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This article presents a detailed description of fog computing (also known as 

edge computing) and explores its research challenges and problems. Based on 

the authors’ understanding of these challenges and problems, they propose a 

flexible software architecture, which can incorporate different design choices 

and user-specified polices. They present their design of WM-FOG, a computing 

framework for fog environments that embraces this software architecture, and 

evaluate their prototype system.
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T he explosive proliferation of ubiq-
uitously connected devices has rev-
olutionized every aspect of human 

life. However, because most end-user 
devices, such as smartphones, tablets, 
and wearable devices, have generally 
weaker CPUs, limited network connec-
tivity, less memory and storage, and so 
on, applications nowadays are usually 
backed by cloud services. Cloud com-
puting has significantly changed the 
way we leverage resources for compu-
tation, networking, and storage. It pro-
vides resources on an on-demand basis, 
saves expenditures on hardware, and 
breaks down various technical barriers. 
Resource pooling in data centers indeed 
provides more than enough resources 
for end-user devices. However, moving 
data from the edge of Internet to the 
core of Internet, where most data centers 
are located, isn’t easy, especially when 
more and more data is user-generated 

content that requires high bandwidth 
to transmit.1 In addition, unpredictable 
delays might ruin the user experience 
of delay-sensitive applications, such as 
human-computer interfaces, emergency 
services, and real-time games. While 
we believe that cloud computing will 
still be a mainstream computing para-
digm in the future, the rapid develop-
ment of Internet and pervasive mobile 
devices has called for a new computing 
paradigm that can overcome the inher-
ent drawbacks of cloud computing, such 
as unpredictable latency, bandwidth 
bottlenecks, lack of mobility support 
and location awareness, and so on. To 
this end, fog computing (also known 
as edge computing) has been proposed 
as a nontrivial extension of cloud com-
puting. By providing elastic resources 
at the edge of network, fog computing 
can better support a variety of emerging 
applications.
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Fog computing has been defined from sev-
eral perspectives;2,3 and similar concepts such as 
cloudlets,4 mobile-edge computing5 and mobile-
cloud computing6 have also been proposed. In 
our previous work,7 we defined fog computing as 

a geographically distributed computing archi-
tecture, with a resource pool that consists of 
one or more ubiquitously connected heteroge-
neous devices (including edge devices) at the 
edge of network, and not exclusively seam-
lessly backed by cloud services, to collabora-
tively provide elastic computation, storage and 
communication (and many other new services 
and tasks) in virtualization isolated environ-
ments to a large scale of clients in proximity.

Fog computing will benefit several relevant 
domains, including mobile/wearable computing,8 
Internet of Things (IoT), and big data analytics, in 
reducing latency, increasing throughput, consol-
idating resources, saving energy, and enhancing 
security and privacy.9 In IoT, fog computing can 
provide unified interfaces and flexible resources 
to accomplish heterogeneous computational and 
storage requests. In virtual reality, a 3D VR 
gaming headset has to be cable-connected to a 
high-end server for low latency on processing 
complex 3D graphics. Fog computing can fulfill 
the low-latency need for VR users in proximity, 
and can save expenditures on extra hardware. 
In big data analytics, huge volumes of data are 
generated at the edge of network. Fog computing 
supports edge analytics, which can reduce the 
delay of data analytics and decrease the cost of 
data transmission and storage.

Here, we introduce fog computing, a new com-
puting paradigm that extends cloud computing. 
Fog computing promises performance benefits such 
as low latency and quick response time in various 
application scenarios. We compare fog computing 
and cloud computing in detail, and list a number 
of research challenges and problems. Based on our 
understanding of these challenges and problems, 
we propose a flexible software architecture, which 
can incorporate different design choices and user-
specified polices. We highlight WM-FOG (WM 
standards for the College of William and Mary), a 
computing framework for fog environments that 
embraces this software architecture. We also con-
duct experiments on our prototype system to show 
that WM-FOG can work effectively and efficiently 
in real-world fog environments.

Comparisons between Fog and Cloud
There are several key differences between fog 
and cloud computing. Cloud servers are usu-
ally rack-mounted, high-end servers located in 
large, warehouse-like data centers. Centralized 
cloud servers allow for replication, load bal-
ancing, failure recovery, power management, 
and easy access to failed hardware for repair-
ing and replacement. For this reason, the reli-
ability of cloud services can be held at a high 
standard. The exact opposite can be expected 
in fog computing. Fog nodes are geographi-
cally distributed, scattered all over the edges 
of Internet, and logically decentralized in that 
they are maintained by different organizations. 
Consequently, fog nodes aren’t as reliable as 
cloud servers, and physically locating a failed 
fog node and repairing it is more difficult and 
costly. Many financial and time costs, such as 
those related to power and system configuration, 
can’t be amortized as they would be with cloud 
computing. Another key insight is that the net-
work connectivity to fog nodes cannot be guar-
anteed. An unreachable fog node can’t fulfill 
any request even if its computational hardware 
is fully functional. Simple tasks such as regular 
testing and auditing of hardware are immensely 
more complicated and costly in fog computing, 
due to the necessary coordination among differ-
ent organizations, geographical distribution of 
hardware, and unreliable network connectivity.

Scheduling tasks in fog computing is com-
plex compared with cloud computing. A fog 
computing application is typically spread over 
the client’s mobile device, one of potentially 
many fog nodes, and occasionally a back-end 
cloud server. Therefore, deciding where to 
schedule computational tasks in fog computing 
is more difficult. For cloud computing appli-
cations, the latency is usually predictable. For 
fog computing applications, however, deciding 
which fog node to use alters the latency that the 
user will experience. Besides the unpredictable 
round-trip time, slow hardware and low band-
width also affect the user-perceived latency. 
Meanwhile, some tasks, such as aggregate cach-
ing, might benefit from running in the back-
end cloud. Another problem is that it’s unclear 
where the scheduling should occur. Entrusting 
the client devices to perform the scheduling 
opens the possibility of malicious users abus-
ing the system. Fog nodes might act selfishly 
or might not always be aware of tasks running 
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on the client devices. The back-end cloud might 
introduce unnecessary latency to the schedul-
ing program. In short, in fog computing, more 
factors must be considered in deciding where 
and when to schedule tasks to provide the best 
user experience.

Fog nodes are maintained independently by 
many different organizations, which is in sharp 
contrast to the back-end cloud owned and main-
tained by a single organization. This means that 
fog nodes can’t be trusted as easily as cloud 
servers. Users can more easily trust cloud com-
puting because the organizations that provide 
cloud services are well-motivated to invest in 
resilient security and privacy measures. Fog 
computing, on the other hand, is implemented 
by many independent agents. These various 
owners might not maintain the same rigorous 
privacy and security standards, let alone the 
high standard fulfilled by cloud computing. As 
such, users will have a much more difficult time 
trusting different fog nodes.

Fog nodes are heterogeneous, where there’s 
no guarantee that the nodes will contain simi-
lar resources. In fact, quite the opposite can be 
expected; fog nodes, owned and maintained 
by different organizations, usually have vastly 
different RAM capacity, CPU performance, 
storage space, and network bandwidth. This is 
in sharp contrast to cloud computing, in which 
it’s common for one organization to own all of 
the cloud servers. To ease the burden of appli-
cation deployment, hardware management and 
resource sharing, cloud servers usually exhibit 
much less heterogeneity. Furthermore, fog 
nodes are smaller and less powerful than large 
cloud servers. While a cloud server might be 
one of many high-end, powerful, rack-mounted 
servers, fog nodes are usually deployed in small 
batches using desktop-class machines, repur-
posed computing appliances such as routers and 
gaming consoles, and small collections of rack-
mounted servers. Because of the heterogeneity 
and generally weaker hardware in fog comput-
ing, many of the differences we have outlined 
so far are exacerbated.

Fog computing aims to establish a new tier 
of mobile computing, in which constraints on 
energy and hardware resources can be relaxed 
by nearby fog nodes. Users can effortlessly 
offload computation to nearby fog nodes, and 
can transparently and seamlessly move com-
putation from one fog node to another. Mobility 

is a key feature of the fog computing paradigm, 
and applications deployed on fog infrastructure 
need to always take this into account. This dif-
fers from cloud computing, in which applications 
are deployed in only one cloud at a time, unless 
the need for scaling is beyond the capacity of 
a single cloud provider. A situation that’s rarely 
seen in cloud computing but might be common 
in fog computing is that users might connect to 
the network only briefly while moving. Consider 
the scenario in which fog nodes are placed along 
roadways and users temporarily connect to them 
to acquire traffic and weather conditions ahead. 
Another example is that users move from one 
fog node to another when they’re leaving their 
office and heading to a different building on a 
college or corporate campus for a meeting.

Research Challenges and Problems  
in Fog Computing
Now that we’ve compared fog and cloud com-
puting, next we discuss the challenges and 
problems in fog computing. The related work on 
the concept of fog computing includes our own 
efforts10,11,7,12 and other researchers’ work.13-15  
We refer the reader to these references for an 
integral view of the state-of-the-art on fog 
computing.

Fog computing is a novel computing para-
digm, which demands a new programming 
model. We need to design intuitive and effec-
tive tools and frameworks for developers, help-
ing them orchestrate dynamic, hierarchical, 
and heterogeneous resources to build compat-
ible applications on diverse platforms. Taking 
task scheduling and migration as an example, 
various research questions might arise. How 
can we provide a simple abstraction for devel-
opers to mark tasks that can be migrated? What 
choices and preferences should be left to users? 
How can we allow developers to specify migra-
tion rules on various devices? Furthermore, we 
should avoid forcing developers to reimplement 
functionalities that will likely be common, such 
as distributed caching, workload balancing, 
system monitoring, and so on.

Fog computing introduces a variety of new 
and interesting scheduling challenges. Because 
tasks can now be moved between different 
physical devices (that is, client devices, fog 
nodes, and back-end cloud servers), scheduling 
is much more complex. Some of the research 
questions are as follows:
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•	 For fog nodes with heterogeneous hardware, 
is it acceptable to trade energy for reduced 
latency?

•	 Should a process running on a fog node be 
interrupted when the user moves toward 
another fog node?

•	 How should tasks be scheduled considering 
latency, energy consumption, mobility, and 
existing workload?

•	 Where should the scheduling program be 
executed?

•	 What are the benefits of jointly scheduling 
tasks? 

Beside these research questions, some other 
concerns must also be taken into account. For 
example, security and privacy considerations 
are complex in fog computing, and tasks from 
sensitive applications should be scheduled on 
more trustworthy nodes. Furthermore, on tradi-
tional desktop and server machines, Completely 
Fair Scheduling dominates the landscape. For 
fog computing, however, this algorithm might 
not be ideal, as different fog nodes could have 
different hardware resources, and some tasks 
(for example, those making the users wait) 
might be more important than others (for exam-
ple, background services such as the backup/
snapshot functionality). What other scheduling 
algorithms can be used to optimize the factors 
that are important for highly mobile computing, 
such as low latency?

Data management for fog computing appli-
cations also introduces new challenges. Perhaps 
the ideal abstraction for both users and devel-
opers is a global storage, which can always be 
accessed, has an infinite size, and yet performs 
with the speed of information stored locally. 
With fog computing, this dream might finally 
be realized. However, how to implement such a 
storage system is still an open question. What 
efficient algorithms can be used to shuffle data 
among devices? How can prefetching be best 
implemented to achieve the lowest latency? What 
namespace scheme should be used? How can 
sensitive and encrypted data be cached privately 
and effectively? Furthermore, energy consump-
tion and network usage must be conserved on 
mobile devices, as they typically have energy 
limits enforced by limited battery technology 
and data limits enforced by mobile carriers.

An attractive aspect of cloud computing 
is the automatic discovery of services. As fog 

nodes differ from location to location, users can 
arrive at a new location and take advantage of 
the various services provided by the fog nodes in 
that particular location. Given that this feature 
relies on the prudent deployment accomplished 
by service developers, implementing service dis-
covery protocols in fog computing can be quite 
challenging. Moreover, service provisioning is 
usually done dynamically in fog computing; that 
is, new virtual machines (VMs) are orchestrated 
on the spot when a particular service is needed. 
This raises many research questions:

•	 When should services be started and stopped?
•	 What’s the best way to balance workload?
•	 Should VM-based or container-based vir-

tualization be used? It might even be pos-
sible to predict what services will be needed 
and provision them in advance, before users 
even arrive.

•	 What methodologies should be used to effi-
ciently provision services for hundreds, 
thousands, and millions of users?

•	 What’s the best way to split workload for 
services that aggregate information from 
nearby client devices with regard to the 
energy efficiency on the client side?

In cloud computing, data consistency can be 
achieved by coordinating the cloud servers in 
the data centers where the cloud is deployed. In 
fog computing, however, things become compli-
cated. When writing data objects in a fog envi-
ronment, it’s necessary to not only coordinate 
the back-end cloud servers, but also to invali-
date the cached data on the fog nodes as well as 
on the client devices if strong data consistency 
is needed. This might result in deteriorated 
write performance, which weakens the benefits 
of using fog nodes as the write cache servers. 
On the other hand, fog computing also provides 
opportunities of achieving data consistency 
more efficiently than cloud computing. For 
example, if the write requests on a data object 
are sent to only one fog node during a certain 
time period, which we envision is a common 
case in fog computing, the system might tempo-
rarily transfer the data object’s ownership from 
the cloud to the fog node. By doing this, data 
consistency can be achieved on the fog node, 
which promises better write performance than 
cloud computing, as the fog node resides at the 
edge of network. Nevertheless, fully exploiting  
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the opportunities of achieving data consis-
tency in fog computing is still challenging and 
requires plenty of research efforts.

Finally, and perhaps most importantly, fog 
computing and IoT have significant privacy and 
security concerns. Due to the heterogeneous 
nature of both, security and privacy are usu-
ally cast aside to achieve general functionality 
and interoperability. In other words, encryption 
and strict privacy policies make it more dif-
ficult for arbitrary devices to exchange data. 
Therefore, many manufacturers today simply 
do away with these features. Moreover, encryp-
tion algorithms and security protocols, which 
are notoriously complex, are often implemented 
or configured with mistakes, leaving sensitive 
user data exposed to attackers. This problem is 
further exacerbated by the dispersed ownership 
of fog nodes. Fog nodes are usually owned by 
different parties, such as universities, corpora-
tions, commonwealth organizations, and per-
sonal households. Some fog nodes might even 
be jointly owned by two or more parties. Users 
approaching a fog node might be weary of the 
services provided by these parties, due to their 
vastly differing motivations. As we’ve seen with 
online social networking, collection and resale 
of private user data is highly valuable to cor-
porations. Meanwhile, these parties also need 
authentication protocols to protect themselves 
against Sybil accounts, distributed denial-of-
service attacks, and other malicious activities. It 
will be important in the future to make fog com-

puting applications preserve user privacy, pro-
vide rigorous security guarantees, and address 
the needs of all the parties involved.

Exploring solutions to the aforementioned 
problems is critical in realizing the many ben-
efits promised by fog computing. It’s our goal 
in this work to expose these design choices in 
detail, so that developers can more easily fig-
ure them out in their implementations. This is 
a first step toward identifying reasonable solu-
tions to these problems.

WM-FOG Overview
Based on our understanding of the aforemen-
tioned challenges and problems, we propose 
WM-FOG, a computing framework for fog envi-
ronments. The design of WM-FOG embraces 
a flexible software architecture, which can 
incorporate different design choices and user-
specified polices. More specifically, WM-FOG 
provides a flexible way to define workflows 
that can be easily deployed and executed on 
fog-based systems. By properly scheduling the 
workflows on the system entities (that is, client 
devices, fog nodes, and back-end cloud serv-
ers), WM-FOG can take advantage of the fog 
computing paradigm and achieve considerable 
performance enhancement. Furthermore, and 
most importantly, WM-FOG provides a way to 
customize policies on the workflows, through 
which developers can help the system make 
even better use of the underlying hardware 
resources.

Workflow Examples
To define a workflow, the developer needs to 
specify its data and computation. We call the 
data data items, and the computation transi-
tions in WM-FOG. Each workflow contains one 
or more data items and zero or more transitions.

Figure 1a illustrates a simple workflow, which 
is called RawVideo. This workflow contains only 
one data item, depicted as rawData in the figure, 
and no transition. The only data item, rawData, 
represents the raw video data that the WM-FOG 
system has received from a client device.

Figure 1b illustrates a slightly more compli-
cated workflow, which is called EncodedVideo. 
This workflow contains two data items, rawData 
and encodedData, and one transition, encode. 
The encode transition takes rawData as input 
and generates encodedData as output. Clearly, 
in this workflow, the WM-FOG system receives 

Figure 1. Workflow examples. (a) The RawVideo 
workflow. (b) The EncodedVideo workflow. (c) 
The TemperatureDistribution workflow.
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raw video data from a client device, encodes it, 
and stores the encoded data for future use.

Figure 1c illustrates a workflow involving 
multiple writers, which is called Temperature-
Distribution. Suppose there are N fog nodes 
covering different regions, and each fog node 
has a number of temperature sensors deployed 
in the region that it covers. Each temperature 
sensor continuously uploads the ambient tem-
perature data to the fog node it belongs to, and 
the fog node in turn forwards the data to the 
back-end cloud. The cloud receives data from 
the N fog nodes, merges them, and stores the 
merged data for future use.

System Architecture
Figure 2 depicts the architecture of WM-
FOG. There are four layers in the figure. The top  
layer is the application layer, where user appli-
cations reside. User applications initiate work-
flow instances by writing input data to them, 
and receive results by reading output data from 
them. The next layer is the workf low layer, 
where workflow instances reside. Each work-
flow instance exposes a data access interface  
to user applications, through which its data items  
can be accessed. Moreover, each workflow instance  
has four proxies, that is, the entity proxy, locking  
proxy, caching proxy, and scheduling proxy. 
These proxies can be used to implement user-
specif ied policies on workf lows. Under the 
workflow layer is the system layer, where the 
system components — that is, the system moni-

tor, lock manager, cache manager, and work-
flow engine — reside. These system components 
implement the fundamental mechanisms of 
WM-FOG, and workflow instances can com-
municate with them through the proxies to 
apply user-specified policies. The bottom layer 
is the entity layer, as the system entities (client 
devices, fog nodes, and the cloud) reside in this 
layer.

Customizing Workflow Policies
WM-FOG provides a workflow-defining lan-
guage for developers. More specifically, devel-
opers can specify the data items and transitions 
for each workflow they’re defining through 
this language. Furthermore, they can selec-
tively implement the callback functions of the 
data items and transitions to define their own 
policies. To define a policy on a workflow, the 
developer is supposed to invoke the workflow’s 
proxies in the callback functions, informing 
the system components of her suggestions on 
how to handle the workflow under various con-
ditions. Note that the developer can only pro-
vide her suggestions, but not control the system 
components’ behavior.

Implementing synchronization policies. A devel-
oper can implement her own synchronization 
policy on a data item by programming its call-
back functions. In these callback functions, the 
developer is supposed to invoke the workflow’s 
caching proxy to communicate with the cache 

Figure 2. WM-FOG software stack. The top layer is the application layer, where user 
applications reside. The next layer is the workf low layer, where workf low instances reside. 
Under the workf low layer is the system layer, where the system components reside. The 
bottom layer is the entity layer, where the system entities (client devices, fog nodes, and the 
cloud) reside.
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manager, providing her suggestions on how to 
synchronize the data item.

For example, suppose the developer who 
has defined the RawVideo workflow shown in 
Figure 1a has implemented a synchronization 
policy on the rawData data item, which eagerly 
synchronizes the first 20 Mbytes of data to the 
back-end cloud, while keeping the remaining 
part of data on the fog node and synchronizes 
it lazily. By doing this, user applications that 
read the data item can get served immediately. 
Meanwhile, the caching manager will spon-
taneously synchronize the remaining part of 
the data when the system has spare hardware 
resources, guaranteeing that the data item can 
be fully synchronized as soon as possible. This 
synchronization policy has the same effect on 
serving read requests as the default synchro-
nization policy, which eagerly synchronizes 
the whole data item to the back-end cloud, but 
imposes less burden on the system, which is 
critical when the system is handling a burst of 
workflow requests.

Implementing locking policies. A developer can 
implement her own locking policy on a data 
item by programming its callback functions. In 
these callback functions, the developer is sup-
posed to invoke the locking proxy of the work-
flow to communicate with the lock manager, 
providing her suggestions on how to manage 
the locks on the data item.

For example, the rawDataI data items (I = 
1, 2, …, N) shown in Figure 1c are written by 
multiple writers (that is, temperature sensors). 
Suppose the rawData1 data item can be written 
by only one writer at any time, which requires 
a locking mechanism to coordinate the write 
operations upon it. A simple way of implement-
ing such a locking mechanism is to maintain 
a write lock for the data item in the back-end 
cloud. Before a writer writes the data item, it has 
to acquire the write lock from the cloud, while 
after the data item has been written, the writer 
needs to return the write lock to the cloud. 
Using the cloud as the centralized lock server is 
necessary when different writers try to acquire 
the same write lock from different fog nodes. 
However, as previously described, the rawData1 
data item will only be written by temperature 
sensors belonging to the same fog node. In such 
a case, using the cloud as the centralized lock 
server will impose unnecessary overhead on the 

write operations. The developer can invoke the 
lock proxy in the data item’s callback functions, 
informing the lock manager that she suggests 
the write lock be maintained on the fog node 
rather than in the cloud. By doing this, the lock 
manager will try to maintain the write lock on 
the fog node, which can improve the write per-
formance on the data item in most cases. Note 
again, however, that the developer can’t really 
control the lock manager’s behavior — that is, if 
the lock manager considers that the write lock 
should be maintained in the cloud, it will do 
so, rather than unconditionally following the 
developer’s suggestion.

Implementing migration policies. When defin-
ing a transition, the developer needs to spec-
ify its input data items as well as their trigger 
thresholds. For example, the encode transition 
shown in Figure 1b has only one input data 
item, rawData. Suppose the developer has speci-
fied that the trigger threshold of the rawData 
data item is 1,024 Kbytes when defining the 
encode transition. In such a case, the workflow 
engine will automatically invoke the onTrig-
ger() callback function of the encode transition 
whenever the rawData data item has enqueued 
1,024 Kbytes of data. The onTrigger() callback 
function is the place where the developer imple-
ments the transition’s main logic.

The execution of the onTrigger() callback 
function is atomic in WM-FOG. In other words, 
the workflow engine might migrate a transi-
tion between two consecutive executions of the 
onTrigger() callback function, but will never do 
so during its execution. Data that needs to be 
transferred in a migration should be defined as 
member variables of the transition. The devel-
oper should also provide the getter and setter 
functions for these member variables.

A developer can implement her own migra-
tion policy on a transition, by programming 
its callback functions excluding onTrigger(). In 
these callback functions, the developer is sup-
posed to invoke the scheduling proxy of the 
workflow to communicate with the workflow 
engine, providing her suggestions on when and 
how to migrate the transition.

For example, the encode transition shown 
in Figure 1b should be triggered mainly on fog 
nodes. This is because the WM-FOG system 
can leverage the computational power of fog 
nodes to achieve better performance, given that 
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the encode transition has a good compression 
ratio. Nevertheless, it might be unreasonable 
to always trigger the transition on fog nodes, 
especially when they’re fully loaded. For this 
reason, the developer might implement a migra-
tion policy on the encode transition, informing 
the workflow engine that she suggests migrat-
ing the transition to the back-end cloud if the 
fog node cannot execute it in 5 seconds. By 
doing this, some workload on fully loaded fog 
nodes can be offloaded to the back-end cloud, 
and the overall system performance can thus be 
improved.

Evaluation
Here, we give some preliminary results to show 
that WM-FOG can leverage the fog computing 
paradigm to enhance the system performance 
when handling workflow tasks (that is, work-
flow instances).

Testbed Setup
We build a testbed for our experiments. The 
testbed consists of five servers, one of which 
is more powerful than the others. We use 
the more powerful server as the back-end 
cloud server, while using the others as fog 
nodes. The cloud server has an 8-core Intel 
i7 CPU with a clock speed of 4.00 GHz and 
16-Gbyte main memory. Each fog node has 
a 4-core CPU with a clock speed of 2.83 GHz 
and 4-Gbyte main memory, and directly con-
nects to the cloud server through a 1,000 
megabits per second (Mbps) network link. To 
simulate a real-world fog environment, we set 
the upper bound of the network bandwidth 
between each fog node and the cloud server 
to 40 Mbps, and the latency to 10 ms (that is, 
the round-trip time is 20 ms), according to the 
results reported by Shanhe Yi and colleagues.7 
Then we deploy our first-step implementation 
of WM-FOG on this testbed.

Benefits of Using Fog
We first evaluate to what extent fog comput-
ing can help when handling WM-FOG work-
flow tasks. To this end, we simulate a scenario 
in which the RawVideo workflow tasks shown 
in Figure 1a are handled by our system. Each 
RawVideo task has a total data size of 200 
Mbytes, and we send it from the client device to 
the fog node at a transmission rate of 8 Mbps. On 
each fog node, the arrival intervals of RawVideo 

tasks follow a normal distribution with a mean 
of 10 seconds and a variance of 4 sec2. We cache 
the 200-Mbyte rawData of each RawVideo task 
on the fog node, while synchronizing only the 
first n Mbytes of data to the cloud. The value of 
n varies from 0 to 200 in our experiments.

Figure 3 illustrates the latency results, the 
throughput results, and the network usage 
results of these experiments. From these results, 
we can see that a smaller synchronization size 
(that is, n Mbytes) produces shorter latency, 
higher throughput, and lower network usage. 
Despite the fact that the synchronization size 
can’t be too small for providing seamless data 
accessing services, these results demonstrate 

Figure 3. Performance measurements of 
using fog: (a) latency results, (b) throughput 
results, and (c) network usage results. From 
these results, we can see that a smaller 
synchronization size produces shorter 
latency, higher throughput, and lower 
network usage.

0

40

80

120

160

0
(a)

(b)

(c)

50 100 150 200

La
te

nc
y 

(s
ec

)

Synchronization size (Mbytes)

0

5

10

15

20

25

30

0 50 100 150 200
N

um
be

r 
of

 t
as

ks
 (

/m
in

)

Synchronization size (Mbytes)

 0

 10

 20

 30

 40

 50

0 50 100 150 200

N
et

w
or

k 
us

ag
e 

(M
bp

s)

Synchronization size (Mbytes)



Fog Computing

52 www.computer.org/internet/ IEEE INTERNET COMPUTING

the benefits of using fog computing in WM-
FOG, as tuning the synchronization size is only 
possible in fog environments.

WM-FOG Performance
WM-FOG makes decisions on how to handle 
workflow tasks based on the default poli-
cies and suggestions from developers. In other 
words, the default policies are part of the fun-
damental mechanisms of WM-FOG, which are 
supposed to provide graceful performance for 
fog environments.

To evaluate how well our prototype system 
works, we conduct two experiments. We use 
only one fog node and the cloud server in these 
experiments. Once again, we simulate the sce-
nario in which 200-Mbyte RawVideo tasks are 
handled by our system. A user-specified policy 
that at least the first 20 Mbytes of rawData 
should be eagerly synchronized to the cloud 
is applied to the RawVideo tasks. In the first 
experiment, we disable the default synchroni-
zation policy, so that only the user-specified 

policy is enforced. In the second experiment, 
we enable the default synchronization policy, 
so that the system monitor can monitor the 
network usage of the fog node. If the system 
monitor detects that there is a spare network  
resource between the fog node and the cloud, it 
informs the cache manager, which in turn tries 
to synchronize more data for the RawVideo 
tasks.

Figure 4 illustrates the synchronization size 
results and the network usage results of these 
experiments. Clearly, when the default synchro-
nization policy is enabled, the system makes 
better use of the network resource, and thus the 
burden of fully synchronizing the RawVideo 
tasks in the future is reduced. These results 
demonstrate that WM-FOG is an efficient com-
puting framework for fog environments.

I n this article, we compare fog comput-
ing and cloud computing in detail, and list 

a number of research challenges and prob-
lems in fog computing. Based on our under-
standing of these challenges and problems, 
we propose a software architecture that can 
incorporate different design choices and user-
specified polices flexibly. Then we discuss the 
design of WM-FOG, a computing framework 
for fog environments that embraces this soft-
ware architecture. Evaluation on our prototype 
system demonstrates that WM-FOG can work 
effectively and efficiently in fog environ-
ments. Future work will involve adding more 
features to WM-FOG to better serve fog com-
puting applications. 
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