
1156 IEEE INTERNET OF THINGS JOURNAL, VOL. 4, NO. 5, OCTOBER 2017

Securing SDN Infrastructure of IoT–Fog
Networks From MitM Attacks

Cheng Li, Zhengrui Qin, Ed Novak, and Qun Li, Senior Member, IEEE

Abstract—While the Internet of Things (IoT) is making our
lives much easier, managing the IoT becomes a big issue due
to the huge number of connections, and the lack of protections
for devices. Recent work shows that software-defined networking
(SDN) has a great capability in automatically and dynamically
managing network flows. Besides, switches in SDNs are usually
powerful machines, which can be used as fog nodes simultane-
ously. Therefore, SDN seems a good choice for IoT–Fog networks.
However, before deploying to IoT–Fog networks, the security of
the OpenFlow channel between the controller and its switches
need to be addressed. Since all the controller commands are
sent through this channel, once compromised, the network will
be completely controlled by an attacker. This is a disaster for
both the network service providers and their customers. Previous
works on SDN security either protect controllers themselves
or make a strong assumption that the OpenFlow channel is
already secured. Using TLS to encrypt the channel is not a
“silver-bullet” solution due to the known TLS vulnerabilities.
In this paper, we specifically investigate the potential threats
of man-in-the-middle attacks on the OpenFlow control chan-
nel. We first introduce a feasible attack model in an IoT–Fog
architecture, and then we implement attack demonstrations to
show the severe consequences of such attacks. Additionally, we
propose a lightweight countermeasure using Bloom filters. We
implement a prototype for this method to monitor stealthy
packet modifications. The result of our evaluation shows that
our Bloom filter monitoring system is efficient and consumes few
resources.

Index Terms—Fog computing, Internet of Things (IoT), man-
in-the-middle (MitM) attack, software-defined networking (SDN).

I. INTRODUCTION

FROM smart homes to smart cities, the Internet of Things
(IoT) is becoming an increasingly important part of

our daily lives. According to [1], there will be 12.2 billion
M2M connections by 2020. Managing such a huge amount
of connections is a big challenge for network administra-
tors. Furthermore, objects in the IoT are usually resource
limited. Classical computing-intensive security methods, such
as encryption and anti-virus software cannot be directly
deployed on them. Therefore, it is necessary to secure
IoT devices with the help of the network infrastructure.

Manuscript received December 2, 2016; revised February 9, 2017; accepted
February 25, 2017. Date of publication March 21, 2017; date of current version
October 9, 2017.

C. Li and Q. Li are with the Department of Computer Science,
College of William and Mary, Williamsburg, VA 23187 USA (e-mail:
cli04@email.wm.edu).

Z. Qin is with the School of Computer Science and Information Systems,
Northwest Missouri State University, Maryville, MO 64468 USA.

E. Novak is with Computer Science Department, Franklin and Marshall
College, Lancaster, PA 17603 USA.

Digital Object Identifier 10.1109/JIOT.2017.2685596

Under such circumstances, traditional networks are no longer
suitable for the IoT. On the other hand, software-defined
networking (SDN), which brings many new features, such
as network programmability, centralized control, etc., enables
owners to automatically manage the entire network in a flex-
ible and dynamic way. With these benefits, many believe that
the future of the IoT will be based on SDN. Therefore, several
works [2] and [3] are proposed for the future IoT.

Together with the IoT and SDN, fog computing is also draw-
ing much attention. In fog computing, there are additional fog
nodes between the traditional cloud and user clients. Cloud
servers may offload tasks to these fog nodes and data from
the clients may be cached on the fog nodes. Fog computing
can be considered to be a feasible solution for an IoT imple-
mentation for several reasons. First, because the IoT generates
large amounts of sensor data, sending all the data directly
to the cloud is unrealistic. The fog devices, which are much
closer to the sensors, can preprocess or aggregate the sensor
data before sending it out to the cloud. This saves upstream
network bandwidth. Second, since many IoT services are time
sensitive, the cloud is not suitable for such IoT tasks due to
the significant traffic latency. In this case, some lightweight
processes can be migrated to nearby fog nodes, moving the
computational resources closer to the IoT devices. This saves
processing time. As both SDN switches and fog nodes are rel-
atively powerful nodes in a typical IoT deployment, they are
usually combined together, which is a perfect way to integrate
the functionality of both SDN and fog computing.

Though deploying IoT–Fog networks using SDN seems
promising, security issues are inevitable here. Take smart home
applications as an example. The fog nodes deployed in smart
homes may not be configured well due to the users’ lacks
of expert knowledge, which may introduce vulnerabilities to
the fog nodes. Furthermore, because fog nodes and SDN
switches are usually combined together, vulnerabilities in fog
nodes may be leveraged by attackers to compromise the SDN
switches they control. Therefore, it is necessary to have secu-
rity mechanisms to further monitor and enhance the security
of the SDN infrastructure in IoT–Fog scenarios.

In SDN, the controller controls all the switches through
“OpenFlow” channels. Commands, and requests from the con-
troller, as well as status and statistics from the switches, are
transmitted through the OpenFlow channels. Therefore, the
security and reliability of OpenFlow channels between the
controller and switches are critical for proper SDN opera-
tion, configuration, and management. If an attacker were to
intercept and/or modify the messages on these channels, he

2327-4662 c© 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

LI et al.: SECURING SDN INFRASTRUCTURE OF IoT–FOG NETWORKS FROM MitM ATTACKS 1157

or she could send fake messages to the switches and the
controllers, launching a wide variety of attacks, such as denial
of service or man-in-the-middle (MitM) attacks.

OpenFlow channels, once intercepted, may bring disas-
trous circumstances to both the network providers and their
customers. For example, an attacker can collect customers’
sensitive information (e.g., sensor data depicting a user’s daily
behavior) by commanding the switches to send copies of pack-
ets containing such information to the attacker. In this way,
sensitive user information will be leaked to attackers. With
network infrastructure under such a threat, SDN has more
security concerns than a traditional network. Taking another
example, the attacker can send fake packets, on behalf of the
switches, to the controller, poisoning the controller’s global
view of the network topology. With the incorrect topology,
the controller may misconfigure other well-behaved switches,
which may cause the network connectivity outages. The result
is a horrible user experience and substantial revenue lost. With
such potential threats still viable, SDNs will never fully replace
traditional networks. Even though it offers many new attrac-
tive features, without solving these problems, all the flexibility
is meaningless. Therefore, work should be done to protect the
OpenFlow channels from interception.

One may leverage cipher techniques to encrypt the channel
after authentication. However, authentication and encryption
alone cannot guarantee the safety of the OpenFlow channels.
TLS, for example, is one of the most popular cryptographic
protocols. However, there are still works exploiting vulnerabil-
ities in its cipher suites and the protocol itself [4]. In [5], the
attacker can compromise a TLS link by stealthily installing a
client certificate. Moreover, since smart embedded devices in
IoT have limited resources, some safe but computing inten-
sive protocols cannot be deployed on them. Without secure
communicating, these devices are more vulnerable to be com-
promised, increasing the risks of attacks against OpenFlow
channel. Even assuming it were perfectly safe, fully imple-
menting TLS is very difficult. Reference [6] indicates that
most SSL implementations are partially implemented and con-
tain potential vulnerabilities. Furthermore, if the attacker were
to obtain the credentials or passwords of the switches or con-
trollers via some other ways, there are limited approaches to
detect and defend against the attacks. In general, we cannot
only rely on cipher techniques. There should be other compli-
mentary systems to secure OpenFlow channels. To detect such
attacks, it may be possible to use a packet monitor to inves-
tigate those packets in the OpenFlow channels. However, the
attacker does not necessarily change all the packets passing
through the channels. With only one or two packets inserted
or dropped, the attacker can easily change a switch’s behav-
ior. Therefore, monitoring the channel is not efficient. Besides,
developing another monitoring system could cost much time
and money.

In this paper, we mainly focus on the security issues of
OpenFlow channels, especially MitM attacks. We propose
approaches to launching MitM attacks on OpenFlow channels
and investigate several subsequent attacks. We also implement
demos for such attacks. We show that an attacker can use a
small script to modify flow tables, collect information, and

poison the controller’s view. We also propose a countermea-
sure to detect MitM attacks by leveraging Bloom filter. We
extend the OpenFlow protocol to incorporate our Bloom filter
method and implement a prototype system which can serve
as a complementary system to a variety of cipher techniques,
such as TLS, to protect the OpenFlow channel from MitM
attacks. Compared with standard packet monitoring systems
and TLS, our system is lightweight and does not require addi-
tional hardware or maintenance. The results of our evaluation
show that our system is efficient, accurate, and incurs only neg-
ligent overhead. To the best of our knowledge, this paper is
the first to fully investigate MitM attacks on OpenFlow chan-
nels and develop a monitoring system based on SDN for such
attacks.

In summary, our contributions are as follows.
1) We build demonstrations of these attacks to show how

the attackers modify flow paths, collect sensitive infor-
mation, and poison the controller’s global view. Our
implementations are relatively simple scripts with a few
lines.

2) Based on SDN features, we propose a lightweight coun-
termeasure to detect MitM attacks against OpenFlow
channel.

3) We implement a prototype system to detect packet mod-
ification with Bloom filters based on SDN and extending
the OpenFlow protocol.

II. MitM ATTACK IN OPENFLOW CHANNEL

In this paper, we assume both the controller and the switch
are trusted. Both of them work correctly according to the
OpenFlow protocol. The OpenFlow channel, on the other
hand, is not trusted.

Fig. 1 proposes one desirable SDN architecture in IoT–Fog
scenario. Each IoT LAN has a gateway switch and a fog node.
For efficiency concerns, the gateway and the fog node are
usually combined together. The gateway switch in each IoT
LAN is controlled by ISP controller. Since ISP cloud is more
secure, we argue that it is safer to put the controller in ISP
cloud rather than IoT LAN. ISP offers its customers virtual
machines with controller software installed, giving them rights
to control their gateway switches and fog nodes. Usually, the
gateway switch and controller in ISP cloud communicates in
TLS. The goal of the attacker is to intercept this encrypted
communication channel.

As introduced in [5], the attacker can launch KCI attack to
intercept the communication channel between a client and a
server by stealthily installing a client certificate at the client
side. In order to successfully install client certificate at the
gateway switch, the attacker needs a helper inside the LAN.
Indicated by [7]–[11], there are a large amount of embed-
ded smart devices are vulnerable to firmware updating attack,
in which the attacker compromise a smart device’s firmware
through legitimate updating processes. If there is such a device
inside the IoT LAN: 1) the outside attacker can take control of
it by launching firmware modification attack; 2) then the smart
device, ordered by the attacker, installs a client certificate at
the fog node (gateway), claiming that the fog node needs to

1158 IEEE INTERNET OF THINGS JOURNAL, VOL. 4, NO. 5, OCTOBER 2017

Fig. 1. Attacking model.

use this certificate to identify itself in their future communi-
cations; 3) after the gateway installs the client certificate, the
outside attacker breaks the connection between the controller
and the gateway; and 4) performs KCI attack [5] to achieve
MitM attack on the OpenFlow control channel. After these
steps, the attacker has successfully intercepted the OpenFlow
channel and take control of the gateway.

III. ATTACK DEMO

Here, we introduce three attack demonstrations. In the first
one, the attacker redirects flows in the data plane. The second
one exemplifies how the attacker can collect information from
the data plane. The last one shows how the attacker is able
to poison the controller’s view of the network. We present
only three attack scenarios out of many others. The complete
spectrum of possible attacks is currently unknown.

A. Environment Set-Up

We use Floodlight, an open source SDN controller, as our
SDN controller, and use Mininet to simulate a network in
our experiments. The controller and switches communicate
through OpenFlow v1.3. To simplify our demos, we assume
that the attacker, the controller, and the Mininet VM are
located on the same local network. This assumption does not
affect the result of our demos because the attacker can always
intercept OpenFlow channels with spoofing techniques, such
as ARP spoofing. This is possible as long as the attacker exists
in the path between the switch and the controller.

Since Mininet is running on a virtual machine, all simu-
lated switches share the same IP address and remotely connect
to the controller. Our attack scripts attack only the Mininet
virtual machine, intercepting all simulated switches. Our con-
figuration does not affect the final result of the demos because
the technique to attack the switch’s interface is identical to
attacking the Mininet virtual machine.

Our attack scripts are written in Python v2.7 using the
popular scapy library, which is very convenient for crafting,
sending, and sniffing packets. We use this library to build fake
OpenFlow commands for the switches. In our demos, we use
ARP spoofing techniques to intercept the OpenFlow channel.

B. Traffic Flow Modification

The most straightforward attack is to stealthily modify
the victim switch’s forwarding table. In our experiment, the

Fig. 2. Traffic redirection attack.

Fig. 3. Redirection attack. Packet capture result of h1 ping h4.

attacker blocks a certain host’s traffic flow and redirects the
flow to another host. Fig. 2 shows the idea of this attack. The
attacker inserts two OpenFlow packets, which contain flow
table modification commands, into the OpenFlow channel. The
first OpenFlow packet instructs the switch s1 to modify the
destination IP and MAC address of any packets originally des-
tined for host h4. The new IP address and MAC address are
that of host h3. The second OpenFlow packet commands the
switch to modify the source IP address of any packets orig-
inating from h3, to the IP address of h4. As a result, if h1
tries to communicates with h4, it will actually be redirected
to h3, leaving h1 unaware that it is communicating with a
different host. To test the attack, we let h1 ping h4 and cap-
ture the packets transmitted using Wireshark. Fig. 3 shows
the packet capture results (from all the interfaces in s1). In
the figure, the first entry shows that s1 receives the ICMP
packet from h1 (10.0.0.1) with the destination h4 (10.0.0.4).
After being processed by the switch, the packet’s destination
IP address has been changed to h3’s (10.0.0.3) (the second
entry). Though not shown in Fig. 3, from the reply of h3 (the
third entry), the MAC address of the packet is also changed.
Passing through s1 again, the source IP address is changed
back to the IP address of h4 (the fourth entry). These redi-
rected paths cannot be inferred by h1. If h1 is a Web camera
that tries to communicate with a cloud server h4 but unexpect-
edly communicates with a malicious machine h3, all sensitive
information from h1 will be exposed to the attacker.

C. Information Collection

The attacker may also stealthily collect information by
modifying the switch forwarding table. Fig. 4 illustrates the
basic idea of an information collection attack. The attacker
first forges an OpenFlow packet, which contains flow table
modification commands, and sends it to the victim switch.
The attacker instructs the switch to send a copy of each
packet targeting h4 to the “controller,” which is actually the
attacker. Once the victim switch updates its forwarding table,
the attacker will receive all the packets originally destined for
h4. We let h1 ping h4 and again capture all packets from all

LI et al.: SECURING SDN INFRASTRUCTURE OF IoT–FOG NETWORKS FROM MitM ATTACKS 1159

Fig. 4. Information collection attack.

Fig. 5. Information collection attack. Packet capture of h1 ping h4.

Fig. 6. Information collection attack: h1 ping h4 in terminal.

the interfaces of s1 using Wireshark. Fig. 5 shows the cap-
ture result. In this demonstration, we let the attacker simply
sends back the ping packet just for testing. Fig. 6 shows the
ending point of h1’s ping packets. We can see that the host
receives two duplicate replies, one from h4 and the other from
the attacker. Similar as the previous demonstration, sensitive
information will be leaked to the attacker, but both the client
and the server will not be aware of the eavesdropper.

D. Topology Poisoning Attack

In SDNs, the controller learns the global topology through
LLDP packets. Suppose the controller commands switch s to
output an LLDP packet through port eth1. Another switch
s’ receives this packet on port eth2. Switch s’ includes both
this packet and the port eth2 number in a packet_in message
and sends it to the controller. From this message, the controller
knows that port eth1 in s connects with port eth2 in s’.
If the attacker modifies the LLDP packets, the controller will
have an incorrect view of the global topology.

Fig. 7 shows the basic idea of this attack. The attacker
stealthily modifies both the output port and the max_len field
in the packet_out message. The max_len field indicates the
maximum number of bytes the switch can send to the con-
troller. If this field is set to 0, and the output port is set to the
controller, s1 simply ignores this message. In this way, s2
has no chance to receive the LLDP packet, let alone forward
the packet back to the controller. If the attacker does the same
to s2, the controller will concludes that these two switches are
not connected. Fig. 8 shows the topology generated by the con-
troller during the attack. Fig. 8 shows the DPID of each switch.
The DPID of s1 is “00:00:00:00:00:00:00:01” while the DPID
of s2 is “00:00:00:00:00:00:00:02.” The third switch, which
is not shown in Fig. 7, is not involved in this attack. In reality,

Fig. 7. Topology poisoning attack.

Fig. 8. Topology poisoning attack. Controller view.

s1 and s2 are connected. However, the controller is fooled
into thinking that they are not. If there is a packet inspection
middle box along the s1–s2 link, the attacker can use this
method to circumvent inspection.

IV. COUNTERMEASURE

In this section, a countermeasure and its OpenFlow exten-
sion to detect MitM attacks on OpenFlow channel will be
proposed.

As mentioned in the previous section, the attacker can
stealthily modify packets in the data plane by changing one or
more switches’ forwarding table. To detect such a threat, one
straightforward idea is to let the controller query all the pack-
ets that the switches forwarded, and then compare them one
by one. However, this naive method will dramatically increase
the burden of both the controller and the network, and also it
is not efficient. To ease the burden, we propose a method to
detect packet modifications using a Bloom filter. Bloom filter
is a space-efficient data structure, which is used for testing the
existence of an element in a set.

We let each switch along one flow locally put packets of
that flow into a Bloom filter. If they put the same packets into
the Bloom filter, respectively, these Bloom filters should be
the same. Thus, the controller can detect any packet modifi-
cations of this flow by collecting all these Bloom filters and
checking the difference between these filters. If there are any
differences between these filters, it is sure that the packets
are modified during its delivering. Besides all the switches’
Bloom filter, we also need the origin packet sending from the
sensor in case the data packets are modified at the first switch.
We put a monitor process in the fog node. These processes
do the same as what the switches do, putting packets from
a specific flow into Bloom filters and sending Bloom filters
to the controller when requested. The only difference is that
these monitor processes interact with another instance in the
cloud rather than the controller. Then the instance forwards
the Bloom filter to the controller. The reason of using another

1160 IEEE INTERNET OF THINGS JOURNAL, VOL. 4, NO. 5, OCTOBER 2017

Fig. 9. Initialization of generating Bloom filter.

instance is to hide the interaction between the monitor process
and the controller. As fog nodes frequently communicate with
the cloud and these monitor only interact with the could when
requested, the attacker has difficulties finding these monitor
processes.

To apply this idea, we extend OpenFlow by adding three
new message types: 1) BF_INITIAL; 2) BF_SUBMIT; and
3) BF_REPLY. The meanings of these messages are intro-
duced later. Figs. 9 and 10 illustrate the protocol of initializing
and finalizing our Bloom filter method, respectively. To start
detection, the controller first sends all switches an initializa-
tion command (BF_INITIAL), which contains the following
information: 1) the examined flow f , represented by match-
ing fields used in OpenFlow; 2) a tag τ , which will be used
later; 3) a set S of fields that should be omitted when com-
puting the hash values of packets (necessary for inserting
into a Bloom filter); and 4) the maximum number of pack-
ets inserted into the filter n. If n is set to 0, there is no limit
for inserting packets into the Bloom filter. After receiving
BF_INITIAL, each switch initializes itself according to the
parameters and replies with an acknowledgment (BF_REPLY
with no content) to the controller. When the controller receives
a reply from every switch, it triggers the detection stage
by modifying the flow table of the first switch to tag flow
f with τ .

Once the controller wants to collect the Bloom filters from
the switches, it first modifies the flow entry of the tagged
flow f in the last switch on the path by adding a packet_in
action. In this way, the controller can track the last packet of
the procedure. After that, the controller commands the first
switch to stop tagging flow f . When there is no packet from
the last switch for a certain time, it sends out BF_SUBMIT
messages to all the switches to submit their Bloom filters by
BF_REPLY messages. The controller compares all the filters
to find whether there is any difference among them. If any
difference is found, the controller will warn the administrator
about the misbehaving switches.

A. Limitation of the Countermeasure

This approach works in most cases in practice. However, in
some extreme cases, for instance, all the OpenFlow channels
between the controller and switches in one flow path has been
intercepted, our method will not work. Besides, if the attacker
modifies fields that are not in set S, this paper will not work
either.

Fig. 10. End of generating Bloom filter.

Fig. 11. Architecture of Bloom filter monitor system.

V. IMPLEMENTATION

In this section, we will elaborate on the implementation of
our Bloom filter monitor system, which can detect packet mod-
ifications in SDNs. Specifically, we will present the overview
of the system and describe all components of the system.

A. System Overview

The monitor system, which we refer to as the “Bloom filter
monitor system,” consists of two parts. One is implemented in
Floodlight controller, and the other is implemented in Open
vSwitch (OVS). Fig. 11 shows the architecture of our system.
The controller side has one module named “Bloom filter mon-
itor,” which is responsible for sending out BF_INITIAL and
BF_SUBMIT messages to OVS, collecting replies from OVS,
and comparing the switches’ filters. This module offers two
REST APIs for administrators or other applications to conduct
the Bloom filter detection phase.

The switch portion consists of two components. Generally
speaking, the switch has two tasks for each packet: 1) extract
examined fields (or data) and 2) insert extracted contents into
the Bloom filter. In OVS, all the packets are received and
forwarded in the datapath, a module that is running in kernel
space where extraction starts. However, any delay inside the
datapath can affect the forwarding speed. Thus, we put the
hash function and Bloom filter insertion code into the user
space. In this way, the switch can insert the extracted content
while forwarding packets in the datapath. The switch also has
one component to communicate with the controller, receiving

LI et al.: SECURING SDN INFRASTRUCTURE OF IoT–FOG NETWORKS FROM MitM ATTACKS 1161

OpenFlow messages from the controller, triggering the Bloom
filter detection phase, and replying with the filled Bloom filter
to the controller.

B. Controller Side Design

1) Bloom Filter Monitor Module: The main part of the
Bloom filter monitor, as we mentioned previously, is a mod-
ule in the Floodlight controller, which is automatically loaded
during the initialization of Floodlight. The module has two
main functions: 1) initializing and 2) finalizing the Bloom fil-
ter monitor method. Both of these functions can be invoked
from REST APIs. The workflow of these two functions is the
same as shown in Figs. 9 and 10.

2) OpenFlow Library: To extend OpenFlow to support
our new message type, we modify the source code of the
OpenFlow protocol library in Floodlight. For each of our three
new OpenFlow messages: 1) BF_INITIAL; 2) BF_SUBMIT;
and 3) BF_REPLY, one interface and several implementation
classes (implemented under different OpenFlow versions) are
inserted into the source code. We also change the serializa-
tion and OFType enum to support the serialization of these
messages so that they can be transmitted through the network.

3) Floodlight Core: To enable Floodlight to handle our
new messages as just another standard OpenFlow mes-
sage, we modify some core codes of Floodlight. Class
OFSwitchHandshakeHandler is responsible for receiv-
ing different types of messages and dispatching them to
different components. We inserted code here to let it dispatch
BF_REPLY messages to a message listener. In this way, the
Bloom filter monitor is able to receive and parse BF_REPLY
messages from switches through a message listener.

C. Switch Side Design

1) OpenFlow Extension: To extend OpenFlow in OVS, we
first insert the head structure of our three new OpenFlow
messages, in the OpenFlow head files, into OVS. Then, we
add new entries in enum OPTRAW and OFTYPE for our
new message type. We also implement a message builder for
BF_REPLY and parsers for BF_INITIAL and BF_SUBMIT,
so that the OVS can understand these new messages. Finally,
we add our new message handlers to the OpenFlow handler in
OVS. The handler parses the message with the parser and pro-
ceeds according to the message contents. Several actions may
be taken, such as configuring the datapath through netlink,
modifying the flow table to tag flows, and replying to the
filters generated. With these modifications, OVS is able to
communicate with Floodlight, which also has the OpenFlow
extension.

2) Fields Extraction and Element Insertion: OVS is mainly
divided into two parts: 1) vswitchd and 2) datapath. Vswitchd
runs in the user space and is responsible for communicating
with the controller and managing the flow table along with
some other features. Datapath runs in kernel space and is
responsible for forwarding packets. As this part runs in kernel
space, the packets can be quickly forwarded.

All the packets received by OVS first come to the datapath
component where feature extraction is implemented. Once the

switch receives one tagged packet, it extracts fields according
to the configuration from vswitchd. After extraction, it sends
the result to vswitchd using upcall, which is a mechanism used
for datapath to send messages to vswitchd. In our implementa-
tion, we leverage this to send the extracted header fields to user
space. Once user space receives the extracted field informa-
tion, it computes the hashes and inserts them into the Bloom
filter.

3) Filter Placement and Initialization: It is nontrivial to
decide where to place the Bloom filter. Usually, there are
several bridges inside one OVS entity. Each bridge may be
connected to several different VMs. If we put the filter in the
global domain, (i.e., all bridges share one filter), then the traf-
fic flowing between VMs will not be covered. Therefore, each
bridge should be treated as a switch entity and given their own
Bloom filter.

In our implementation, we put the Bloom filter inside the
structure ofproto, which is for OpenFlow protocol in OVS,
since each bridge has only one such data structure, and this
structure can be accessed during the processing of the upcall,
where messages of extracted contents are received. When a
bridge connects with the controller, it will initialize its own
ofproto structure. The filter spaces are allocated at the same
time. Once the filter has been submitted to the controller, the
bridge will reset the filter for the next collection.

4) Hash Function: The hash algorithm is implemented with
Murmur3 32-bit [12]. It is independent and uniformly dis-
tributed, which is apt for use in a Bloom filter. Furthermore,
it is simple and efficient. For each packet, we compute the
Murmur3 hashes with different seeds (to generate the k nec-
essary hashes used in the Bloom filter) and the hash output is
truncated according to the filter size. The decision of k will
be discussed in the next section.

VI. EVALUATION

In this section, we first evaluate the performance of our
Bloom filter method and delay it introduces. Then, we will
test the accuracy (false positive rate) of this method.

The experimental settings are the same as the ones used
in our attack demo, except that the number of switches and
hosts. We use Mininet to simulate more switches and hosts to
generate more traffic flows. The Floodlight controller connects
with all the switches remotely. An attacker stealthily injects
commands in the OpenFlow channels. There is no flow path in
the data plane that consists solely of compromised switches.

A. Performance

The performance evaluation includes three parts. First, we
evaluate the time cost for detecting an attack. Then, we focus
on the time cost of inserting packets into filters. Finally, we
investigate the introduced delays in the data plane.

1) Time Cost for Detecting: We only measure the time
cost between the controller sending out a BF_SUBMIT mes-
sage, and the controller finally finding inconsistency among
the replied Bloom filters. We ignore the time interval between
the BF_INITIAL and BF_SUBMIT messages since it is solely
depended on the administrator.

1162 IEEE INTERNET OF THINGS JOURNAL, VOL. 4, NO. 5, OCTOBER 2017

Fig. 12. Time costs for detection.

TABLE I
AVERAGE TIME COSTS IN EACH PHASE IN OVS

In our first experiment, we select several flows in the data
plane and let the attacker send commands to the correspond-
ing switches to modify the destination IP address of packets
(in order to keep communicating, for the purposes of the
experiment, the modified IP address will be modified back
by another experimenter controlled switch). To generate the
selected flows, we let the two end hosts ping each other.

The number of hops along the path in the selected flows
are 20, 40, 60, 80, and 100. Fig. 12 shows the time interval
between sending out BF_SUBMIT and when the system cor-
rectly detecting the attack. The detection time mainly contains
two parts: 1) network communication and 2) time for the
controller to compare all the collected filters. The network
communication contributes most of the delay. Additionally,
we can also see that as the number of hops along the path
grows, the detection time increases linearly. One more hop
in the path will introduce about 0.125 ms delay in detection.
Therefore, the increased rate is acceptable. The total time for
detecting an attack is also relatively short. Examining flows
with 100 hops takes less than 7 ms. In summary, the detection
is achieved in a timely manner.

2) Time Cost in OVS: As we mentioned in the previous
section, our Bloom filter method has codes in both user space
and kernel space. We conduct experiments to investigate the
time cost in both phases, that is, the extraction and the hash
computation.The experiments are repeated 30 times and the
average costs are shown in Table I. From the table, we can
see that the time spent in kernel is about 0.005 ms, which
does not have a significant effect on the other nonselected
packets’ forwarding. For the hash generation phase, the time
measured is less than 0.2 ms, which is negligible in regards
to user experience.

3) Introduced Delay: To evaluate the delay introduced by
our method, we compare the round-trip time (RTT) of a ping
sent between two hosts with and without our method enabled.
Fig. 13 shows the experiment results. We measure the RTT
of flows while varying the number of hops. The RTTs under
these different conditions are nearly the same. It is obvious
that our method introduces negligible delays in the traffic. This
makes sense since, as we mentioned in Table I, our method

Fig. 13. Ping delay comparison.

TABLE II
PARAMETERS IN ACCURACY EVALUATION

introduce very little delays in kernel space, and therefore, has
little impact on the forwarding time of other packets.

B. Accuracy

In this section, we evaluate the accuracy of our method.
Since Bloom filters introduce false positives (but not false neg-
atives), we only measure the false positive rate. Here, “false
positive” means that some Bloom filters are actually generated
from different sets of packets, but they appear to be identical.
As the number of inserted packets increases, the false positive
increases. This is expected because Bloom filters have a lim-
ited number of bits to store information. In this experiment,
all the hosts of the network ping each other with a predeter-
mined amount of ping packets. The experiments are repeated
with different amounts of ping packets and the attacker com-
mands the switches to modify parts of the data and destination
IP addresses of all the generated flows. Switches insert ping
packets flowing through them to filters and send to the con-
troller once they receive submit requests from the controller.
Based on the number of detected attacks, we compute the false
positive rate. Since the size of the Bloom filter, and the num-
ber of hash functions, are two key factors that affect the false
positive rate, we mainly focusing on these factors. Table II
introduces the meaning and default value of parameters in the
following experiments.

1) Filter Size: We first use different filter sizes (s) to test the
false positive rate with different numbers of inserted packets.
Here, we make s = 1024, 512, 256, 128 and k = 5. Fig. 14
shows the false positive rate with different filter sizes. We
can see that a larger filter can have more packets inserted
into it while keeping its false positive rate at 0. For a 1024-bit
filter, about 1100 packets can be inserted into the filter without
introducing any false positives. However, for a 128-bit filter,
if more than 100 packets are inserted, the false positive rate
will dramatically increase to a very high level. Therefore, it is
better to use a larger filter. However, larger filters require more
space and introduce more burden to the network. Therefore, it
is a tradeoff between efficiency and accuracy. We use 1024-bit
filters in our implementation.

LI et al.: SECURING SDN INFRASTRUCTURE OF IoT–FOG NETWORKS FROM MitM ATTACKS 1163

Fig. 14. False positive with different filter size.

Fig. 15. False positive with different number of hashes.

2) Number of Hash Functions: Our next experiment varies
the number of hash functions (k) to investigate the false posi-
tive rate when the number of inserted packets changes. Here,
we make k = 1, 2, 5, 10 and s = 128. Fig. 15 shows the rela-
tionship between the false positive rate, and the number of
hashes used. We can see that when only one hash function is
used, the filter can at most have 400 packets inserted without
introducing false positives. However, for the scenario with ten
hash functions, false positives begin occurring when about 40
packets have been inserted, and it increases dramatically when
more packets are inserted after this point. When many hash
functions are used (k is large), the false positive rate tends to
be higher as more packets are inserted into the filter.

VII. RELATED WORK

SDN security issues draw more attentions to
researchers [13]. Shin et al. [14] proposed FRESCO, a
development framework for fast developing OpenFlow
security applications. In [15], a security enforcement kernel
is added as an extension of Floodlight controller. Fleet [16]
is another similar controller that protect the data plane
forwarding from malicious administrators. Son et al. [17]
proposed a security invariant checking method with Yices
SMT solver. All these works focus on the inner logic check
of the controller rather than the misbehaved switches. With
the finding of topology poising attack [18], SPHINX [19] is
proposed to inspect packets from switches to the controller.
Thourgh the problem it tries to solve is very similar to ours,
SPHINX assumes the communication from controller to
switches is trustworthy, which is not the case in our scenario.

As a promising new field, there are lots of works in fog
computing field [20]–[22]. Hao and Li [23] proposed a stor-
age system for fog computing, which supports user-specified
synchronization policies on the data objects. Hao et al. [24]
presented a software architecture that eases the development
of fog applications.

VIII. CONCLUSION

In this paper, we focus on the potential threat of MitM
attacks targeting on OpenFlow channels in IoT–Fog scenario.
We introduce an attack model to show how to perform such
attack on our proposed SDN architecture. We also implement
three attack demos to reveal how the attack works in detail. To
detect such attacks, we also propose a countermeasure using
Bloom filter to detect MitM attack. A prototype of this Bloom
filter monitor is implemented by extending the OpenFlow pro-
tocol. The evaluation result shows that the Bloom filter method
is both lightweight and efficient.

REFERENCES

[1] 11th Annual Visual Networking Index: Global IP Traffic Forecast
Update, Cisco, San Jose, CA, USA, 2015.

[2] A. Wang, Y. Guo, F. Hao, T. V. Lakshman, and S. Chen, “Scotch:
Elastically scaling up SDN control-plane using vSwitch based overlay,”
in Proc. 10th ACM Int. Conf. Emerg. Netw. Exp. Technol., Sydney, NSW,
Australia, 2014, pp. 403–414.

[3] D. Wu, D. I. Arkhipov, E. Asmare, Z. Qin, and J. A. McCann, “Ubiflow:
Mobility management in urban-scale software defined IoT,” in Proc.
IEEE INFOCOM, Hong Kong, 2015, pp. 208–216.

[4] Y. Sheffer, R. Holz, and P. Saint-Andre, “Summarizing known attacks
on transport layer security (TLS) and datagram TLS (DTLS),” IETF,
Fremont, CA, USA, RFC 7457, 2015.

[5] C. Hlauschek, M. Gruber, F. Fankhauser, and C. Schanes, “Prying open
Pandora’s box: KCI attacks against TLS,” in Proc. 9th USENIX WOOT,
Washington, DC, USA, 2015, p. 2.

[6] SSL Labs. Survey of the SSL Implementation of the Most Popular
Web Sites. Accessed on Apr. 2016. [Online]. Available: https://
www.trustworthyinternet.org/ssl-pulse/

[7] A. Cui, M. Costello, and S. J. Stolfo, “When firmware modifica-
tions attack: A case study of embedded exploitation,” in Proc. NDSS,
San Diego, CA, USA, 2013.

[8] K. Chen, “Reversing and exploiting an apple firmware update,” in Proc.
Black Hat, Las Vegas, NV, USA, 2009.

[9] S. Hanna et al., “Take two software updates and see me in the morning:
The case for software security evaluations of medical devices,” in Proc.
HealthSec, San Francisco, CA, USA, 2011, p. 6.

[10] C. Miller, “Battery firmware hacking,” in Proc. Black Hat USA,
Las Vegas, NV, USA, 2011, pp. 3–4.

[11] B. Jack, “Jackpotting automated teller machines redux,” in Proc. Black
Hat USA, Las Vegas, NV, USA, 2010.

[12] Austin Appleby. Accessed on Apr. 2016. [Online]. Available:
https://sites.google.com/site/murmurhash/

[13] S. Scott-Hayward, S. Natarajan, and S. Sezer, “A survey of security in
software defined networks,” IEEE Commun. Surveys Tuts., vol. 18, no. 1,
pp. 623–654, 1st Quart., 2016.

[14] S. Shin et al., “Fresco: Modular composable security services for
software-defined networks,” in Proc. NDSS, San Diego, CA, USA, 2013.

[15] P. Porras, S. Cheung, M. Fong, K. Skinner, and V. Yegneswaran,
“Securing the software-defined network control layer,” in Proc. NDSS,
San Diego, CA, USA, 2015.

[16] S. Matsumoto, S. Hitz, and A. Perrig, “Fleet: Defending SDNs from
malicious administrators,” in Proc. ACM Workshop Hot Topics Softw.
Defined Netw., Chicago, IL, USA, 2014, pp. 103–108.

[17] S. Son, S. Shin, V. Yegneswaran, P. Porras, and G. Gu, “Model check-
ing invariant security properties in OpenFlow,” in Proc. IEEE ICC,
Budapest, Hungary, 2013, pp. 1974–1979.

[18] S. Hong, L. Xu, H. Wang, and G. Gu, “Poisoning network visibility in
software-defined networks: New attacks and countermeasures,” in Proc.
NDSS, San Diego, CA, USA, 2015.

1164 IEEE INTERNET OF THINGS JOURNAL, VOL. 4, NO. 5, OCTOBER 2017

[19] M. Dhawan, R. Poddar, K. Mahajan, and V. Mann, “SPHINX:
Detecting security attacks in software-defined networks,” in Proc. NDSS,
San Diego, CA, USA, 2015.

[20] S. Yi, C. Li, and Q. Li, “A survey of fog computing: Concepts, applica-
tions and issues,” in Proc. ACM Workshop Mobile Big Data, Hangzhou,
China, 2015, pp. 37–42.

[21] S. Yi, Z. Qin, and Q. Li, “Security and privacy issues of fog computing:
A survey,” in Proc. WASA, Qufu, China, 2015, pp. 685–695.

[22] S. Yi, Z. Hao, Z. Qin, and Q. Li, “Fog computing: Platform and
applications,” in Proc. IEEE HotWeb, Washington, DC, USA, 2015,
pp. 73–78.

[23] Z. Hao and Q. Li, “EdgeStore: Integrating edge computing into cloud-
based storage systems,” in Proc. IEEE/ACM Symp. Edge Comput.,
Washington, DC, USA, 2016, pp. 115–116.

[24] Z. Hao, E. Novak, S. Yi, and Q. Li, “Challenges and software archi-
tecture for fog computing,” IEEE Internet Comput., vol. 21, no. 2,
pp. 44–53, Mar./Apr. 2017.

Cheng Li is currently pursuing the Ph.D. degree
at the Department of Computer Science, College of
William and Mary, Williamsburg, VA, USA.

His current research interests include software-
defined networking (SDN), NFV, machine learning,
and network security.

Zhengrui Qin received the Ph.D. degree in com-
puter science from the College of William and Mary,
Williamsburg, VA, USA.

He is an Assistant Professor with the School
of Computer Science and Information Systems,
Northwest Missouri State University, Maryville,
MO, USA. His current research interests include
cyber security and mobile computing.

Ed Novak received the Ph.D. degree from the
College of William and Mary, Williamsburg, VA,
USA, in 2016, under the supervision of Dr. Q. Li.

He is currently an Assistant Professor of com-
puter science with Franklin and Marshall College,
Lancaster, PA, USA. His current research interests
include security and privacy of smart mobile devices
and the Internet of Things.

Qun Li (M’05–SM’12) received the Ph.D. degree in
computer science from Dartmouth College, Hanover,
NH, USA.

He is a Professor with the Department of
Computer Science, College of William and Mary,
Williamsburg, VA, USA. His current research
interests include wireless networks, IoT, edge com-
puting, pervasive computing, and security and pri-
vacy.

Dr. Li was a recipient of the NSF CAREER Award
in 2008.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZapfChancery-MediumItalic
 /ZapfDingBats
 /ZapfDingbatsITCbyBT-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

