
44 Published by the IEEE Computer Society 1089-7801/17/$33.00 © 2017 IEEE IEEE INTERNET COMPUTING

Challenges and Software
Architecture for Fog
Computing

Zijiang Hao
College of William and Mary

Ed Novak
Franklin and Marshall College

Shanhe Yi and Qun Li
College of William and Mary

This article presents a detailed description of fog computing (also known as

edge computing) and explores its research challenges and problems. Based on

the authors’ understanding of these challenges and problems, they propose a

flexible software architecture, which can incorporate different design choices

and user-specified polices. They present their design of WM-FOG, a computing

framework for fog environments that embraces this software architecture, and

evaluate their prototype system.

Fo
g

Co
m

pu
ti

ng

T he explosive proliferation of ubiq-
uitously connected devices has rev-
olutionized every aspect of human

life. However, because most end-user
devices, such as smartphones, tablets,
and wearable devices, have generally
weaker CPUs, limited network connec-
tivity, less memory and storage, and so
on, applications nowadays are usually
backed by cloud services. Cloud com-
puting has significantly changed the
way we leverage resources for compu-
tation, networking, and storage. It pro-
vides resources on an on-demand basis,
saves expenditures on hardware, and
breaks down various technical barriers.
Resource pooling in data centers indeed
provides more than enough resources
for end-user devices. However, moving
data from the edge of Internet to the
core of Internet, where most data centers
are located, isn’t easy, especially when
more and more data is user-generated

content that requires high bandwidth
to transmit.1 In addition, unpredictable
delays might ruin the user experience
of delay-sensitive applications, such as
human-computer interfaces, emergency
services, and real-time games. While
we believe that cloud computing will
still be a mainstream computing para-
digm in the future, the rapid develop-
ment of Internet and pervasive mobile
devices has called for a new computing
paradigm that can overcome the inher-
ent drawbacks of cloud computing, such
as unpredictable latency, bandwidth
bottlenecks, lack of mobility support
and location awareness, and so on. To
this end, fog computing (also known
as edge computing) has been proposed
as a nontrivial extension of cloud com-
puting. By providing elastic resources
at the edge of network, fog computing
can better support a variety of emerging
applications.

MaRCh/aPRIl 2017 45

Challenges and Software Architecture for Fog Computing

Fog computing has been defined from sev-
eral perspectives;2,3 and similar concepts such as
cloudlets,4 mobile-edge computing5 and mobile-
cloud computing6 have also been proposed. In
our previous work,7 we defined fog computing as

a geographically distributed computing archi-
tecture, with a resource pool that consists of
one or more ubiquitously connected heteroge-
neous devices (including edge devices) at the
edge of network, and not exclusively seam-
lessly backed by cloud services, to collabora-
tively provide elastic computation, storage and
communication (and many other new services
and tasks) in virtualization isolated environ-
ments to a large scale of clients in proximity.

Fog computing will benefit several relevant
domains, including mobile/wearable computing,8
Internet of Things (IoT), and big data analytics, in
reducing latency, increasing throughput, consol-
idating resources, saving energy, and enhancing
security and privacy.9 In IoT, fog computing can
provide unified interfaces and flexible resources
to accomplish heterogeneous computational and
storage requests. In virtual reality, a 3D VR
gaming headset has to be cable-connected to a
high-end server for low latency on processing
complex 3D graphics. Fog computing can fulfill
the low-latency need for VR users in proximity,
and can save expenditures on extra hardware.
In big data analytics, huge volumes of data are
generated at the edge of network. Fog computing
supports edge analytics, which can reduce the
delay of data analytics and decrease the cost of
data transmission and storage.

Here, we introduce fog computing, a new com-
puting paradigm that extends cloud computing.
Fog computing promises performance benefits such
as low latency and quick response time in various
application scenarios. We compare fog computing
and cloud computing in detail, and list a number
of research challenges and problems. Based on our
understanding of these challenges and problems,
we propose a flexible software architecture, which
can incorporate different design choices and user-
specified polices. We highlight WM-FOG (WM
standards for the College of William and Mary), a
computing framework for fog environments that
embraces this software architecture. We also con-
duct experiments on our prototype system to show
that WM-FOG can work effectively and efficiently
in real-world fog environments.

Comparisons between Fog and Cloud
There are several key differences between fog
and cloud computing. Cloud servers are usu-
ally rack-mounted, high-end servers located in
large, warehouse-like data centers. Centralized
cloud servers allow for replication, load bal-
ancing, failure recovery, power management,
and easy access to failed hardware for repair-
ing and replacement. For this reason, the reli-
ability of cloud services can be held at a high
standard. The exact opposite can be expected
in fog computing. Fog nodes are geographi-
cally distributed, scattered all over the edges
of Internet, and logically decentralized in that
they are maintained by different organizations.
Consequently, fog nodes aren’t as reliable as
cloud servers, and physically locating a failed
fog node and repairing it is more difficult and
costly. Many financial and time costs, such as
those related to power and system configuration,
can’t be amortized as they would be with cloud
computing. Another key insight is that the net-
work connectivity to fog nodes cannot be guar-
anteed. An unreachable fog node can’t fulfill
any request even if its computational hardware
is fully functional. Simple tasks such as regular
testing and auditing of hardware are immensely
more complicated and costly in fog computing,
due to the necessary coordination among differ-
ent organizations, geographical distribution of
hardware, and unreliable network connectivity.

Scheduling tasks in fog computing is com-
plex compared with cloud computing. A fog
computing application is typically spread over
the client’s mobile device, one of potentially
many fog nodes, and occasionally a back-end
cloud server. Therefore, deciding where to
schedule computational tasks in fog computing
is more difficult. For cloud computing appli-
cations, the latency is usually predictable. For
fog computing applications, however, deciding
which fog node to use alters the latency that the
user will experience. Besides the unpredictable
round-trip time, slow hardware and low band-
width also affect the user-perceived latency.
Meanwhile, some tasks, such as aggregate cach-
ing, might benefit from running in the back-
end cloud. Another problem is that it’s unclear
where the scheduling should occur. Entrusting
the client devices to perform the scheduling
opens the possibility of malicious users abus-
ing the system. Fog nodes might act selfishly
or might not always be aware of tasks running

Fog Computing

46 www.computer.org/internet/ IEEE INTERNET COMPUTING

on the client devices. The back-end cloud might
introduce unnecessary latency to the schedul-
ing program. In short, in fog computing, more
factors must be considered in deciding where
and when to schedule tasks to provide the best
user experience.

Fog nodes are maintained independently by
many different organizations, which is in sharp
contrast to the back-end cloud owned and main-
tained by a single organization. This means that
fog nodes can’t be trusted as easily as cloud
servers. Users can more easily trust cloud com-
puting because the organizations that provide
cloud services are well-motivated to invest in
resilient security and privacy measures. Fog
computing, on the other hand, is implemented
by many independent agents. These various
owners might not maintain the same rigorous
privacy and security standards, let alone the
high standard fulfilled by cloud computing. As
such, users will have a much more difficult time
trusting different fog nodes.

Fog nodes are heterogeneous, where there’s
no guarantee that the nodes will contain simi-
lar resources. In fact, quite the opposite can be
expected; fog nodes, owned and maintained
by different organizations, usually have vastly
different RAM capacity, CPU performance,
storage space, and network bandwidth. This is
in sharp contrast to cloud computing, in which
it’s common for one organization to own all of
the cloud servers. To ease the burden of appli-
cation deployment, hardware management and
resource sharing, cloud servers usually exhibit
much less heterogeneity. Furthermore, fog
nodes are smaller and less powerful than large
cloud servers. While a cloud server might be
one of many high-end, powerful, rack-mounted
servers, fog nodes are usually deployed in small
batches using desktop-class machines, repur-
posed computing appliances such as routers and
gaming consoles, and small collections of rack-
mounted servers. Because of the heterogeneity
and generally weaker hardware in fog comput-
ing, many of the differences we have outlined
so far are exacerbated.

Fog computing aims to establish a new tier
of mobile computing, in which constraints on
energy and hardware resources can be relaxed
by nearby fog nodes. Users can effortlessly
offload computation to nearby fog nodes, and
can transparently and seamlessly move com-
putation from one fog node to another. Mobility

is a key feature of the fog computing paradigm,
and applications deployed on fog infrastructure
need to always take this into account. This dif-
fers from cloud computing, in which applications
are deployed in only one cloud at a time, unless
the need for scaling is beyond the capacity of
a single cloud provider. A situation that’s rarely
seen in cloud computing but might be common
in fog computing is that users might connect to
the network only briefly while moving. Consider
the scenario in which fog nodes are placed along
roadways and users temporarily connect to them
to acquire traffic and weather conditions ahead.
Another example is that users move from one
fog node to another when they’re leaving their
office and heading to a different building on a
college or corporate campus for a meeting.

Research Challenges and Problems
in Fog Computing
Now that we’ve compared fog and cloud com-
puting, next we discuss the challenges and
problems in fog computing. The related work on
the concept of fog computing includes our own
efforts10,11,7,12 and other researchers’ work.13-15
We refer the reader to these references for an
integral view of the state-of-the-art on fog
computing.

Fog computing is a novel computing para-
digm, which demands a new programming
model. We need to design intuitive and effec-
tive tools and frameworks for developers, help-
ing them orchestrate dynamic, hierarchical,
and heterogeneous resources to build compat-
ible applications on diverse platforms. Taking
task scheduling and migration as an example,
various research questions might arise. How
can we provide a simple abstraction for devel-
opers to mark tasks that can be migrated? What
choices and preferences should be left to users?
How can we allow developers to specify migra-
tion rules on various devices? Furthermore, we
should avoid forcing developers to reimplement
functionalities that will likely be common, such
as distributed caching, workload balancing,
system monitoring, and so on.

Fog computing introduces a variety of new
and interesting scheduling challenges. Because
tasks can now be moved between different
physical devices (that is, client devices, fog
nodes, and back-end cloud servers), scheduling
is much more complex. Some of the research
questions are as follows:

MaRCh/aPRIl 2017 47

Challenges and Software Architecture for Fog Computing

•	 For fog nodes with heterogeneous hardware,
is it acceptable to trade energy for reduced
latency?

•	 Should a process running on a fog node be
interrupted when the user moves toward
another fog node?

•	 How should tasks be scheduled considering
latency, energy consumption, mobility, and
existing workload?

•	 Where should the scheduling program be
executed?

•	 What are the benefits of jointly scheduling
tasks?

Beside these research questions, some other
concerns must also be taken into account. For
example, security and privacy considerations
are complex in fog computing, and tasks from
sensitive applications should be scheduled on
more trustworthy nodes. Furthermore, on tradi-
tional desktop and server machines, Completely
Fair Scheduling dominates the landscape. For
fog computing, however, this algorithm might
not be ideal, as different fog nodes could have
different hardware resources, and some tasks
(for example, those making the users wait)
might be more important than others (for exam-
ple, background services such as the backup/
snapshot functionality). What other scheduling
algorithms can be used to optimize the factors
that are important for highly mobile computing,
such as low latency?

Data management for fog computing appli-
cations also introduces new challenges. Perhaps
the ideal abstraction for both users and devel-
opers is a global storage, which can always be
accessed, has an infinite size, and yet performs
with the speed of information stored locally.
With fog computing, this dream might finally
be realized. However, how to implement such a
storage system is still an open question. What
efficient algorithms can be used to shuffle data
among devices? How can prefetching be best
implemented to achieve the lowest latency? What
namespace scheme should be used? How can
sensitive and encrypted data be cached privately
and effectively? Furthermore, energy consump-
tion and network usage must be conserved on
mobile devices, as they typically have energy
limits enforced by limited battery technology
and data limits enforced by mobile carriers.

An attractive aspect of cloud computing
is the automatic discovery of services. As fog

nodes differ from location to location, users can
arrive at a new location and take advantage of
the various services provided by the fog nodes in
that particular location. Given that this feature
relies on the prudent deployment accomplished
by service developers, implementing service dis-
covery protocols in fog computing can be quite
challenging. Moreover, service provisioning is
usually done dynamically in fog computing; that
is, new virtual machines (VMs) are orchestrated
on the spot when a particular service is needed.
This raises many research questions:

•	 When should services be started and stopped?
•	 What’s the best way to balance workload?
•	 Should VM-based or container-based vir-

tualization be used? It might even be pos-
sible to predict what services will be needed
and provision them in advance, before users
even arrive.

•	 What methodologies should be used to effi-
ciently provision services for hundreds,
thousands, and millions of users?

•	 What’s the best way to split workload for
services that aggregate information from
nearby client devices with regard to the
energy efficiency on the client side?

In cloud computing, data consistency can be
achieved by coordinating the cloud servers in
the data centers where the cloud is deployed. In
fog computing, however, things become compli-
cated. When writing data objects in a fog envi-
ronment, it’s necessary to not only coordinate
the back-end cloud servers, but also to invali-
date the cached data on the fog nodes as well as
on the client devices if strong data consistency
is needed. This might result in deteriorated
write performance, which weakens the benefits
of using fog nodes as the write cache servers.
On the other hand, fog computing also provides
opportunities of achieving data consistency
more efficiently than cloud computing. For
example, if the write requests on a data object
are sent to only one fog node during a certain
time period, which we envision is a common
case in fog computing, the system might tempo-
rarily transfer the data object’s ownership from
the cloud to the fog node. By doing this, data
consistency can be achieved on the fog node,
which promises better write performance than
cloud computing, as the fog node resides at the
edge of network. Nevertheless, fully exploiting

Fog Computing

48 www.computer.org/internet/ IEEE INTERNET COMPUTING

the opportunities of achieving data consis-
tency in fog computing is still challenging and
requires plenty of research efforts.

Finally, and perhaps most importantly, fog
computing and IoT have significant privacy and
security concerns. Due to the heterogeneous
nature of both, security and privacy are usu-
ally cast aside to achieve general functionality
and interoperability. In other words, encryption
and strict privacy policies make it more dif-
ficult for arbitrary devices to exchange data.
Therefore, many manufacturers today simply
do away with these features. Moreover, encryp-
tion algorithms and security protocols, which
are notoriously complex, are often implemented
or configured with mistakes, leaving sensitive
user data exposed to attackers. This problem is
further exacerbated by the dispersed ownership
of fog nodes. Fog nodes are usually owned by
different parties, such as universities, corpora-
tions, commonwealth organizations, and per-
sonal households. Some fog nodes might even
be jointly owned by two or more parties. Users
approaching a fog node might be weary of the
services provided by these parties, due to their
vastly differing motivations. As we’ve seen with
online social networking, collection and resale
of private user data is highly valuable to cor-
porations. Meanwhile, these parties also need
authentication protocols to protect themselves
against Sybil accounts, distributed denial-of-
service attacks, and other malicious activities. It
will be important in the future to make fog com-

puting applications preserve user privacy, pro-
vide rigorous security guarantees, and address
the needs of all the parties involved.

Exploring solutions to the aforementioned
problems is critical in realizing the many ben-
efits promised by fog computing. It’s our goal
in this work to expose these design choices in
detail, so that developers can more easily fig-
ure them out in their implementations. This is
a first step toward identifying reasonable solu-
tions to these problems.

WM-FOG Overview
Based on our understanding of the aforemen-
tioned challenges and problems, we propose
WM-FOG, a computing framework for fog envi-
ronments. The design of WM-FOG embraces
a flexible software architecture, which can
incorporate different design choices and user-
specified polices. More specifically, WM-FOG
provides a flexible way to define workflows
that can be easily deployed and executed on
fog-based systems. By properly scheduling the
workflows on the system entities (that is, client
devices, fog nodes, and back-end cloud serv-
ers), WM-FOG can take advantage of the fog
computing paradigm and achieve considerable
performance enhancement. Furthermore, and
most importantly, WM-FOG provides a way to
customize policies on the workflows, through
which developers can help the system make
even better use of the underlying hardware
resources.

Workflow Examples
To define a workflow, the developer needs to
specify its data and computation. We call the
data data items, and the computation transi-
tions in WM-FOG. Each workflow contains one
or more data items and zero or more transitions.

Figure 1a illustrates a simple workflow, which
is called RawVideo. This workflow contains only
one data item, depicted as rawData in the figure,
and no transition. The only data item, rawData,
represents the raw video data that the WM-FOG
system has received from a client device.

Figure 1b illustrates a slightly more compli-
cated workflow, which is called EncodedVideo.
This workflow contains two data items, rawData
and encodedData, and one transition, encode.
The encode transition takes rawData as input
and generates encodedData as output. Clearly,
in this workflow, the WM-FOG system receives

Figure 1. Workflow examples. (a) The RawVideo
workflow. (b) The EncodedVideo workflow. (c)
The TemperatureDistribution workflow.

rawData

(a)

rawData encodedData
Encode

(b)

rawData1

rawData2

rawDataN

...

mergedData

Merge

(c)

Challenges and Software Architecture for Fog Computing

MaRCh/aPRIl 2017 49

raw video data from a client device, encodes it,
and stores the encoded data for future use.

Figure 1c illustrates a workflow involving
multiple writers, which is called Temperature-
Distribution. Suppose there are N fog nodes
covering different regions, and each fog node
has a number of temperature sensors deployed
in the region that it covers. Each temperature
sensor continuously uploads the ambient tem-
perature data to the fog node it belongs to, and
the fog node in turn forwards the data to the
back-end cloud. The cloud receives data from
the N fog nodes, merges them, and stores the
merged data for future use.

System Architecture
Figure 2 depicts the architecture of WM-
FOG. There are four layers in the figure. The top
layer is the application layer, where user appli-
cations reside. User applications initiate work-
flow instances by writing input data to them,
and receive results by reading output data from
them. The next layer is the workf low layer,
where workflow instances reside. Each work-
flow instance exposes a data access interface
to user applications, through which its data items
can be accessed. Moreover, each workflow instance
has four proxies, that is, the entity proxy, locking
proxy, caching proxy, and scheduling proxy.
These proxies can be used to implement user-
specif ied policies on workf lows. Under the
workflow layer is the system layer, where the
system components — that is, the system moni-

tor, lock manager, cache manager, and work-
flow engine — reside. These system components
implement the fundamental mechanisms of
WM-FOG, and workflow instances can com-
municate with them through the proxies to
apply user-specified policies. The bottom layer
is the entity layer, as the system entities (client
devices, fog nodes, and the cloud) reside in this
layer.

Customizing Workflow Policies
WM-FOG provides a workflow-defining lan-
guage for developers. More specifically, devel-
opers can specify the data items and transitions
for each workflow they’re defining through
this language. Furthermore, they can selec-
tively implement the callback functions of the
data items and transitions to define their own
policies. To define a policy on a workflow, the
developer is supposed to invoke the workflow’s
proxies in the callback functions, informing
the system components of her suggestions on
how to handle the workflow under various con-
ditions. Note that the developer can only pro-
vide her suggestions, but not control the system
components’ behavior.

Implementing synchronization policies. A devel-
oper can implement her own synchronization
policy on a data item by programming its call-
back functions. In these callback functions, the
developer is supposed to invoke the workflow’s
caching proxy to communicate with the cache

Figure 2. WM-FOG software stack. The top layer is the application layer, where user
applications reside. The next layer is the workf low layer, where workf low instances reside.
Under the workf low layer is the system layer, where the system components reside. The
bottom layer is the entity layer, where the system entities (client devices, fog nodes, and the
cloud) reside.

System monitor

Data access interface

Lock manager Cache manager Work�ow engine

App App App App App App App

Entity proxy Locking proxy Caching proxy Scheduling proxy

Client Client Client Fog Fog Fog Cloud

Fog Computing

50 www.computer.org/internet/ IEEE INTERNET COMPUTING

manager, providing her suggestions on how to
synchronize the data item.

For example, suppose the developer who
has defined the RawVideo workflow shown in
Figure 1a has implemented a synchronization
policy on the rawData data item, which eagerly
synchronizes the first 20 Mbytes of data to the
back-end cloud, while keeping the remaining
part of data on the fog node and synchronizes
it lazily. By doing this, user applications that
read the data item can get served immediately.
Meanwhile, the caching manager will spon-
taneously synchronize the remaining part of
the data when the system has spare hardware
resources, guaranteeing that the data item can
be fully synchronized as soon as possible. This
synchronization policy has the same effect on
serving read requests as the default synchro-
nization policy, which eagerly synchronizes
the whole data item to the back-end cloud, but
imposes less burden on the system, which is
critical when the system is handling a burst of
workflow requests.

Implementing locking policies. A developer can
implement her own locking policy on a data
item by programming its callback functions. In
these callback functions, the developer is sup-
posed to invoke the locking proxy of the work-
flow to communicate with the lock manager,
providing her suggestions on how to manage
the locks on the data item.

For example, the rawDataI data items (I =
1, 2, …, N) shown in Figure 1c are written by
multiple writers (that is, temperature sensors).
Suppose the rawData1 data item can be written
by only one writer at any time, which requires
a locking mechanism to coordinate the write
operations upon it. A simple way of implement-
ing such a locking mechanism is to maintain
a write lock for the data item in the back-end
cloud. Before a writer writes the data item, it has
to acquire the write lock from the cloud, while
after the data item has been written, the writer
needs to return the write lock to the cloud.
Using the cloud as the centralized lock server is
necessary when different writers try to acquire
the same write lock from different fog nodes.
However, as previously described, the rawData1
data item will only be written by temperature
sensors belonging to the same fog node. In such
a case, using the cloud as the centralized lock
server will impose unnecessary overhead on the

write operations. The developer can invoke the
lock proxy in the data item’s callback functions,
informing the lock manager that she suggests
the write lock be maintained on the fog node
rather than in the cloud. By doing this, the lock
manager will try to maintain the write lock on
the fog node, which can improve the write per-
formance on the data item in most cases. Note
again, however, that the developer can’t really
control the lock manager’s behavior — that is, if
the lock manager considers that the write lock
should be maintained in the cloud, it will do
so, rather than unconditionally following the
developer’s suggestion.

Implementing migration policies. When defin-
ing a transition, the developer needs to spec-
ify its input data items as well as their trigger
thresholds. For example, the encode transition
shown in Figure 1b has only one input data
item, rawData. Suppose the developer has speci-
fied that the trigger threshold of the rawData
data item is 1,024 Kbytes when defining the
encode transition. In such a case, the workflow
engine will automatically invoke the onTrig-
ger() callback function of the encode transition
whenever the rawData data item has enqueued
1,024 Kbytes of data. The onTrigger() callback
function is the place where the developer imple-
ments the transition’s main logic.

The execution of the onTrigger() callback
function is atomic in WM-FOG. In other words,
the workflow engine might migrate a transi-
tion between two consecutive executions of the
onTrigger() callback function, but will never do
so during its execution. Data that needs to be
transferred in a migration should be defined as
member variables of the transition. The devel-
oper should also provide the getter and setter
functions for these member variables.

A developer can implement her own migra-
tion policy on a transition, by programming
its callback functions excluding onTrigger(). In
these callback functions, the developer is sup-
posed to invoke the scheduling proxy of the
workflow to communicate with the workflow
engine, providing her suggestions on when and
how to migrate the transition.

For example, the encode transition shown
in Figure 1b should be triggered mainly on fog
nodes. This is because the WM-FOG system
can leverage the computational power of fog
nodes to achieve better performance, given that

Challenges and Software Architecture for Fog Computing

MaRCh/aPRIl 2017 51

the encode transition has a good compression
ratio. Nevertheless, it might be unreasonable
to always trigger the transition on fog nodes,
especially when they’re fully loaded. For this
reason, the developer might implement a migra-
tion policy on the encode transition, informing
the workflow engine that she suggests migrat-
ing the transition to the back-end cloud if the
fog node cannot execute it in 5 seconds. By
doing this, some workload on fully loaded fog
nodes can be offloaded to the back-end cloud,
and the overall system performance can thus be
improved.

Evaluation
Here, we give some preliminary results to show
that WM-FOG can leverage the fog computing
paradigm to enhance the system performance
when handling workflow tasks (that is, work-
flow instances).

Testbed Setup
We build a testbed for our experiments. The
testbed consists of five servers, one of which
is more powerful than the others. We use
the more powerful server as the back-end
cloud server, while using the others as fog
nodes. The cloud server has an 8-core Intel
i7 CPU with a clock speed of 4.00 GHz and
16-Gbyte main memory. Each fog node has
a 4-core CPU with a clock speed of 2.83 GHz
and 4-Gbyte main memory, and directly con-
nects to the cloud server through a 1,000
megabits per second (Mbps) network link. To
simulate a real-world fog environment, we set
the upper bound of the network bandwidth
between each fog node and the cloud server
to 40 Mbps, and the latency to 10 ms (that is,
the round-trip time is 20 ms), according to the
results reported by Shanhe Yi and colleagues.7
Then we deploy our first-step implementation
of WM-FOG on this testbed.

Benefits of Using Fog
We first evaluate to what extent fog comput-
ing can help when handling WM-FOG work-
flow tasks. To this end, we simulate a scenario
in which the RawVideo workflow tasks shown
in Figure 1a are handled by our system. Each
RawVideo task has a total data size of 200
Mbytes, and we send it from the client device to
the fog node at a transmission rate of 8 Mbps. On
each fog node, the arrival intervals of RawVideo

tasks follow a normal distribution with a mean
of 10 seconds and a variance of 4 sec2. We cache
the 200-Mbyte rawData of each RawVideo task
on the fog node, while synchronizing only the
first n Mbytes of data to the cloud. The value of
n varies from 0 to 200 in our experiments.

Figure 3 illustrates the latency results, the
throughput results, and the network usage
results of these experiments. From these results,
we can see that a smaller synchronization size
(that is, n Mbytes) produces shorter latency,
higher throughput, and lower network usage.
Despite the fact that the synchronization size
can’t be too small for providing seamless data
accessing services, these results demonstrate

Figure 3. Performance measurements of
using fog: (a) latency results, (b) throughput
results, and (c) network usage results. From
these results, we can see that a smaller
synchronization size produces shorter
latency, higher throughput, and lower
network usage.

0

40

80

120

160

0
(a)

(b)

(c)

50 100 150 200

La
te

nc
y

(s
ec

)

Synchronization size (Mbytes)

0

5

10

15

20

25

30

0 50 100 150 200
N

um
be

r
of

 t
as

ks
 (

/m
in

)

Synchronization size (Mbytes)

 0

 10

 20

 30

 40

 50

0 50 100 150 200

N
et

w
or

k
us

ag
e

(M
bp

s)

Synchronization size (Mbytes)

Fog Computing

52 www.computer.org/internet/ IEEE INTERNET COMPUTING

the benefits of using fog computing in WM-
FOG, as tuning the synchronization size is only
possible in fog environments.

WM-FOG Performance
WM-FOG makes decisions on how to handle
workflow tasks based on the default poli-
cies and suggestions from developers. In other
words, the default policies are part of the fun-
damental mechanisms of WM-FOG, which are
supposed to provide graceful performance for
fog environments.

To evaluate how well our prototype system
works, we conduct two experiments. We use
only one fog node and the cloud server in these
experiments. Once again, we simulate the sce-
nario in which 200-Mbyte RawVideo tasks are
handled by our system. A user-specified policy
that at least the first 20 Mbytes of rawData
should be eagerly synchronized to the cloud
is applied to the RawVideo tasks. In the first
experiment, we disable the default synchroni-
zation policy, so that only the user-specified

policy is enforced. In the second experiment,
we enable the default synchronization policy,
so that the system monitor can monitor the
network usage of the fog node. If the system
monitor detects that there is a spare network
resource between the fog node and the cloud, it
informs the cache manager, which in turn tries
to synchronize more data for the RawVideo
tasks.

Figure 4 illustrates the synchronization size
results and the network usage results of these
experiments. Clearly, when the default synchro-
nization policy is enabled, the system makes
better use of the network resource, and thus the
burden of fully synchronizing the RawVideo
tasks in the future is reduced. These results
demonstrate that WM-FOG is an efficient com-
puting framework for fog environments.

I n this article, we compare fog comput-
ing and cloud computing in detail, and list

a number of research challenges and prob-
lems in fog computing. Based on our under-
standing of these challenges and problems,
we propose a software architecture that can
incorporate different design choices and user-
specified polices flexibly. Then we discuss the
design of WM-FOG, a computing framework
for fog environments that embraces this soft-
ware architecture. Evaluation on our prototype
system demonstrates that WM-FOG can work
effectively and efficiently in fog environ-
ments. Future work will involve adding more
features to WM-FOG to better serve fog com-
puting applications.

References
1. Sandvine, Global Internet Phenomena Report, tech. report,

2015; www.sandvine.com/trends/global-internet-phenomena.

2. F. Bonomi et al., “Fog Computing and Its Role in the

Internet of Things,” Proc. 1st MCC Workshop Mobile

Cloud Computing, 2012, pp. 13–16.

3. L.M. Vaquero and L. Rodero-Merino, “Finding Your

Way in the Fog: Towards a Comprehensive Definition

of Fog Computing,” Sigcomm Computer Comm. Rev.,

vol. 44, no. 5, 2014, pp. 27–32.

4. M. Satyanarayanan et al., “Cloudlets: At the Leading Edge

of Mobile-Cloud Convergence,” Proc. 6th Int’l Conf. Mobile

Computing, Applications, and Services, 2014, pp. 1–9.

5. Mobile-Edge Computing, European Telecomm. Standards

Inst. (ETSI), 2014; www.etsi.org/technologies-clusters/

technologies/mobile-edge-computing.

Figure 4. Performance measurements of
WM-FOG: (a) synchronization size results
and (b) network usage results. When we
enable the default synchronization policy,
the system makes better use of the network
resource, thereby reducing the burden of
fully synchronizing the RawVideo tasks in the
future.

0

10

20

30

40

50

60

0

10

20

30

40

50

60

0 2 4 6 8 10 12 14Sy
nc

hr
on

iz
at

io
n

si
ze

 (
M

by
te

s)

Time (min)

0 2 4 6 8 10 12 14
Time (min)

Without default policy
With default policy

Without default policy
With default policy

N
et

w
or

k
us

ag
e

(M
bp

s)

(a)

(b)

Challenges and Software Architecture for Fog Computing

MaRCh/aPRIl 2017 53

Read your subscriptions through
the myCS publications portal at
http://mycs.computer.org.

6. N. Fernando, S.W. Loke, and W. Rahayu, “Mobile Cloud

Computing: A Survey,” Future Generation Computer

Systems, vol. 29, no. 1, 2013, pp. 84–106.

7. S. Yi et al., “Fog Computing: Platform and Applica-

tions,” Proc. 3rd Workshop Hot Topics in Web Systems

and Technologies, 2015, pp. 73–78.

8. Y. Cao, S. Chen, and D. Brown, “Fast: A Fog Com-

puting Assisted Distributed Analytics System to

Monitor Fall for Stroke Mitigation,” Proc. IEEE Int’l

Conf. Networking, Architecture, and Storage, 2015,

pp. 2–11.

9. T. Zhang, “Fog Boosts Capabilities to Add More Things

Securely to the Internet,” blog, 3 Mar. 2016; http://

blogs.cisco.com/innovation/fog-boosts-capabilities-to-

add-more-things-securely-to-the-internet.

10. S. Yi, C. Li, and Q. Li, “A Survey of Fog Computing:

Concepts, Applications and Issues,” Proc. Workshop on

Mobile Big Data, 2015, pp. 37–42.

11. S. Yi, Z. Qin, and Q. Li, “Security and Privacy Issues of

Fog Computing: A Survey,” Wireless Algorithms, Sys-

tems, and Applications, LNCS 9204, Springer, 2015,

pp. 685–695.

12. Z. Hao and Q. Li, “Edgestore: Integrating Edge Com-

puting into Cloud-Based Storage Systems,” Proc.

IEEE/ACM Symp. Edge Computing, 2016; doi:10.1109/

SEC.2016.34.

13. I. Stojmenovic, “Fog Computing: A Cloud to the Ground

Support for Smart Things and Machine-to-Machine

Networks,” Proc. Australasian Telecomm. Networks and

Applications Conf., 2014, pp. 117–122.

14. W. Shi and S. Dustdar, “The Promise of Edge Comput-

ing,” Computer, vol. 29, no. 5, 2016, pp. 78–81.

15. W. Shi et al., “Edge Computing: Vision and Chal-

lenges,” IEEE Internet of Things J., vol. 3, no. 5, 2016,

pp. 637–646.

Zijiang Hao is a PhD student in computer science at the

College of William and Mary. His research interests

include mobile-cloud computing, fog/edge comput-

ing, geo-distributed storage systems, and consen-

sus algorithms. Hao has an MS in computer science

from Tsinghua University, China. Contact him at

hebo@cs.wm.edu.

Ed Novak is an assistant professor of computer science at Frank-

lin and Marshall College. His research interests include

cybersecurity and privacy on smart mobile devices. Novak

has a PhD in computer science from the College of William

and Mary. Contact him at enovak@fandm.edu.

Shanhe Yi is a PhD student in computer science at the

College of William and Mary. His research interests

include mobile/wearable computing and fog/edge

computing, with an emphasis on the usability, secu-

rity, and privacy of applications and systems. Yi has

an MS in electrical engineering from Huazhong Uni-

versity of Science and Technology, China. Contact him

at syi@cs.wm.edu.

Qun Li is a professor of the Department of Computer Sci-

ence at the College of William and Mary. His research

interests include wireless networks, sensor networks,

RFID, pervasive computing systems, and fog/edge

computing. Li has a PhD in computer science from

Dartmouth College. He received the US National Sci-

ence Foundation CAREER Award in 2008. Contact him

at liqun@cs.wm.edu.

IEEE-CS

CHARLES BABBAGE
AWARD

CALL FOR AWARD NOMINATIONS
Deadline 15 October 2017

ABOUT THE IEEE-CS CHARLES BABBAGE
AWARD
Established in memory of Charles Babbage in
recognition of significant contributions in the field
of parallel computation. The candidate would have
made an outstanding, innovative contribution or
contributions to parallel computation. It is hoped, but
not required, that the winner will have also contributed
to the parallel computation community through
teaching, mentoring, or community service.

AWARD & PRESENTATION
A certificate and a $1,000 honorarium presented to a
single recipient. The
winner will be invited
to present a paper
and/or presentation
at the annual IEEE-
CS International
Parallel and
Distributed Processing
Symposium
(IPDPS 2017).

NOMINATION SITE
awards.computer.org

AWARDS HOMEPAGE
www.computer.org/awards

CONTACT US
awards@computer.org

