
A Dependability Analysis of Hardware-Assisted
Polling Integrity Checking Systems

Jiang Wang, Kun Sun, Angelos Stavrou

Center for Secure Information Systems,

George Mason University Fairfax, VA 22030

{jwanga, ksun3, astavrou}@gmu.edu

Abstract

Due to performance constraints, host intrusion detection

defenses depend on event and polling-based tamper-proof

mechanisms to detect security breaches. These defenses mon-

itor the state of critical software components in an attempt

to discover any deviations from a pristine or expected state.

The rate and type of checks depend can be both periodic and

event-based, for instance triggered by hardware events.

In this paper, we demonstrate that all software and

hardware-assisted defenses that analyze non-contiguous state

to infer intrusions are fundamentally vulnerable to a new

class of attacks, we call “evasion attacks”. We detail two

categories of evasion attacks: directly-intercepting the defense

triggering mechanism and indirectly inferring its periodicity.

We show that evasion attacks are applicable to a wide-range

of protection mechanisms and we analyze their applicability

in recent state-of-the-art hardware-assisted protection mecha-

nisms. Finally, we quantify the performance of implemented

proof-of-concept prototypes for all of the attacks and suggest

potential countermeasures.
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I. INTRODUCTION

In the past few years, we have experienced a shift in the

design of the security defenses towards protection mechanisms

that assume that an adversary is capable of penetrating into

even the most well-guarded systems. Novel defenses include

host-based intrusion detection systems that are often build

using technologies that operate using either polling or event-

driven tampering checks [1], [2], [3]. In addition, there are

systems that employ hardware-assisted checks offering both

better performance and security guarantees. For instance,

System Management Mode (SMM), an x86 CPU mode present

on all modern processors, has also been employed as the basis

to form defenses. Recently, many efforts, including Hyper-

Guard [4], HyperCheck [5], and HyperSentry [6], utilize the

SMM to monitor the integrity of critical software components

including hypervisors and operating systems.

The goal of host intrusion detection systems is to identify

illegal modification to any portion of the monitored software

state. Current research primarily focus on how to reliably

acquire and quickly process the state snapshot including using

virtual machine monitor, PCI card, or PCI card plus SMM of

x86 CPU. Tampering checks can be triggered by hardware or

software events including timers and interrupts.

In this paper, we demonstrate that all software and

hardware-assisted defenses that rely on non-contiguous state

to infer intrusions are by design vulnerable to a new class

of attacks that we refer to as “evasion attacks”. Such attacks

can avoid detection by removing all attack evidence before

the integrity checks are initiated while resuming the malicious

code after the integrity checks are completed. Our analysis is

two-pronged and aims to answer the following questions:

• What are the potential ways for an adversary to evade an

event or polling-based integrity checking system?

• Can we prevent all classes of evasion attacks?

In pursuit of answers to the above questions, we show that

an adversary can detect the triggering event of the tampering

checking system by either directly intercepting the system

invocation or by indirectly inferring it using measurable timing

characteristics. In the first case, the attacker can modify the

flow of the triggering system by placing his/her code as a

preamble to hardware or software events. The invocation of

defense system can also be detected indirectly by measuring

the time spent outside of the hypervisor (or general operating

system kernel). To achieve this, the adversary can rely on hard-

ware timers that remain active or other timing characteristics

that are immutable. For example, the SMI detector [7] can

measure the time elapsed outside of the hypervisor or the

general kernel, and infer the presence of SMM. We show how

an attacker can exploit this information to successfully launch

an evasion attack.

Naturally, the next step is to determine how evasion attacks

can be prevented. To this end, we evaluate several defense

mechanisms that can prevent both types of evasion attacks.

One is to hide the time spent in the tampering system (i.e.,

make the timer inaccessible or compensate for the time spent

during checks). A second potential solution is to minimize and,

at the same time, randomize the scan/polling interval. Third,

the defense system can be enriched with code that attempts

to detect the evasion attacks by scanning specific registers

looking for code that intercepts its invocation. We compare

all of these defense strategies and evaluate their effectiveness



in mitigating evasion attacks. Furthermore, we study the

performance overhead of attacks and countermeasures through

implementation of proof-of-concept prototypes, which we run

on unmodified commodity x86 hardware.

In summary, we make the following contributions:

1) Provide a systematic analysis of different classes of

evasion attacks that directly affect the dependability of

the host-based intrusion detection systems.

2) Implement working prototypes that demonstrate various

evasion attacks and quantify their effectiveness.

3) Develop defense mechanisms to curtail evasion attacks.

4) Measure the performance overhead and detection rate of

different evasion attacks on commodity hardware.

The rest of this paper is organized as follows. Section II

gives out some background knowledge on polling systems

including recent SMM and SMI. In addition, it explains the

design of current polling-based system using examples from

hardware-assisted SMM-based systems. We describe various

kinds of evasion attacks against these systems in Section III.

Section IV contains the defense mechanisms for various

attacks. We present the experimental results in Section VI.

Related works are discussed in Section VII. We conclude the

paper in Section VIII.

II. BACKGROUND

We are primarily focusing on recent hardware assisted host

intrusion detection systems including System Management

Mode (SMM)-based integrity checking systems. However, we

posit that the analysis presented applies directly to all pure

software, hardware, or hardware-assisted integrity checking

systems that acquire and process a non-contiguous view of

the monitored software. The use of SMM is used to illustrate

the problem and in lieu of the recent research prototypes that

employed SMM as a hardware root of trust and state snapshot

mechanism.

SMM was first introduced in the Intel386 SL and Intel486

SL processors. It became a standard IA-32 feature in the

Pentium processor [8]. SMM is a separate x86 processor

mode from protected mode or real-address mode. The original

purpose of SMM was to provide a transparent mechanism

for implementing platform-specific functions, such as power

management and system security. The processor enters SMM

when the external SMM interrupt pin (SMI#) is activated, or

when an SMI is received from the APIC.

In SMM, the processor switches to a separate address space,

referred to as System Management RAM (SMRAM). All hard-

ware context of the current processor running code is saved

in SMRAM. The CPU, being in SMM, then transparently

executes code that is usually a part of BIOS and resides in

SMRAM. The SMRAM can be rendered inaccessible within

other CPU operating modes. Therefore, it can act as trusted

storage that cannot be accessed by any device, or even by the

CPU when it is not in SMM mode.

SMM cannot be accessed or modified by hypervisors or

by operating systems that run in protected mode; SMM is

currently used for hypervisor integrity checking, which can

verify that the code of the hypervisor or of the operating sys-

tem software has not been compromised by malicious code [5],

[6]. Figure 1 presents a typical model for SMM-based integrity

checking. When the processor receives a System Management

Interrupt (SMI) event, it will switch from Protected Mode to

System Management Mode (SMM). The integrity checking

code is then run to verify that the hypervisor or operating

system has not been compromised. When rsm instruction

is executed, the processor switches from SMM to Protected

Mode, where the processor will resume its execution path.

All of the SMM-based systems must follow three steps.

First, they must use some kind of SMI event to trigger SMI.

Second, they must run some SMI handler code while in SMM.

Third, since the operating system is suspended during SMM,

they must run in a short time, and then exit from SMM.

HyperSimple is a sample SMM-based integrity checking

system. A kernel module installed in the operating system

writes randomly to the 0xB2 port to trigger an SMI. Then, an

SMI handler code checks the integrity of the operating system

kernel code and static data. HyperGuard [4] is the first SMM-

based integrity checking system. It uses a hardware timer to

periodically trigger SMI. Then, the SMI handler code checks

the hash of most privileged software code running in protected-

mode, whether it is an operating system or a hypervisor. Hy-
perCheck [5] uses a PCI network card to periodically trigger

SMI. This ensures that the same SMI cannot be triggered by

the adversary. The SMI handler code scans the static part

of the kernel and sends the data out to a remote server.

HyperSentry [6] is the most recent SMM-based integrity

checking system. It uses the Intelligent Platform Management

Interface (IPMI) and baseboard management controller (BMC)

presented on the server computers to periodically trigger SMI.

III. THREAT MODEL

In a nutshell, an evasion attack attempts to take over

a hypervisor or an operating system. Unlike regular attack

methods, however, the malware is equipped with functionality

to evade detection by carefully removing “all” attack traces

before the polling-based integrity checking defenses examine

the system. After the checks, the malicious code reloads itself

to the system and continues its execution. An adversary can

launch evasion attacks to maintain persistent control of the

compromised system, even if the system is protected by a

certain polling-based integrity checking mechanism.

We assume the process of initial compromise is not detected

by the integrity monitor or tampering detection mechanism.

This is highly possible considering that the current integrity

monitors run only once for several seconds, and that com-

promising the hypervisor may take just a few instructions.

Evasion attack can be accomplished using the following two

mechanisms: either directly intercepting the triggering mech-
anism of the polling system or indirectly deriving the events
or periodicity of polling. Directly intercepting the triggering

event means that the adversary can intercept or disable and

then reissue the triggering event to hide the malicious activities



Fig. 1. Polling-based System Integrity Checking: the System State is Inspected Only While in SMM.

Fig. 2. Directly Intercepting SMI. Fig. 3. Launch of attacks between two SMIs.

from being detected during checking. For instance, SMM-

based systems HyperSimple and HyperCheck are both vulner-

able to these attacks. Indirectly deriving the polling intervals

can be preferable when the adversary cannot perform a direct

interception and, as an alternative, tries to use system resources

(e.g., timers) to derive the time properties of the polling

mechanism and hide the malicious activities. HyperGuard and

HyperSentry are also vulnerable to these attacks. Moreover, we

discuss how to launch evasion attacks to randomized polling

and tamper-checking mechanisms. From this point onwards,

we demonstrate the evasion attacks on SMM-based systems

although the same techniques apply for any polling or even

event-based tampering mechanism that relies on the same or

similar functionality to operate. This includes requirements for

polling, triggering, and periodic checking of specific properties

of the system.

A. Type I: Directly Intercepting the Triggering Events

Figure 2 illustrates how an adversary directly intercepts

SMI and launches evasion attacks. We assume that (1) the

hypervisor or the operating system has been compromised, and

(2) the adversary has root-level privileges. To intercept SMI

and launch an evasion attack, the adversary needs to locate

the invocation of SMI and modify the code before and after

SMI.

In Step 1, the code before SMI recovers the system to the

‘clean’ state, except for the malware reloading part, and then

triggers SMI. One round of SMM-based integrity checking is

executed from Step 2 to Step 5. The attacker need not change

anything between Step 2 and Step 5. In Step 6, the code after

SMI will reload the malicious code to compromise the system

again, and the original execution path then continues in the

protected mode.

1) Attack Scenarios: We assume that an attacker can iden-

tify the SMI-triggering event by investigating the details of

the SMM-based integrity-checking mechanisms or the simple

enumeration of the potential SMI-triggering events. Most SMI-

triggering events can either be intercepted (e.g., written to an

0xB2 port) or rerouted (e.g., a PCI device-triggered SMI). This

section focuses on the SMI events that can be intercepted

or rerouted by the attacker; for those events that cannot be

intercepted or rerouted, the attacker can launch the indirectly-

deriving SMI evasion attacks, as detailed in Section III-B. This

section also considers two attacking scenarios that focus on

whether or not the attacker has the capability to reissue the

same SMI event as the intercepted SMI event.

Scenario 1: An attacker cannot reissue the same SMI
triggering event as the intercepted one.
In HyperCheck [5], the SMI-based integrity checking is trig-

gered by a PCI network card, which makes it difficult for

an attacker to retrigger the same SMI. To do so, the attacker

would need to find the MAC address of the network card

used by HyperCheck and then use another computer to send



an authenticated packet to that network card. However, the

attacker can reroute the PCI interrupt to a normal interrupt

and then invoke SMI by writing to the 0xB2 port.

Interrupt rerouting is possible in HyperCheck because PCI

interrupt is configurable through a register. A compromised

hypervisor can write to the register and change the original

SMI interrupt to some normal interrupt controlled by the

attacker, and then trigger SMI by other means, such as writing

to port 0xB2. The details are discussed in Section V-B1. Since

PCI-based SMI and port-writing SMI will trigger different

SMI events, this attack can be easily detected if the SMM

code checks the reason for triggering SMI, which has been

implemented in HyperSentry [6].

Scenario 2: An attacker can reissue the same SMI trigger-
ing event as the intercepted one.
If SMM code checks the reason for triggering SMI, the

attacker must retrigger the same SMI event after disabling the

SMI or rerouting the SMI to a normal interrupt. Otherwise, the

integrity mechanism will notice the loss of reports from SMI

and launch further investigation. If the attacker can trigger

the same SMI event, it is difficult to find out whether the

SMI is triggered normally or has been intercepted and then

retriggered. For HyperSimple, the SMI is triggered by writing

to the port 0xB2; an adversary can easily reissue this event. To

locate the invocation of the SMI, the attacker can search the

following signature of the code that writes to the port 0xB2.

b0 ff mov $0xff, %al
e6 b2 out %al, %0xb2

The machine code for the instructions given above is 0xb0,

0xff, 0xe6, 0xb2. Therefore, the attacker can search the

memory for this machine code. The attacker replaces the last

instruction before SMI-triggering address with one that jumps

to the code that recovers the system to its clean state, then

appends the “last instruction” to the code before it jumps back

to trigger the SMI by writing to the port 0xB2. Similarly, the

attacker replaces the instruction following the SMI-triggering

address with another jump instruction. Replacing one or two

instructions with a jump is a “standard” hacking technique,

the details of which can be found in [9].

B. Type II: Indirectly Deriving Periodicity

If the SMI-triggering events cannot be intercepted, rerouted,

or reissued, the attacker cannot successfully launch direct-

interception SMI attacks. However, an attacker can still in-

directly derive the SMI time information using other sources,

such as hardware timers. If an attacker knows the initial SMI

time, SMM duration, and SMI interval, he/she can launch

evasion attacks in a time period between two SMIs, as shown

in Figure 3. After one SMI ends, the attacker reloads the

malicious code to compromise the system. At some time

before the next SMI, the attacker cleans up the attack traces.

An attacker follows three steps to derive SMI time infor-

mation. First, the attacker checks whether or not the system

integrity is protected by SMM. Second, the attacker finds out

the SMI duration and whether it is triggered periodically or

randomly. Third, the attacker learns the start and end times

of SMIs. With this knowledge, an attacker can clean up and

reload the malicious code directly before and after the SMI

event. We refer to the component that derives SMI time

information as the SMI detector.

1) Presence of Triggering Events: All x86 microprocessors

include a CLK input pin, which receives the clock signal of

an external oscillator. Starting with the Pentium, many recent

x86 microprocessors include a 64-bit Time Stamp Counter

(TSC ) register that can be read by means of the rdtsc
assembly language instruction. This register is a counter that

is incremented at each clock signal. For example, if the clock

ticks at 400 MHz, the Time Stamp Counter is incremented

once every 2.5 nanoseconds.

The basic idea of an SMI detector is to occupy the CPU for

configurable amounts of time, poll the Time Stamp Counter

(TSC) register for some period, and then look for gaps in

the TSC data. Because SMI has the highest priority, the SMI

detector (which runs in protected mode) is frozen in SMM. As

the TSC timer continues to run, any gap indicates the polling

was interrupted, and the only reason for this would be an

SMI [7].

An SMI detector may detect the existence of SMI in many

ways. Figure 4 illustrates one example. In the time period

TD, the SMI detector checks the Time Stamp Counter every

Td + TDI , where Td is the duration time for one counter

checking process and TDI is the time interval between two

counter checking processes. During TD, if SMI occurs, Td or

TDI will be dramatically increased by the delay. Thus, the

SMI detector becomes aware of the presence of SMI.

SMI may be triggered by other non-integrity checking

events, such as power management events; however, such

events seldom occur. During a set time period, if the SMI

detector observes that the system enters SMM mode multiple

times, it knows that the system is protected by SMM.

2) Detect Polling Duration and Interval: To launch an

indirect evasion attack, an attacker must know the SMM

duration and interval, as well as whether the SMI is triggered

periodically. An attacker can either run the SMI detector

continuously for a time period long enough to capture several

sequential SMIs, or else run the SMI detector for a short

time and wait for a constant (or random) amount of time

before running the SMI detector again until a number of SMIs

are captured. Both methods can derive the time duration and

interval for a periodic, SMM-based checking mechanism. The

continuous SMI detector can determine SMM duration and

interval in less time than the random SMI detector. However,

since it disables all other interrupts during its detection period,

it has a higher system overhead and increases the chances of

being detected by defenders.

Method 1: Continuous SMI Detector. Figure 5 shows how

continuous SMI detectors determine the interval and duration

of SMMs. TSMM is the time duration of SMM, and TSI is

the time interval between two SMIs. Td + TDI is the time



Fig. 4. Detecting the invocation of SMI: TD denotes the detection duration while we check the Time Stamp Counter every Td + TDI , where Td is the
duration time for one counter checking process and TDI is the time interval between two counter checking processes.

Fig. 5. Measuring the SMM duration(TSMM ): TSI is the time interval between two SMIs. Td + TDI is the time delay between two counter polling
processes when the system is not in SMM mode. ta is the last polling time before the system enters SMM; tb is the first polling time after the system exits
SMM.

delay between two counter polling processes when the system

is not in SMM mode. ta is the last polling time before the

system enters SMM, and tb is the first polling time after the

system exits SMM. tb − ta is the time delay between the two

continuous polling processes when the system runs in SMM.

In SMM, the TSC counter continues to increase, and the SMM

detector cannot read the counter value until the system exits

SMM. Therefore, tb−ta is much larger than Td+TDI , allowing

us to derive the SMI duration TSMM = tb − ta − Td − TDI .

Supposing that tc is the time when the system exits the next

round of SMM, we can obtain the SMI interval TSI = tc −
tb − TSMM . SMM interval time TSI is typically much larger

than the SMM duration TSMM due to the high overhead in

SMM. Moreover, we know the SMI will be triggered at times

ta+n∗(TSI+TSMM ), where n is the round number of SMM.

Method 2: Random SMI Detector. Continuous SMI detector

may introduce high overhead because the SMI detector occu-

pies all of the CPU in order to keep Td small. In a worst-case

scenario, this may cause the operating system to hang. Another

method that detects SMI interval with low CPU overhead is

to check SMI for a short time and then sleep for a random

period, as shown in Figure 4. This method will miss some

SMIs; however, if the SMI detector can run for a long time,

the attacker can determine that the SMI interval is equal to

the minimum SMI interval being detected. For example, if an

SMI detector checks for a period of time and finds 4 SMIs,

and the interval between the first and second SMIs is 10s, the

interval between the second and the third SMIs is 5s, and the

interval between the third and the fourth SMIs is 15s, then the

SMI detector can determine that the SMI interval should be 5

seconds, given that it has run for a while.

After deriving the periodical SMI time information, the SMI

detector finishes its job and quits. This means that the SMI

detector is used only once and is difficult to be detected by

defenders.

C. Type III: Avoiding Random Polling

For periodical integrity checking, an attacker can detect the

SMI time information, clean up the attack space before the

system enters SMM, and reload the malicious code after the

system exits SMM. However, since the attacker cannot derive

the next initial time of SMI, this does not work for random

SMI integrity checking.

To attack randomized SMI, if an attacker can detect when

the system will exit SMM mode, it may immediately reload

the malicious code, perform a short task (e.g., send out one

packet), and clean up the attack traces. The rationale is that

the attacker does not know when the next SMI will occur;

he/she, however, knows when the SMI will not occur. That is

to say that a short time interval must exist between two SMIs.

To be more specific, the following requirements must be

satisfied for this attack to be successful. First, the attacker

should be aware of when the system will exit SMM. This

information can be discovered if the SMI detector is running



and reading the TSC counter at all times. An attacker can also

capture some of the events that signal when the system exits

SMM.

Second, the attacker should verify that the system will

not enter SMM twice in a very short time. This is true

because (1) frequent SMIs will increase the system overhead

dramatically and block all other operations, and (2) regardless

of which pseudo-random number generator is used to generate

the next time interval, there is a lower threshold involved, and

the probability for generating a small time interval is low.

Moreover, an attacker could disable or reroute the SMI before

the attack ends.

Third, the attacker’s action should be quick in order to finish

the current attack before the next SMI. The time involved

varies for different attack scenarios. For example, an attacker

may divide a large task into many small tasks that can be

finished within a short time. This may limit the number of

attacks that can be launched. Moreover, the attacker must be

able to avoid the detection of evasion attacks, which we will

discuss in section IV-B.

In addition, one limitation of this attack is that it may still be

captured by the defender. Since the attacker does not know the

minimum interval between two SMIs, he/she can only guess

and try to perform the attack as quickly as possible. If the

minimum interval occurs and is smaller than his/her guess,

the attack will be detected.

IV. DEFENSE STRATEGIES

We propose two defensive strategies: (1) preventing evasion

attacks from occurring, and (2) detecting evasion attacks

that exist within the system. If the defender can break the

assumptions of evasion attacks, such as by hiding the SMI

triggering events or by triggering SMI randomly, he/she can

prevent or mitigate some of the evasion attacks. This strategy

is effective towards preventing Type I (Directly Intercepting

SMI) and Type II (Indirectly Deriving Periodic SMI) attacks,

but not Type III (Avoiding Random SMI) attacks. On the other

hand, if the defender can generate the signature of the SMI

detector or discover the extra overhead of the SMI detector,

he/she can detect the evasion attacks, including Type III.

A. Preventing Evasion Attacks

Type I evasion attacks can be prevented if attackers cannot

detect, intercept, and reroute the SMI triggering events for

SMI-based integrity mechanisms. Type II evasion attacks can

be prevented by compensating time counters in SMM or by

randomizing the time intervals between SMIs.

1) Obfuscating Triggering Code: In Scenario 2 of a Type

I attack, an attacker can use the code signature 0xb0, 0xff,

0xe6, 0xb2 to locate the code that triggers SMI by writing

to port 0xB2.

A defender may try to obfuscate this code. For example, the

integrity monitor can add random numbers of nop (or other

similar) operations before writing the port number using out
instruction, or he/she can add some fake out instructions. In

addition, the defender could use some algorithms to generate

the port writing code dynamically. However, these techniques

only slightly increase the workload of the attacker. Since the

attacker may already compromise the OS, he/she could find

out all of the out instructions, identify those that are actually

code (not data), and then hook them. A better method for the

defender is to use hardware to trigger the SMI, such as the

PCI network card used by HyperCheck or the IPMI used by

HyperSentry.

2) Compensating Time Counters: Now consider the attacks

using TSC timers to detect SMI. Since the TSC timers will

not stop when the processor enters SMM, the SMI detector

in Type II and III evasion attacks can detect SMI and derive

SMI timing information from the TSC data. One solution is to

compensate for the time discrepancy when the processor runs

in SMM and protected mode. SMM could modify the TSC so

that the timer counter delay caused by SMM is removed. To

do so, the defender can use rdmsr and wrmsr instructions to

read and write TSC. When the system first switches into SMM,

the SMM code records the current TSC (we call it “starting

TSC”). Then, before exiting SMM, the code can modify the

TSC (we call it “ending TSC”) to be the same as or marginally

smaller than the starting TSC. In this way, the SMI detector

cannot detect the SMM by reading the TSC. However, this

must be done carefully. For example, if the ending TSC is

modified to be the same as the starting TSC, then there is

still a delay for switching from the protected mode to SMM,

which is not compensated for. The SMI detector may detect

this delay and then detect the SMI.

Evasion attacks could be prevented if the defender can mod-

ify all potential hardware resources and make them transparent

to the hypervisor or operating system when the processor

enters SMM. However, current x86 hardware does not meet

this requirement, and it is difficult to achieve cooperation from

all impacted hardware manufacturers. In addition, it is difficult

to enumerate all of the hardware components that may be used

to indirectly derive SMI information. For example, there are

many hardware timers on the system, such as Real Time Clock

(RTC), Programmable Interval Timer (PIT), High Precision

Event Timer (HPET), and ACPI Power Management Timer.

Some of them cannot be changed, even in the SMM code, so

their timers may be used by the attacker to detect the presence

of SMI.

3) Randomizing Polling Time Intervals: The most simple

and effective mechanism for defeating Type II evasion attacks

is to randomize the time intervals between SMIs. An attacker

will then be unable to predict the next occurrence of the

SMI and will fail to accurately launch evasion attacks. Since

attackers may disable or reroute SMI, the defender should be

alerted when some SMI events are missed.

When the defender carefully chooses the pseudo-random

number generator (PRNG) functions and parameters for the

minimum and maximum time intervals, he/she can help to

alleviate Type III evasion attacks. The smaller the minimum

interval is, the more difficult it becomes for the attacker to

launch Type III attacks.



B. Detecting Evasion Attacks

The defender can detect evasion attacks by searching their

attack traces. For the attacks in Scenario 1 of Type I, the SMM-

based integrity mechanism could check the SMI triggering

events and ensure that they can only be triggered by the

originally-designed events. If the SMI triggering reasons are

different, then an evasion attack can be detected.

Evasion attacks may be detected by searching the signatures

of evasion attack code in the memory. Type II and Type III

attacks require the help of SMI detectors, which reside in the

memory at the beginning of Type II attacks and throughout

Type III attacks. The code for reloading malicious code will

reside in the memory at all times; otherwise, after all of the

attacking trace is cleaned up, the attack cannot be resumed.

1) Checking for Triggering Events: HyperCheck [5] only

checks the memory integrity of the kernel and the CPU

registers; it does not check the reason for SMI being triggered.

Therefore, an attacker can disable or reroute the SMI triggered

by a PCI network card and later trigger the SMI by writing to

port 0xB2, as described in Scenario 1 of the Type I attacks.

To prevent such an attack, the SMM code should check the

SMI triggering events to ensure that it can only be triggered

by a specific SMI event. HyperSentry [6] implemented this

defense mechanism. An attacker can still disable or reroute the

SMI, but it can be easily detected due to the lack of reporting

response from the integrity-checking mechanism. However, if

an attacker can discover how to replicate the same SMI event

after rerouting the original SMI event (e.g., writing to port

0xB2), then he/she can defeat this defense mechanism.

2) Checking Kernel Module Integrity: Type I attacks can

be detected by checking the integrity of the code-triggering

SMI. For example, suppose that SMIs are triggered by writing

to port 0xB2 and that the triggering code exists in a kernel

module. To defeat SMI-intercepting attacks, the SMM code

should store a hash of the pristine kernel modules and check

their integrity during SMM. This mechanism can force the

attacker to remove the jump instruction before the SMI is

invoked to avoid being detected by the SMM. Thus, the

attacker cannot simply modify the kernel module and add two

jumps before and after SMI triggering code.

3) Detecting Polling Detector and Reloading Code: If a

defender can grasp the SMI detector or reloading codes, he/she

may generate a signature and use it to detect whether there

is any malicious code in the memory to help launch evasion

attacks. This defense mechanism has two limitations. First, the

attacker may obfuscate the SMI detector code in order to hide

the SMI detector. The attacker can use similar obfuscation

techniques as those used by defenders to obfuscate the SMI-

triggering code. It is difficult for defenders to generate a

complete set of signatures. Second, it is difficult to detect

an SMI detector implemented as a loadable kernel module

for a third-party device driver whose signature is unknown

or unavailable. Moreover, it is still a challenge to check the

integrity of the dynamic parts (e.g., stack and heap) of the

kernel.

V. IMPLEMENTATION

Initially, we implemented an SMM-based integrity checking

mechanism called HyperSimple that could be triggered by

writing to port 0xB2 or by a PCI network card. We further

coded the proof of concept prototypes for the evasion attacks

described in Section III.

A. Polling-Based Integrity

An polling-based integrity-checking mechanism usually

consists of two modules: (1) the computer status-acquiring

module and (2) the analysis module. The computer status-

acquiring module is responsible for collecting computer con-

tent and status information, such as the physical memory and

CPU registers of the protected machine, and for sending the

collected information to the analysis module, which reviews

it and validates the computer’s integrity.

We implemented a prototype of an SMM-based integrity

checking mechanism where the SMM code employs the PCI

network card to scan the physical memory of the hypervisor

or the operating system kernel, and then to send it to a remote

server. Furthermore, the SMM code reads the CPU registers

in the protected mode and verifies their integrity. The analysis

module is implemented on a remote machine. Two machines

are directly connected through a network cable. To verify the

validity of the various types of evasion attacks, our SMM-

based integrity checking mechanism could be triggered by

two different SMI events. The first event uses port 0xB2

and a kernel module. The second SMI event is hardware-

based and can be produced by the PCI network card after

receiving a packet over the network. In both cases, the time

intervals for triggering the SMI events can be configured in

our experiments.

B. Evasion Attacks Implementation

We implemented the critical components of evasion attacks,

including mechanisms to disable or reroute the SMI, SMI

detector, and malicious code reloader.

1) Disable or Reroute Triggering: An attacker can use

the stop machine run() function provided by Linux to

disable all interrupts and kernel preemptions. When the

stop machine run() is running, the attacker can take full

control of the CPU, and no other user-level programs or kernel

modules can run during this period.

Now consider the SMI activated by writing to port 0xB2.

Since the code writing to the port 0xB2 is either implemented

as a user-level program or a kernel module, it will also

be stopped. Therefore, the SMM-based integrity checking

mechanism won’t be triggered during this time period, and

the attacker can safely run the malicious code. This attack

method works well for software-triggered SMI only; the

stop machine run() functionality cannot disable the SMI

triggered by hardware such as a PCI network card.

To extend the attack to include hardware-instigated SMIs,

rather than attempting to disable the SMI triggered by PCI

network card, an adversary can reroute the SMI to a normal

interrupt that is already under his/her control. This will allow



the insertion of a preamble to the start of the SMI routine that

can be used to remove traces of the attack. But how difficult is

such an attack? It appears that someone has only to rewrite one

register to configure the interrupt type. This register is Message

Data Register [8], used by Message Signaled Interrupts, and

it is supported by PCI 3.1 and above and by PCI Express.

Bits 8, 9, and 10 of the register define the delivery mode

of the interrupt. 000 indicates fixed mode, and 010 indicates

SMI mode. The attacker can modify this register to generate a

normal interrupt then register the Interrupt Service Routine

(ISR) for this interrupt. After cleaning up any traces, the

attacker can reissue SMI by writing to port 0xB2.

2) Triggering Detector: We implement an SMI detector

prototype to detect the periodical SMIs triggered by a PCI

network card. The basic idea is shown in the following code

segment. The SMI detector measures the time interval diff
between two time readings from the TSC counter in a busy

loop, t1 and last, when all other interrupt and kernel

preemption are disabled. When there is no SMI, the time

intervals are between 10 μs and 18 μs, so we set the threshold

as 20 μs.

Since only the SMM can stop the busy loop and, in essence,

“steal” time from it, one SMI is detected when diff is

larger than the threshold. The current time is then recorded

in to the spike variable, and we can calculate the duration

and interval of SMM. Supposing that the maximum diff
is diffmax and the normal diff is diffn, then the SMM

duration is TSMM = diffmax − diffn. The SMM interval is

TSI = spike−spikelast, where spikelast is the time when the

last SMI was detected. The attacker can calculate an accurate

SMM interval only when it can identify two continuous SMIs.

s t a t i c i n t s m i g e t s a m p l e ( void ∗ d a t a )

{
. . .

s t a r t = k t i m e g e t ( ) ; /∗ s t a r t
t i m e s t a m p ∗ /

l a s t = s t a r t ;

do {
i ++;

t 1 = k t i m e g e t ( ) ;

d i f f = k t i m e t o u s ( k t ime sub ( t1 ,

l a s t ) ) ;

i f ( d i f f > smi da ta−>t h r e s h o l d )

s p i k e = t 1 ;

t o t a l = k t i m e t o u s ( k t ime sub ( t1 ,

s t a r t ) ) ;

l a s t = t 1 ;

} whi le ( t o t a l <= 1000∗ smi sample ms )

;

. . .

}
Although we could potentially keep the loop busy running

for a long time, the SMI detector relies on disabling all

interrupts except for SMI. This can cause the system to hang

if it remains running for too long. (We will later quantify the

time-frame of “long” for commodity x86 systems). Therefore,

the SMI detector cannot run continuously; instead, it creates

sampling time periods while “sleeping” in between. We define

the total time for a busy loop run, our sample duration, as

ms per sample. The time between two samples is denoted

with ms between samples. As indicated by the name, this unit

is in milliseconds. We show how these two parameters can be

adjusted to evaluate the detection performance and overhead of

the SMI detector. Due to real-time scheduling and permission

requirements, we implemented the SMI detector as a kernel

module. Although running it as a user-level process is possible,

it may not yield the same detection results due to potential

scheduling time delays and the lack of privileges. Moreover,

some hardware timers (e.g., Real Time Stamp Counter) may

be inaccessible to user-level processes.

Furthermore, the stop machine run() function in the SMI

detector disables all software and hardware interrupts aside

from hardware SMIs. Therefore, the SMI detector cannot be

used to detect SMIs triggered by software, such as writing to

port 0xB2. Instead, for a port 0xB2 writing triggered SMI,

the attacker can search the code signature in the memory.

In our experiment, we searched the code signature 0xb0,

0xff, 0xe6, 0xb2 in the kernel memory of CentOS 5.5.

We identified only one instance of the code signature, which

is the one that triggers the SMI.

3) Reload of the Malicious Code: It is challenging for an

attacker to regain control of the system after the SMI checking

is complete. The system has to be considered “untampered

with,” or else the integrity checker would have raised an

alarm. How can the attacker reinsert himself into the normal

execution? The answer to this question lies in the limitations

of the SMM in monitoring all control flow decisions inside the

hypervisor or the underlying software in general. A sophisti-

cated attacker can carefully place the attack code by altering

the control flow decision of regular programs. Such small

changes are difficult to detect. For example, return to libc

or return-oriented rootkits [10], [11] can be used to keep the

reloader stealthy. An attacker can compromise the stack of

one running process and use return-oriented attacks to ensure

that the process compromises the system again the next time

it runs. As explained in [10], [11], return-oriented attacks are

Turing-complete and can perform any functionality, including

modifying the system call tables or the Interrupt Descriptor

Tables.

VI. PERFORMANCE EVALUATION

Our experimental results show that the evasion attacks are

effective at evading the existing SMM-based integrity checking

solutions, such as HyperCheck [5] and HyperSentry [6]. In

addition, their stealthiness depends on the amount of resources

available. Finally, we show that the introduced attacks can

be detected or prevented by applying the proposed defense

mechanisms that are explained in detail in Section IV.
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In all of our experiments, we used a testbed consisting of

a Dell Optiplex GX 260 with one 2.0 GHz Intel Pentium 4

CPU and 512MB memory. Xen [12] 3.1 and Linux 2.6.18

were installed on the physical machine, and the Domain 0 is

CentOS 5.4.

A. Performance Analysis

1) System Overhead of SMI Detector: The source code

(in C) of our SMI detector is 7660 bytes. After compiling,

the size of the kernel module is 103462 bytes, but the .text

section is only 1376 bytes. Most of the remaining parts are

the kernel library called by the SMI detector. We also studied

the system overhead of the SMI detector using a Java Micro-

benchmark CaffeineMark 3.0 [13], which contains a series

of tests that measure the speed of Java programs running in

various hardware and software configurations. The score for

each test is proportional to the number of times the test was

executed, divided by the amount of time taken to execute the

test. Since CaffeineMark uses an internal scoring metric, it is

useful only for relative comparisons.

Figure 6 shows the execution results. The Sieve test is the

classic sieve of Eratosthenes that finds prime numbers. The

Loop test uses sorting and sequence generation to measure

the compiler optimization of loops. Logic tests the speed

of executing decision-making instructions. String tests string

concatenation and search. The Method test executes recursive

function calls. The Float test simulates a 3D rotation of objects

around a point. The Overall Score combines the scores of all

of the tests.

In our experiments, the PCI network card triggered the

SMI every 10 seconds. We adjusted two parameters: the SMI

sampling duration (ms per sample) and the SMI sampling

interval (ms between samples). Figure 6 shows results for the

settings where ms per sample was set to 20 or 200 ms and

ms between samples were set to 2, 20, or 200. For example,

20:200(R) means that the SMI sampling duration was 20 ms,

and the 200(R) means that the SMI sampling time interval was

TABLE I
SYSTEM OVERHEAD OF SMI DETECTOR

Sampling 2:2 2:20 2:20(R) 2:200(R) 2:2,000(R) No SMI
Overhead(s) 2.379 2.389 2.343 2.381 2.347 2.332

set to a random value between 0 and 200 ms. (R) stands for

random.

For each setting, we ran the test 10 times, and the error

bars in Figure 6 indicate 95% confidence intervals. System

performance is at its best when no SMI detector is running; it

goes down with each increase of the SMI sampling duration,

and it goes up with each increase of the SMI sampling time

interval. These results are consistent with implementation ex-

pectations since the SMI detector disables all normal interrupts

and kernel preemption.

We also used a macro-benchmark to test the system over-

head by using the “tar” command to compress a large file.

Figure 7 shows the average time needed to finish the command

when the SMI detector runs using different settings. We ran

the SMI detector 20 times for each setting, excluding the first

two runs to remove unrelated initialization costs.

The system overhead decreases when the SMI sampling

intervals increase. When ms per sample is set to 200 ms and

ms between samples is set to 2 ms, the file compression can

be finished in 31.825 seconds, and we can see the dramatic

slowdown of the system. We also tested “2,000:2” in our

experiments, but the system halted.

Table I shows the results when we set the SMI sampling

time to 2 ms and the SMI sampling interval to 2, 20, 200,

and 2, 000 ms. The overhead was not significantly affected as

we decreased the checking intervals between SMI samples.

This means that if an attacker reduces the SMI sampling

time to a small number, this won’t have an impact on system

performance. However, increasing the checking interval will

dramatically decrease the detection probability of the SMI

events.
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2) Detection Probability of SMI Detector: Figure 8 depicts

the SMI detection probability of an SMI detector, which is

the percentage of detected SMIs among all SMIs that were

triggered within the duration of the experiment. In the case

of a 200:2 scenario, which means a 200ms running time with

a 2ms inactivity time, almost all of the SMI events can be

identified. As expected, the detection probability decreases

when the sample duration decreases and the check interval

increases. This is because, during the interval, the SMI detector

is not active and can miss the SMIs. When the duration

and interval ratio was 20:20, the randomized interval setting

detected more SMIs than the fixed interval setting. Note that

an attacker can still evade detection but at a loss of running

time; each time that his/her code runs, the probability of being

detected increases, leading to eventual detection. In all of

these experiments, the total number of SMIs is 50 in order to

maintain statistical significance and reduce experimental noise.

B. Detecting attacks

After evaluating the effectiveness of the attacks, we then

evaluated the effectiveness of the defense. Since preventing

Type I and Type II evasion attacks is straightforward, such as

by guarding the SMI triggering events, checking SMI reasons,

and using random SMIs, we focused on Type III evasion

attacks, which try to avoid random SMIs.

Type III evasion attacks can be further divided into two

subtypes. The first subtype tries to detect the return from

SMM by using the techniques similar to SMI detector and

then launches the attack. We refer to this one as “targeted

evasion attacks (TEA).” The second subtype does not detect

the return from SMM; it randomly launches an attack and

tries its luck. We refer to this as “non-targeted evasion attacks

(NTEA).” We simulated these two attack types by using two

programs written in Matlab. The results for TEA are shown in

Figure 9 and Figure 10. Both figures indicate that the detection

probability (Y axis) of the TEA increases when the duration

of the attack (X axis) increases. The value of attack duration is

based on the simulated attacks which load and unload a kernel

module and then modify one entry of the IDT. We repeated the

experiments for 100 times and average the results, which is

8 ms. Considering modifying one IDT entry only access one

register and memory location, the actual attack may access

other parts of the system and take more time. Therefore, we

expect that the attacks take more time and increase the attack

duration. The total number of tests was 4,000,000 for both

tests. The The SMM duration was set to 40ms. This duration



can be configured and we use 40ms because it is similar to

the SMM duration of HyperCheck. For Figure 9, the line with

the plus sign indicates that the SMM checking interval is a

uniform distribution between 1 to 5,000 ms; the line with

the circle sign indicates that the SMM interval is uniformly

distributed between 1 and 10,000 ms. For Figure 10, the line

with the plus sign indicates that the SMM-checking interval is

a normal distribution with a mean of 1000 (ms) and a standard

deviation 500 (ms); the line with the circle sign indicates that

the SMM interval is a normal distribution with a mean of

2500 (ms) and a standard deviation of 500 (ms). Both figures

confirm that the detection probability will increase when the

attack duration increases and the SMM interval decreases.

The results for NTEA are shown in Table II, III, IV, and

V. From Table II, we can see that the detection probability

is mostly determined by the SMM checking intervals. The

attack intervals do not affect the detection probability too

much. From Table III, we can see that detection probability

dropped linearly when the SMM checking interval increased

linearly. This differs from TEA, where the SMM is normally

distributed. In that case, the detection probability drops at

a logarithmic scale. We choose exponential(Table IV) and

Cauchy(Table V) distributions (one kind of heavy-tail distri-

bution) to reflect the real systems that may be used in the

field. Their properties are similar to the normal distribution

and the detection probability drops as the SMM checking

interval increased. The scale for Cauchy distribution is 100.

In these tests, the SMM checking duration is 40ms, and the

attack duration is 30ms. The total number of SMM checks

was 100,000.

VII. RELATED WORK

Copilot [14] and Gibraltar [15], employed PCI devices

to directly examine the physical memory. However, the PCI

device-based method is no more reliable than the SMM-based

method since the PCI devices can be manipulated to obtain a

different view. They are also vulnerable to evasion attacks. An-

other approach is to introduce in-hypervisor hooks [16], [17]

and enforce security policies between virtual machines [18],

which are hypervisor-specific and run at the same level as the

hypervisor.

Moreover, there have been many attempts to minimize the

code footprint and relying on the Trusted Computing Base

(TCB) protections for current commercial hypervisors [19],

[20], [21], [22], [23], [24]. These approaches aim to provide a

minimal layer, thus limiting the code exposure and subsequent

attack surface for the hypervisor code. However, due to

third-party driver code, they cannot offer strong guarantees

regarding the code integrity of all hypervisor components.

Protection of software integrity systems [25], [26], [4], [5],

[6] are also using polling. Among the hardware-based solu-

tions, many (e.g., HyperGuard [4], HyperCheck1.0 [5] and

HyperSentry [6]) depend on the System Management Mode

(SMM) that exists on the current x86 CPU to provide an

isolated and trusted environment. SMM is a separated CPU

mode whose memory (called SMRAM) can be locked so that

even the privileged software in the protected or real-address

mode cannot access it.

More specifically, HyperGuard [4] has suggested using

the SMM of the x86 CPU to monitor the integrity of the

hypervisors. It used a hardware timer to periodically trigger

SMI and checked the reason for SMI [27]. On the other hand,

HyperCheck [5] used SMM and a network card to detect

attacks against the hypervisor kernel. SMM was used to obtain

the CPU register context and transmit it to a network-located

console for further validation. However, HyperCheck does not

examine the cause of an SMI. Therefore, it is vulnerable to

direct SMI interception attacks and indirect evasion attacks.

In HyperSentry [6], the authors coined the term “scrubbing

attack,” which attempts to masquerade a valid SMI by trigger-

ing a software SMI. Such attacks are easy to prevent through

the use of IPMI and BMC to trigger SMI and make it difficult

for the attacker to trigger the same SMI. Unfortunately, as our

analysis in section III shows, HyperSentry is still vulnerable

to indirect evasion attacks.

VIII. CONCLUSIONS

We presented a systematic analysis of evasion attacks for

polling-based integrity monitors with specific examples of eva-

sion attacks for SMM systems. In such attacks, the adversary

can circumvent the defense mechanisms by interposing or

intercepting the defense system invocation mechanism. We

point out that evasion attacks can be accomplished either di-

rectly (by intercepting the invocation mechanism) or indirectly

(by measuring the behavior of hardware timers or predicting

the periodicity of polling). Furthermore, we implemented

these attacks using unmodified commodity x86 software and

hardware components. Our study indicates that evasion at-

tacks against defense systems are both realistic and easy to

mount. Moreover, through experimentation on our prototype

implementation, we quantified the performance overhead and

detection capabilities of evasion attacks. Finally, we discussed

potential countermeasures to mitigate the introduced threats,

highlighting the advantages and caveats that would influence

the future design of hardware-assisted monitors.
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