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Abstract—A quantum network comprises interconnected quan-
tum servers capable of communication and collaboration for com-
putational tasks. It is essential for quantum servers within this
network to identify and authenticate one another. For instance,
when a quantum server intends to execute a computational task
on another machine, it becomes crucial for the quantum server
to verify the authenticity of other quantum servers to maintain
confidence in delegating computation. While several methods for
fingerprinting these quantum computers have been proposed,
many are resource-intensive and not currently practical. To
address this, we introduce Q-ID, a lightweight fingerprinting
method that accurately identifies quantum servers with negligible
quantum computational demands. Q-ID operates by running a
user’s task circuit at two different levels of noise, using the
resulting performance gap as a unique identifier for quantum
servers. Additionally, we have developed an error evolution
algorithm that allows users to locally estimate this performance
gap. By comparing the estimated gap with the actual one, users
can effectively identify or differentiate between quantum servers
in a network. Our experiments on the IBM quantum platform
showcase the efficacy and benefits of our approach.

Index Terms—Quantum fingerprinting, quantum network,
quantum computing, error evolution

I. INTRODUCTION

Given the availability of quantum servers for remote public
access, it is crucial to authenticate the identities of the quantum
servers targeted by users. Due to the scarcity and high cost
of quantum computing resources, and the varying quality and
capabilities of quantum computers, users typically prefer to
execute their quantum programs on higher-quality machines
[1], [2]. This preference leads to an uneven distribution of
workload across quantum computers in the network, conse-
quently impacting the revenue of network server providers.
As a result, providers might unilaterally use machines not
specifically chosen by the users to deliver services. In addition,
quantum networks [3]–[6] offer improved security in certain
aspects over traditional networks but also present novel se-
curity challenges. While quantum key distribution safeguards
against unauthorized interception, there remains a vulnerability
if an attacker intervenes before key establishment between
communicating parties, potentially leading to deception.

These problems underscore the importance of quantum
server/network node identification. Such verification is typi-
cally achieved through quantum server fingerprinting, which
involves identifying the unique characteristics of a quantum
server. By utilizing quantum server fingerprinting, users can
verify whether their computations are being executed on the
quantum server of their choice, thus ensuring the accuracy

and reliability of the computational results. Several previous
studies have underscored the utility of leveraging quantum
errors for fingerprinting quantum servers. However, these
approaches necessitate the execution of numerous probing
circuits to precisely capture the distinctive error features of
quantum computers in a network, which is inefficient given
the state of current quantum computing environments. This
inefficiency has motivated us to develop a new quantum error-
based fingerprinting method tailored for identifying quantum
servers.

In this article, we propose Q-ID, a lightweight fingerprint-
ing approach for identifying quantum servers in a network.
Typically, when a user submits a job to a quantum server,
it includes multiple circuits. Q-ID is specifically designed
for circuits that generate a single basis state. If a user’s job
Q-ID capitalizes on the effects of amplified quantum errors
within a user’s task circuit to identify quantum computers,
thus eliminating the requirement for running numerous prob-
ing circuits. Specifically, Q-ID splits the total number of
execution shots for the circuit that generates a basis state
into two parts and executes them under two levels of noise.
The first part executes the original circuit that is at the
noise level of the noisy operations intrinsic to the circuit.
The second part executes a modified version, known as a
noise-amplified circuit, which incorporates an added identity
gate block specifically designed to introduce extra noise. The
discrepancy in outcomes between these two circuits can serve
as the fingerprinting of quantum computers, reflecting the
diverse error patterns inherent to different quantum computing
systems. From the user’s perspective, we propose an error
evolution algorithm designed to estimate the discrepancy in
outcomes between the original and the noise-amplified circuit.
This algorithm considers the structure of the inserted block
and the error profile of the chosen quantum computer, aiming
to estimate the noise-amplified results. By comparing the
estimated and the actual impact of amplified noises, users can
effectively identify the specific quantum server.

The contributions of this article are summarized as follows:
• We introduce a lightweight and reliable fingerprinting

method for quantum servers in a network, designed to
be applicable in the current quantum computing environ-
ment.

• We design an error evolution algorithm that enables
users to efficiently estimate the noise-amplified results
according to the structure of the noise-amplified block.

• We carry out comprehensive experiments on a real quan-
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Fig. 1. Overview of Q-ID. (a) The execution of a user’s task circuit consists of two parts: the execution of the original circuit and the execution of the
noise-amplified circuit. (b) The state-wise performance gap between the two executions is calculated and used as fingerprinting. (c) Based on the circuits’
structure, users can estimate the fingerprints for quantum servers and identify which quantum server executed the circuits.

tum platform, showcasing the advantages of our proposed
method for quantum server identification.

II. THREAT MODEL

The provider of the quantum computing platform main-
tains multiple quantum servers simultaneously and aims to
maximize the overall throughput of the platform to increase
revenue. These quantum servers exhibit a variety of qubit
topologies and error levels. Qubit topology refers to the
configuration of available qubits and their connections, while
error level reflects the computational accuracy of quantum
operations. Specifically, the primary sources of error are mea-
surements and gates. The error rate of measurement operations
depends on the quality of the qubits being measured, while
gate errors vary according to the type of gates used and the
specific qubits being operated on. Generally, two-qubit gates,
such as CNOT, tend to have higher noise levels compared to
single-qubit gates.

Users are billed based on the execution time on these
servers. Hence, the users typically prefer high-quality servers
known for lower error rates and denser qubit connections. The
quantum server provider, however, might reassign user jobs
to idle, lower-quality servers without informing the users to
maximize the platform’s throughput. Executing jobs on these
non-specified servers can result in suboptimal performance or
inaccuracies, particularly if the server is not well-suited for
the user’s tasks. Moreover, users often select specific quantum
servers based on certain criteria like security measures, ge-
ographic location, or compliance with specific standards [2],
[7]–[11]. Unauthorized rerouting of jobs to alternative servers
may violate these preferences, introducing risks related to
security and confidentiality. This practice could compromise
the integrity of the platform and potentially lead to breaches
in user trust and service reliability.

Typically, to access the current quantum computing plat-
forms, the user begins by constructing logical circuits tailored
to the specific task at hand. Then the user transpiles the
circuits to align with the specific requirements and hardware
characteristics of the selected quantum server. Following this,
the user packages the transpiled circuits as a job and submits

the job for execution on the chosen quantum server. On
the current quantum platforms, quantum servers are solely
responsible for executing the received circuits and returning
the results to the user. These servers do not modify the
structure of the circuits, as doing so could incur additional
costs and conflict with the user’s customization preferences.
Therefore, an untrustworthy quantum server provider may only
allocate the user’s circuit to unselected servers that have the
same qubit topology for involved qubits but potentially higher
gate error rates.

To address these risks, it is crucial to develop a method for
identifying quantum servers within a network. This enables
network servers or users to validate that their communication
is established with the correct quantum servers. An effective
solution should be capable of identifying a quantum server
within the network in an efficient manner.

III. GATE ERROR-BASED FINGERPRINTING

The error rates of quantum gates vary in different quantum
devices, and can directly serve as their unique fingerprints. The
variance is induced by inherent quantum uncertainty within
each device, which is unavoidable but can be easily recorded.
Generally, these error rates can be directly obtained through
the API offered by the quantum platform, which returns the
error rates for all available quantum operations on a server,
such as {X(Q1): 1.910e-4, CNOT(Q1, Q2): 0.01863, X(Q2):
2.010e-4, CNOT(Q1, Q2): 0.0192, . . . }. To discern a particular
quantum device, users can calculate the gate error rates by
following the Randomized Benchmarking [12] procedure, and
compare them with the obtained error rates from the quantum
platform.

However, this approach imposes a significant demand for
quantum resources. To acquire the actual gate error rates, the
users need to run multiple Randomized Benchmarking circuits
with variant lengths, which often exceed the constraints on the
number of circuits permitted for a user and become burden-
some due to the high cost of quantum resources. One possible
solution is to selectively focus on a subset of qubits and
gates, thereby reducing the size and overall number of required
Randomized Benchmarking circuits. For example, users can
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Fig. 2. Noise-amplified circuit

choose to focus only on the CNOT gates and measurement,
as they are two of the most error-prone operations in quantum
circuits. Nevertheless, given the daily updates to device error
profiles, users need to repeat the Randomized Benchmarking
process every day for any of their subsequent tasks to maintain
the accuracy and reliability of the fingerprinting process. The
cost of running multiple sets of Randomized Benchmarking
circuits is consistently unavoidable. Therefore, a more efficient
approach for fingerprinting cloud devices will be preferable.

IV. CIRCUIT ERROR EVOLUTION AS FINGERPRINTING

In this section, we present a novel approach to fingerprint-
ing quantum servers, which is both reliable and lightweight.
Execution of a quantum circuit involves the evolution of
quantum state as it progresses through a series of quantum
instructions, which is commonly referred to as quantum state
evolution. Due to the presence of noise, the quantum errors
in the quantum states also accumulate along the evolution,
resulting in gradual fidelity decay. The degree of decay is
affected by all the gates, physical qubits, and qubit connections
within circuits. Thus, similar to the quantum state evolution,
we develop a systematic gate-by-gate procedure that traces the
accumulation of errors along the quantum circuit. We define
this procedure as the error evolution within a quantum circuit.
Generally, error evolution within different quantum circuits
exhibits uniqueness which can be utilized as their fingerprints,
due to the different error levels within circuits. Our approach
presents a way of capturing this unique error evolution and
utilizing it for identifying the designated quantum server.
Compared with other quantum cloud fingerprinting methods
that require running numerous additional circuits to capture
the quantum servers’ characteristics, our approach requires no
additional circuits if the user’s submitted job includes a circuit
that generates a single correct basis state. However, if the job
lacks such a circuit, the user needs to add just one such circuit
to the job. Thus, our approach introduces much less overhead.

Fig. 1 shows an overview of our error evolution-based
fingerprinting approach. As in Fig. 1(a), we execute the user’s
circuit in two noise levels. We separate all experiment shots
of the circuit into two groups: the first group runs the original
circuit U , and the other runs the noise-amplified circuit with
an additional identity block I before the measurement. The
inserted identity block introduces more errors in the execution
results. Thus, the two circuits will exhibit different probability
distributions of possible states. Then in Fig. 1(b), we compare

R1, the probability distribution of possible states after passing
through circuit block U and R2 the distribution after passing
through both blocks U and I by quantifying their differences
as the state-wise performance gap, i.e., ∆R = R1 −R2. Next
in Fig. 1(c), we retrieve the error profile of the target quantum
server from the platform, and use the error profile to perform
error evolution based on R1, the measured distribution of states
after block U . Through the error evolution process, We obtain
an estimated state distribution R′

2 based on the error profile.
Next, we can obtain the state-wise performance gap between
R′

2 and R1, i.e., ∆R′ = R1 − R′
2. Finally, we compare the

estimated state-wise performance gap ∆R′ with the actual gap
∆R to verify their alignment. This streamlined process reduces
resource consumption while maintaining the precision of the
fingerprinting method, and the design details will be elaborated
on in the following subsections.

A. Circuit Error Evolution

To quantify the error evolution within a quantum circuit,
we define the survival probability of the stored quantum
state on each qubit to be the probability of maintaining
correctness after noisy operations. Thus, we do not need
to consider the exact quantum state of each qubit during
the analysis. For an arbitrary quantum circuit with n-qubit
D = [qn−1, qn−2, . . . , q0], we denote their corresponding
survival probability as P q = [pqn−1, p

q
n−2, . . . , p

q
0]. These

survival probabilities fall within the range of [0, 1], where a
value of 1 indicates that the quantum information has survived
with 100% probability.

For the qubit qi with an initial survival probability pqi , its
survival probability gradually decreases when processed by
noisy quantum gates. The success rate of a gate determines
the extent of the decrease in survival probability. In the noise-
amplified circuit, we append an identity block I following
the user’s task circuit U , as illustrated in Fig. 2. In our
approach, we conduct an error evolution analysis solely on
block I to assess the impact of noise introduced by block
I on the execution outcomes. Thus, we present a systematic
procedure for analyzing the changes in survival probabili-
ties induced by the noisy quantum gates within block I .
The initial survival probabilities of the qubits, denoted as
P q = [pqn−1, p

q
n−2, . . . , p

q
0], represent the survival probabilities

before the qubits pass through block I, corresponding to time
t in Fig.2. Note that the survival probabilities P q specify
the probability of each qubit being in its correct state, rather
than the overall state distribution generated by the circuit.
These initial survival probabilities, as we will detail in the
following subsection, are derived from the state distribution of
the original circuit (i.e., block U ) obtained from the quantum
server.

As the qubit qi passes through the block I , its survival
probability pqi is reduced by each noisy gate it encounters.
For instance, take block I illustrated in Fig. 2, where the
qubit q0 encounters two CNOT gates. As a result, its survival
probability pq2 decreases twice, with each reduction determined
by the specific success rate of the respective CNOT gates.
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Specifically, each CNOT gate, denoted as ([qi, qj ], p
g), com-

prises two parameters: the list of involved qubits [qi, qj ], and
the its success rate pg . The success rate is calculated based on
the error profile of the target quantum device as 1 minus the
error rate, which is obtained from the record CNOT (qi, qj).
Upon passing through this gate, the survival probability of qi
will be updated as follows:

pqi = pqi × pg (1)

Similarly, the survival probability pqj for the involved qubit qj
will be updated in the same manner.

For instance, as depicted in Fig. 2, both q0 and q2 pass
two CNOT gates, while q1 passes through four CNOT gates.
The success rates (pg) of these gates, as detailed in the figure,
indicate that the CNOT gate applied to q0 and q1 has a success
rate of 0.988, while the CNOT gate applied to q1 and q2
has a success rate of 0.965. Assume that the initial survival
probability at time t is P q = [P q

2 = 0.88, P q
1 = 0.9, P q

0 =
0.88]. The survival probabilities of the qubits after block I are
calculated as follows: P q

0 = 0.88 × 0.988 × 0.988 ≈ 0.86,
P q
1 = 0.9 × 0.988 × 0.965 × 0.965 × 0.988 ≈ 0.82, and

P q
2 = 0.88 × 0.965 × 0.965 ≈ 0.82. Thus, the survival prob-

abilities of qubits after block I are P q = [pq2 = 0.82, pq1 =
0.82, pq0 = 0.86].

B. Quantum Device Fingerprinting

For efficiently fingerprinting quantum devices in a network,
we separate all experiment shots of a user’s task circuit into
two groups: one group executes the original circuit with only
block U , and the other executes the noise-amplified circuit
with block U and I . As shown in Fig. 1(a), due to the
extra noises introduced by block I , the two groups exhibit
different probability distributions of result states R1 and R2,
respectively. For this paper, we assume the returned results R1

and R2 are from the same cloud quantum device, but may not
be the target device designated by the users.

First, we demonstrate how to calculate the initial survival
probability of each qubit for block I , corresponding to the
qubit survival probabilities at time t in Fig. 2. These survival
probabilities are derived from R1, the probability distribution
of states after executing the original circuit U . To calculate
the survival probability for qubit qi, we traverse all states
in R1 and accumulate the probabilities of states where qi
is correct. Let’s use an example to show how to derive the
survival probabilities. Suppose the state distribution of original
circuit U is R1 = [p|111⟩ = 0.74, p|110⟩ = 0.07, p|011⟩ =
0.07, p|101⟩ = 0.06, p|000⟩ = 0.03, p|010⟩ = 0.01, p|001⟩ =
0.01, p|100⟩ = 0.01] corresponding to the probabilities for
possible states of |q2q1q0⟩. Assuming this quantum circuit
produces only a single correct state, the correct output state is
|111⟩, determined by its highest probability. Accordingly, the
correct states of the qubits are q2 = |1⟩, q1 = |1⟩, and q0 = |1⟩.
From the state distribution, the survival probability of q0 = |1⟩
is calculated as pq0 = p|001⟩ + p|011⟩ + p|101⟩ + p|001⟩ = 0.88.
Similarly, the survival probabilities are pq1 = 0.9 for q1 = |1⟩

and pq2 = 0.88 for q2 = |1⟩. Thus, the initial survival probabili-
ties for block I are P q = [P q

2 = 0.88, P q
1 = 0.9, P q

0 = 0.88].
Next, based on these initial survival probabilities P q , we can

compute the survival probabilities after passing block I based
on the proposed error evolution method. Remember that the
calculated survival probabilities are an estimation on the user
side. We can further use the calculated survival probabilities
to construct the state distribution. Let’s use the same example
as before. Through error evolution analysis, as shown in the
previous subsection, the survival probabilities of qubits after
block I are P q = [pq2 = 0.82, pq1 = 0.82, pq0 = 0.86].

Then, we demonstrate the estimation of the state distri-
bution for the noise-amplified circuit based on the qubit
survival probability P q , with the estimated result represented
as R′

2. The probability of correct state |111⟩ is estimated by
pq2 × pq1 × pq0 ≈ 0.58, representing the probability of all qubits
surviving the noisy operations. Moreover, the probability of
state |110⟩ is calculated as pq2×pq1×(1−pq0) ≈ 0.13, indicating
the scenario where q0 fails to survive the noisy operations.
Similarly, the probabilities of other states can also be esti-
mated. Consequently, we can construct the state distribution as
R′

2 = [p|111⟩ = 0.58, p|110⟩ = 0.09, p|011⟩ = 0.13, p|101⟩ =
0.13, p|000⟩ = 0.0, p|010⟩ = 0.02, p|001⟩ = 0.03, p|100⟩ =
0.03]. The user-side fingerprint is calculated by △R′ =
R1 − R′

2 =[∆p|111⟩ = 0.16, ∆p|110⟩ = −0.02, ∆p|011⟩ =
−0.06, ∆p|101⟩ = −0.07, ∆p|000⟩ = 0.03, ∆p|010⟩ =
−0.01, ∆p|001⟩ = −0.02, ∆p|100⟩ = −0.02].

To identify the quantum servers, we compare the user-side
fingerprint ∆R′ with the fingerprint of the quantum server
that executed the circuits ∆R. The state distribution of the
noise-amplified circuit upon execution is R2 = [p|111⟩ =
0.57, p|110⟩ = 0.07, p|011⟩ = 0.12, p|101⟩ = 0.15, p|000⟩ =
0.01, p|010⟩ = 0.02, p|001⟩ = 0.03, p|100⟩ = 0.03]. Thus,
∆R= R1−R2 = [∆p|111⟩ = 0.17, ∆p|110⟩ = 0.0, ∆p|011⟩ =
−0.05, ∆p|101⟩ = −0.09, ∆p|000⟩ = 0.02, ∆p|010⟩ =
−0.01, ∆p|001⟩ = −0.02, ∆p|100⟩ = −0.02]. Here, ∆R′ and
∆R represent the estimated and the actual effects induced by
amplified noises, respectively. The closer the match between
∆R′ and ∆R, the greater the likelihood that the user’s circuit
is running on the targeted cloud device. In our approach, we
utilize mean square error (MSE) to measure the similarity
between the ∆R′ and ∆R, resulting in MSE(∆R′,∆R) =
0.0011. Users can determine if the circuit has been executed
on the selected quantum server by comparing this MSE value
against a threshold, as discussed in Sec. V.

V. EVALUATION

We have implemented our approach in Python, utilizing the
Qiskit library to facilitate interaction with the IBM Quantum
platform. Our experiments were conducted on all of the
three 7-qubit quantum servers: Nairobi (ibm nairobi), Lagos
(ibm lagos), and Perth (ibm perth), all of which have identical
qubit connectivity. Therefore, a circuit run on one machine
can also be directly run on another one. Due to their identical
connection, the provider can potentially reassign the user’s
job to any one of these servers based on their current idle
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Fig. 3. State-wise performance gap between two noise levels. The
state-wise performance gaps across different noise levels are various among
quantum servers, which can serve as a unique fingerprint of quantum servers.
By applying the proposed error evolution technique, users can estimate these
gaps to match the actual execution (on Nairobi), enabling precise identification
of the specific quantum computer.

status. User-submitted task circuits are configured to run with
a default of 4000 shots. In our experiments, this total is divided
into two equal parts: the first 2000 shots execute the original
circuit, while the subsequent 2000 shots operate on the noise-
amplified circuit that appends an identity block to the original.
To construct the noise-amplified circuit, we initially transpile
the original circuit using a specific transpilation method to
obtain the transpiled original circuit. Subsequently, we append
the identity block to this transpiled circuit, ensuring that the
inserted identity block is not removed by the transpiler.

A. Noise amplification based fingerprint

In this subsection, we assess the utility of state-wise perfor-
mance gaps as fingerprints for quantum servers, as illustrated
in Fig. 3. A 4-qubit Bernstein-Vazirani (BV) circuit was
constructed, featuring measurements across three qubits to
produce outcomes. It was compiled using a randomized initial
qubit mapping and the optimization level 0. To create the
noise-amplified circuit, an identity block composed of 6 CNOT
gates was appended. Suppose a user plans to execute this
task circuit on the Nairobi quantum server and has received
the execution results from the cloud platform. Based on the
outcomes of the original circuit and the error profile of the
designated quantum server, the user utilizes the error evolution
technique presented in this paper to estimate the performance
of the noise-amplified result and calculate the state-wise per-
formance gap as shown in Fig. 3(a). Fig. 3(b) through Fig. 3(d)
display the state-wise performance gap observed on three
distinct quantum servers. It’s important to note that both the
original task circuits and their corresponding noise-amplified
versions, when executed on the three quantum machines, share
the same ansatz. Therefore, any observed differences in the
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Fig. 4. Performance of Q-ID in identifying Nairobi. The values show
the difference between the user-estimated and the cloud-reported state-wise
performance gaps. Our proposed approach is highly accurate in identifying
the target machine.

performance gap are solely due to the distinct gate error
rates of the quantum hardware. This underscores the efficacy
of using the performance gap between different noise levels
as a unique fingerprint for quantum servers. Moreover, the
state-wise performance gap on Nairobi aligns closely with
the user’s estimation, whereas the performance gaps on the
other servers deviate significantly from the estimated values.
This indicates that our error evolution model can precisely
predict the deviations in the execution results caused by noise
in the gates. It provides users with the means to efficiently
compute the fingerprint of quantum machines by utilizing the
error profile of the target quantum server and the ansatz of the
circuits executed.

B. Performance of fingerprinting

Extensive experiments have been carried out to assess the
performance of our proposed quantum fingerprinting approach.
We design eight different BV circuits that a user plans to ex-
ecute on the quantum cloud platform: five circuits comprising
three qubits and three circuits comprising four qubits.

Distinguish quantum servers. Our initial evaluation of the
approach focuses on distinguishing specific quantum servers
from others on the cloud platform. In this scenario, we
executed eight circuits across three different quantum servers,
following a predefined workflow. The user then distinguishes
quantum servers by examining their error profiles and the
results of the circuits. Owing to space constraints, we present
only the performance of our method in differentiating the
Nairobi machine from the others. The user initially estimates
the state-wise performance gap using Nairobi’s error pro-
file. Following this, we assess the discrepancy between the
user-estimated and cloud-reported state-wise performance gap,
employing the mean square error (MSE) as the metric. A
lower MSE value signifies a strong correlation between the
execution results and the chosen quantum server. The results
are presented in Fig. 4; a darker color indicates a strong
correlation (lower MSE value). Observations reveal that the
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state-wise performance gap estimated by the user consistently
aligns most closely with that generated by the target Nairobi
server. This suggests that users can reliably distinguish the
target quantum server from others using our fingerprinting
technique.

Additionally, in the experiments shown in Fig. 4, the noise-
amplified identity block inserted into the circuit comprised a
varying number of CNOT gates. The results indicate that the
size of the noise-amplified block, which determines the level of
amplified noise, is a crucial factor in distinguishing between
different quantum servers. For example, the block with two
CNOT gates results in a similar degree of match between the
user-estimated fingerprint and the server-reported fingerprints.
This similarity makes it challenging for the user to distinguish
between the servers. Conversely, blocks containing 6 or 8
CNOT gates exhibit a substantial difference in fingerprinting
match degrees.

Identify quantum server. Furthermore, we evaluate
whether we can identify a specific quantum server. In this
experiment, the user has only the error profile of the target
quantum server and receives execution results from a quantum
server on the cloud platform or in a quantum network, which
may not be the one selected by the user. The user’s task is to
determine whether the quantum server that returned the results
is indeed the one they chose. Utilizing our proposed approach,
the user can accomplish this by comparing the estimated
state-wise performance gap with the actual gap observed in
the execution results. Thus, a predefined threshold for this
difference measure is required.

We observe that the discrepancy between the user-estimated
and cloud-reported state-wise performance gaps on the match-
ing machine (Nairobi) is substantially smaller than on the
unmatched machines. In this context, we exclude the 3-qubit
circuit with an identity block comprising two CNOT gates. The
variation in MSE values of the fingerprints on the matched
machine ranges widely from 0.0004 to 0.001, while for the
unmatched machines, it spans from 0.0014 to 0.05. This
significant distinction between the two ranges allows us to
set a threshold for the MSE at 0.001. Consequently, if the
difference between the user-estimated and cloud-report state-
wise probability differences is less than 0.001, the user can
conclude that the task circuit has been executed on the selected
machine; otherwise, it has not.

VI. RELATED WORK

Fingerprinting serves as the primary technique for identify-
ing quantum servers. Various methods have been developed
for fingerprinting these quantum servers, each employing
distinct strategies to identify and characterize the quantum
hardware. The frequency of qubits is used as the fingerprinting
for quantum computers based on transmon qubits [13]. The
authors’ evaluations of these quantum computers revealed that
the frequencies of individual qubits are uniquely distinct. This
uniqueness is primarily due to variations in the manufacturing
process. Even minor differences in materials or circuit dimen-
sions can lead to distinct physical properties for each qubit,

thus allowing their frequencies to act as an effective means of
fingerprinting.

Moreover, quantum errors are commonly employed as a
means to distinguish between different quantum computers
[14], [15]. The unique error pattern resulting from the noisy
execution on a quantum server is employed as its fingerprinting
in [14]. In this approach, a set of probing circuits are executed
on quantum computers, and the resulting noisy outcomes are
used to train a machine learning model. The purpose of this
model is to recognize the unique error patterns characteristic
of various quantum computers. Users can apply this trained
model to their own circuit results to verify whether their com-
putations were performed on the specified machine. Another
fingerprinting method focuses on a specific quantum error
called crosstalk [15]. In this approach, a machine learning
model is developed and trained with data from executing spe-
cially designed probing circuits. These circuits are structured
to target and capture the crosstalk errors that occur in quantum
computers. After the training phase, this model enables users
to accurately identify and verify specific quantum computers
by analyzing their distinct crosstalk error signatures.

These studies demonstrate the potential of using quantum
error patterns as a means of fingerprinting to identify quantum
servers. However, the significant overhead associated with
these methods renders them impractical in the current stage
of quantum computing, where resources are both costly and
scarce. In response to this challenge, we propose a more
lightweight approach to fingerprint quantum servers, designed
to avoid any additional quantum computational overhead.

VII. CONCLUSION

This paper presents Q-ID, a highly effective fingerprinting
method for identifying quantum servers in a quantum comput-
ing platform. Q-ID achieves high accuracy in distinguishing
quantum computers with negligible quantum overhead. Q-
ID employs the state-wise performance gap, resulting from
executing circuits at two different levels of noise, as a unique
identifier for quantum machines. The performance gap, indica-
tive of the error behaviors of noisy operations on the quantum
server, is inherent to the quantum system and varies across
different quantum servers. This inherent variability ensures
the effectiveness of this method in accurately fingerprinting
quantum servers. We evaluate this method on three quantum
computers, each sharing the same qubit topology, from the
IBM quantum platform. Our evaluation results demonstrate
the success and practicality of Q-ID.
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