by selecting the cluster heads
with respect to one or multiple metrics, such as node IDs
(e.g., [3]), node connectivity (e.g., [6, 11]), node mobility
(e.g., [5,7]), residual energy (e.g., [4,7,14,30]). Several clus-
ter formation protocols (e.g., [2, 17]) have been proposed by
considering the cluster heads selection problem as a special
case of finding the minimum dominating set (MDS) prob-
lem. Several Cluster-First clique formation protocols (e.g.,
[16, 18, 24, 27]) have been proposed for sensor networks.

All the above cluster formation protocols assume benign
environments, but cannot resist attacks in hostile environ-
ments. In [26], two secure clustering formation algorithms
are proposed for wireless ad hoc networks. It depends on a
trusted authority to certify each node’s metrics used in the
leader election process. However, these algorithms are not

fault tolerant, since they assume all the participating nodes
are reliable and no messages are lost or delayed, which cannot
be guaranteed when there exist malicious nodes. Moreover, a
centralized trusted authority may not be always available.

In malicious environments, our secure cluster formation
protocol guarantees that all the normal nodes in each group
(clique) agree on the same group membership. The cluster
formation problem is different from the traditional Byzan-
tine Agreement problem [19], which is to guarantee all the
correct nodes in a group agree on a single value sent from
a single (possible malicious) node. Traditional authenticated
Byzantine Agreement algorithms (e.g., [8, 12, 25]) cannot be
directly applied to achieve secure cluster formation.

6 Conclusion and Future Work

We proposed a secure and distributed clique formation
protocol for sensor networks to divide sensor nodes into mu-
tually disjoint cliques. The clique structures built by our pro-
tocol can be widely used in sensor network applications, such
as routing, data fusion, time-slotted scheduling, etc. Cur-
rently, our protocol is suitable for static sensor networks, in
which nodes do not move frequently. We plan to investigate
how to extend our protocol into mobile sensor networks.

References

[1] dfmax.c. ftp://dimacs.rutgers.edu/pub/
challenge/graph/solvers/.

[2] A. Amis, R. Prakash, T. Vuong, and D. Huynh. Max-Min D-
cluster formation in wireless ad hoc networks. In INFOCOM,
1999.

[3] D. Baker, A. Ephremides, and J. Flynn. The design and
simulation of a mobile radio networkwith distributed control.
IEEE Journal on Selected Areas in Communications, SAC-
2(1):226–237, 1984.

[4] S. Bandyopadhyay and E. Coyle. An energy efficient hierar-
chical clustering algorithm for wireless sensor networks. In
INFOCOM, 2003.

[5] S. Basagni. Distributed clustering for ad hoc networks. In In-
ternational Symposium on Parallel Architectures, Algorithms
and Networks (ISPAN ’99), 1999.

[6] H. Chan and A. Perrig. ACE: An emergent algorithm for
highly uniform cluster formation. In European Workshop on
Wireless Sensor Networks (EWSN 2004), Jan 2004.

[7] M. Chatterjee, S. Das, and D. Turgut. WCA: A weighted clus-
tering algorithm for mobile ad hoc networks. Journal of Clus-
ter Computing (Special Issue on Mobile Ad hoc Networks),
5(2):193–204, 2002.

[8] D. Dolev and H. Strong. Authenticated algorithms for byzan-
tine agreement. SIAM Journal of Computing, 12(4):656–665,
1983.

[9] J. R. Douceur. The sybil attack. In First International Work-
shop on Peer-to-Peer Systems (IPTPS’02), Mar 2002.

[10] M. Garey and D. Johnson. Computers and Intractability: A
Guide to the Theory of NP-Completeness. W.H. Freeman And
Company, 1979.

[11] M. Gerla and J. T. Tsai. Multicluster, mobile, multimedia ra-
dio network. Wireless Networks, 1(3):255–265, 1995.

[12] L. Gong, P. Lincoln, and J. Rushby. Byzantine agreement
with authentication: Observations and applications in tolerat-
ing hybrid and link faults. In Dependable Computing for Crit-
ical Applications–5, volume 10, pages 139–157, sep 1995.

[13] N. Gura, A. Patel, and A. Wander. Comparing elliptic curve
cryptography and RSA on 8-bit CPUs. In Proceedings of the
2004 Workshop on Cryptographic Hardware and Embedded
Systems (CHES), 2004.

[14] W. R. Heinzelman, A. Chandrakasan, and H. Balakrishnan.
Energy-efficient communication protocol for wireless mi-
crosensor networks. In HICSS, 2000.

[15] Y. Hu, A. Perrig, and D. Johnson. Packet leashes: A defense
against wormhole attacks in wireless ad hoc networks. In IN-
FOCOM, April 2003.

[16] H. Ishii and H. Kakugawan. A self-stabilizing algorithm for
finding cliques in distributed systems. In 21st IEEE Sympo-
sium on Reliable Distributed Systems (SRDS’02), Oct 2002.

[17] L. Jia, R. Rajaraman, and T. Suel. An efficient distributed
algorithm for constructing small dominating sets. In Pro-
ceedings of the Annual ACM Symposium on Principles of Dis-
tributed Computing, 2001.

[18] P. Krishna, N. H. Vaidya, M. Chatterjee, and D. K. Pradhan. A
cluster-based approach for routing in dynamic networks. SIG-
COMM Computer Communication Review, 27(2), 1997.

[19] L. Lamport, R. Shostak, and M. Pease. The byzantine generals
problem. ACM Transactions on Programming Languages and
Systems (TOPLAS), 4(3):382–401, 1982.

[20] C. R. Lin and M. Gerla. Adaptive clustering for mobile wire-
less networks. IEEE Journal of Selected Areas in Communi-
cations, 15(7):1265–1275, 1997.

[21] D. J. Malan, M. Welsh, and M. D. Smith. A public-key infras-
tructure for key distribution in tinyos based on elliptic curve
cryptography. In SECON, October 2004.

[22] B. Parno, A. Perrig, and V. Gligor. Distributed detection of
node replication attacks in sensor networks. In IEEE Sympo-
sium on Security and Privacy, May 2005.

[23] A. Perrig, R. Szewczyk, V. Wen, D. Culler, and D. Tygar.
SPINS: Security protocols for sensor networks. In Proceed-
ings of Seventh Annual International Conference on Mobile
Computing and Networks, July 2001.

[24] T. Predrag and G. Agha. Maximal clique based distributed
group formation for autonomous agent coalitions. In Coali-
tions and Teams Workshop (W10), 3rd Int’l Joint Conf. on
Agents and Multi Agent Systems, 2004.

[25] M. K. Reiter. A secure group membership protocol. IEEE
Transactions on Software Engineering, 22(1), 1996.

[26] S. Vasudevan, B. DeCleene, N. Immerman, J. Kurose, and
D. Towsley. Leader election algorithms for wireless ad hoc
networks. In DARPA Information Survivability Conference
and Exposition DISCEX, 2003.

[27] Y. Xu, J. Heidemann, and D. Estrin. Geography-informed en-
ergy conservation for ad hoc routing. In MobiCom, 2001.

[28] W. Ye, J. Heidemann, and D. Estrin. An energy-efficient mac
protocol for wireless sensor networks. In INFOCOM, June
2002.

[29] C. Young and J. A. Stevens. Clique activation multiple access
(cama): A distributed heuristic for building wireless datagram
networks. In MILCOM, 1998.

[30] O. Younis and S. Fahmy. Distributed clustering in ad-hoc sen-
sor networks: A hybrid, energy-efficient approach. In INFO-
COM, 2004.

