
Privacy-Preserving Quantum Annealing for
Quadratic Unconstrained Binary Optimization

(QUBO) Problems
Moyang Xie1, Yuan Zhang1, Sheng Zhong1, Qun Li2

1State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, China
2Department of Computer Science, William & Mary, Williamsburg, VA, USA

xie moyang@foxmail.com, zhangyuan@nju.edu.cn, zhongsheng@nju.edu.cn, liqun@cs.wm.edu

Abstract—Quantum annealers offer a promising approach to
solve Quadratic Unconstrained Binary Optimization (QUBO)
problems, which have a wide range of applications. However,
when a user submits its QUBO problem to a third-party
quantum annealer, the problem itself may disclose the user’s
private information to the quantum annealing service provider.
To mitigate this risk, we introduce a privacy-preserving QUBO
framework and propose a novel solution method. Our approach
employs a combination of digit-wise splitting and matrix per-
mutation to obfuscate the QUBO problem’s model matrix Q,
effectively concealing the matrix elements. In addition, based on
the solution to the obfuscated version of the QUBO problem, we
can reconstruct the solution to the original problem with high
accuracy. Theoretical analysis and empirical tests confirm the
efficacy and efficiency of our proposed technique, demonstrating
its potential for preserving user privacy in quantum annealing
services.

Index Terms—Privacy-Preserving, Quadratic Unconstrained
Binary Optimization, Quantum Annealing.

I. INTRODUCTION

Leveraging the unique quantum mechanics, such as super-
position, entanglement, and quantum interference, quantum
computers provide a new computing paradigm for many
new applications. For example, quantum annealers, based on
a process of simulated annealing, can search the solution
space efficiently and find the optimal solution to optimization
problems [1] that are difficult for classical computers to solve.

In particular, quantum annealers are known for effectively
solving the Quadratic Unconstrained Binary Optimization
(QUBO) [2], [3], which has broad-ranging applications in
fields such as finance, economics, etc. [4]. As an NP-hard
problem, QUBO poses a significant computational challenge
to classical computers. It has been applied to various clas-
sical problems in theoretical computer science, including the
maximum cut, graph coloring, and the partition problem, all of
which can be formulated as QUBO embeddings [5]. Addition-
ally, QUBO has extended its utility to machine learning, with
embeddings designed for support-vector machines, clustering
algorithms, and probabilistic graphical models [6], [7]. The
close relationship between QUBO and Ising models posi-
tions QUBO as a central problem class in adiabatic quantum
computation, where solutions are sought through the physical

process known as quantum annealing. A diverse array of
industry leaders, including D-Wave, Google, IBM, Microsoft,
and Amazon, alongside esteemed public institutions such as
Oak Ridge National Laboratory, Los Alamos National Lab-
oratory, and NASA’s Ames Research Center, have dedicated
substantial resources to exploring the utilization of quantum
computers for resolving QUBO problems [5]. This extensive
body of research underscores the immense value and untapped
potential of leveraging quantum computational resources for
QUBO problem-solving.

Unfortunately, to date, it is hard for ordinary individuals or
even companies to have their own quantum computer. Noticing
this unmet demand, companies such as D-Wave have started
to provide cloud services of quantum annealing. Although
this cloud-based service is convenient for users to solve their
QUBO problems remotely, it also brings immediate privacy
concerns. Specifically, the QUBO instances stemming from
users’ real-world challenges may encapsulate sensitive infor-
mation, ranging from financial data and corporate secrets to
personal health records. Consequently, when users upload their
QUBO problems, there exists a risk of privacy infringement
by the service provider, who could potentially scrutinize these
problems. Hence, the development of a robust method to
safeguard user privacy while enabling utilization of third-party
quantum annealing services for solving QUBO problems is
paramount.

This paper addresses the privacy-preserving QUBO solving
problem by introducing a novel approach. Our method gen-
erates an obfuscated version of the original QUBO problem,
which, when solved, yields a solution that closely approx-
imates the original problem’s solution with high accuracy.
Instead of submitting their original problem to the quantum
annealing service provider, users can send this obfuscated
version. This strategy allows users to leverage the computa-
tional power of quantum annealing for obtaining high-quality
solutions to their QUBO problems while significantly reducing
the risk of privacy breaches. Our approach strikes a balance
between utilizing advanced quantum annealing capabilities
and safeguarding sensitive information, potentially paving the
way for more widespread and secure adoption of cloud-based

1347

2024 IEEE International Conference on Quantum Computing and Engineering (QCE)

979-8-3315-4137-8/24/$31.00 ©2024 IEEE
DOI 10.1109/QCE60285.2024.00160

quantum annealing services.
Our major contributions can be summarized as follows.
• We formulate the privacy-preserving QUBO problem and

propose an obfuscation solution.
• We provide theoretical analyses on the security and

efficiency of our method.
• Additionally, we conduct experiments to evaluate the

efficacy and efficiency of our proposed technique. Results
demonstrate that our method achieves good accuracy.

The rest of this paper is organized as follows. In Sec. II, we
formulate the privacy-preserving QUBO problem. In Sec. III,
we explain our method in details. Theoretical analyses and
experimental evaluations are presented in Sec. IV and Sec. V
respectively. After discussing related work in Sec. VI, we
conclude our paper in Sec. VII.

II. THE PRIVACY-PRESERVING QUBO SOLVING PROBLEM

The Quadratic unconstrained binary optimization (QUBO)
is a model for solving combinatorial optimization problems
that can be applied to a variety of important and difficult
combinatorial problems such as Multiple Knapsack Problems,
P-Median Problems, Maximum Independent Set Problems,
Maximum Cut Problems, Graph Coloring Problems, SAT
problems and so on. The problem has the following form:

minimize y = xtQx,

where x ∈ {0, 1}n is an vector of binary elements, and
Q ∈ Rn×n is the “model matrix” which is a square matrix
of constants that determines the objective function to be
optimized or minimized over all possible values of x in our
case.

For example, one might aim to minimize a function y =
f(x1, x2, x3, x4) as follows.

y = 6x2
1 − 18x2

3 − 2x2
4 + 10x1x3 − 18x1x4 − 6x2x3+

4x2x4 + 4x3x4

=

x1

x2

x3

x4

T

6 0 5 −9
0 0 −3 2
5 −3 −18 2
−9 2 2 −2

x1

x2

x3

x4

 .

Accordingly, the above optimization problem can be deter-
mined by a square matrix:

Q =

6 0 5 −9
0 0 −3 2
5 −3 −18 2
−9 2 2 −2

 ,

and a brute-force search can find the solution to the problem:
x1 = 0, x2 = 1, x3 = 1, x4 = 0.

In this paper, we consider the privacy-preserving QUBO
solving problem as follows.

A quantum annealing server solves QUBO problems. The
client submits a QUBO model matrix and receives the optimal
solution. The client aims to solve its QUBO problem with
matrix Q while keeping Q private from the server. To achieve

this, the client sends a series of matrices {M} to the server
and receives optimal solutions {x′}, which are used to derive
the optimal solution x of Q. Our goals are: (1) prevent the
server from inferring Q from {M} for privacy preservation,
and (2) accurately derive x from {x′} to solve the client’s
problem.

III. OUR APPROACH

Our approach generates an obfuscated version of the model
matrix. We split the QUBO model matrix Q into matrices
whose weighted sum equals Q. We represent each element of
Q using a radix r (r ∈ N) and split it into a string of r-radix
digits, decomposing Q into “digit matrices”. Each digit matrix
contains elements’ digits from the same digit place (e.g., the
1st digit’s place, the 2nd digit’s place, . . .).

We randomly permute rows and columns of these matrices
and send them to the server in random order. The server cannot
recover the original matrix without knowing the permutations
or sending order.

Our approach preserves the relationship between the original
matrix and sent matrices. The client can reconstruct the
original matrix by summing the sent matrices with correct
permutations and weights. After the server returns the op-
timization solutions, which are a series of binary vectors,
corresponding to the matrices it received from the client, the
client can recover the binary vectors in the correct order,
and combine them to obtain a solution to its original QUBO
problem.

In the following, we describe in details: 1) how the client
constructs obfuscated matrices to send; and 2) how the client
reconstructs the final optimal solution x from returned binary
vectors.

A. Obtaining the Matrices to Be Sent

Following the operations below, the client computes k
matrices Mσ

1 , Mσ
2 ,..., Mσ

k ∈ Rn×n from the model matrix
Q, and sends them to the server in a random order, which can
be completed in one single message transmission.

1) Matrix normalization. To enhance both privacy and
efficiency in our approach, we normalize the model matrix Q
while preserving the relative ratio between its elements. This
normalization process scales all elements to fall within the
interval (-1, 1), with the element having the largest absolute
value approaching either -1 or 1. Consequently, the integer
parts of all elements become 0, simplifying our subsequent
digit-wise splitting operation to only consider digits after
the decimal point. By ensuring the element with the largest
absolute value is near -1 or 1, we try to maximize the number
of elements with a non-zero first decimal digit. This first digit
is crucial as it contributes significantly to the overall value of
each element. As a result, the matrix formed by these first dig-
its holds the highest weight among all matrices derived from
the radix decomposition. Its corresponding optimal binary
vector also tends to carry the greatest weight in the subsequent
weighted summation process. Maximizing non-zero first digits
enhances the significance of both the corresponding matrix and

1348

its optimal binary vector, thereby improving result accuracy.
Moreover, this normalization step helps to obscure the actual
element values within the model matrix Q, thereby enhancing
the security of our approach. Specifically, the client computes
the normalized matrix Q∗ as:

Q∗[i, j] :=
Q[i, j]

(1 + ϵ)max(Q)
, ∀i, j ∈ {0, 1, ..., n} , (1)

where max(Q) denotes the maximum absolute value of all
elements in Q, Q[i, j] and Q∗[i, j] denote the ith-row-jth-
column element of Q and Q∗ resp., and ϵ → 0+ is a small
positive real number that is close to 0.

2) Matrix decomposition with base r. The client represents
(the non-integer part of) normalized model matrix Q∗ using
radix r, takes all elements’ most significant digits to form M1,
the second most significant digits as M2, ... , and the kth digit
as Mk:

Mm[i, j] := the mth digit of Q∗[i, j], (2)

∀m ∈ {1, 2, ..., k} ,∀i, j ∈ {1, 2, ..., n}

3) Random matrix permutation. The client generates k
random permutations σ1, σ2, ... , σk and uses them to permute
the rows and columns of M1, M2, ... , Mk respectively to
obtain Mσ

1 , Mσ
2 , ... , Mσ

k as:

Mσ
m[i, j] := Mm[σm(i), σm(j)] (3)

∀m ∈ {1, 2, ..., k} ,∀i, j ∈ {1, 2, ..., n}

4) Sending in a random order. To perform this, the client
generates a random permutation σ′ and sends Mσ

σ′(1), M
σ
σ′(2),

... , Mσ
σ′(k) in order.

Note: To further obfuscate the matrix Q, the client can also
generate and send additional random matrices to the server
along with the decomposed and permuted matrices derived
from Q. These random matrices serve as decoys, making it
more difficult for the server to identify or extract sensitive
information about the original matrix Q. Upon receiving the
solutions from the server corresponding to all the matrices,
including the random ones, the client can simply discard the
solutions related to the random matrices and focus only on the
solutions pertaining to the decomposed and permuted matrices
of Q. This extra layer of obfuscation further enhances the
privacy protection of the sensitive data within the matrix Q.
For presentation simplicity, we omit this step in our approach
description.

B. Reconstruction of the optimal solution

After receiving k obfuscated matrices from the client, the
server sends back the corresponding k optimization solutions
or binary vectors to the client. We denote these binary vectors
as vσ

′

1 , vσ
′

2 , ... , vσ
′

k , which are the solutions to the binary
optimization for Mσ

σ′(1), M
σ
σ′(2), ... , Mσ

σ′(k). The client uses
inverse permutations of σ1, σ2, . . . , σk and σ′ to recover them

from the server’s response, and then sum them with corre-
sponding weights. Finally, the client computes a probability
distribution from the weighted sum vector, and samples the
final optimal x over the distribution. Specifically, the above
operations are completed by executing the following steps:

1) Inversing permutations. The client first permutes vσ
′

1 , vσ
′

2 ,
... , vσ

′

k using σ
′−1 (i.e. the inverse of σ

′
) to get the correctly

ordered vσ1 , vσ2 , ... , vσk which are binary optimization solutions
to Mσ

1 , Mσ
2 ,... , Mσ

k :

vσm := vσ
′

σ′−1(m)
, ∀m ∈ {1, 2, ..., k} (4)

Then the client permutes the elements of vσ1 , vσ2 , ... , vσk
using σ−1

1 , σ−1
2 , ... , σ−1

k respectively to recover v1, v2, ... ,
vk which are binary optimization solutions to M1, M2, ... ,
Mk:

vm[i] := vσm[σ−1
m (i)], ∀m ∈ {1, 2, ..., k} , ∀i ∈ {1, 2, ..., n}

(5)
2) Weighted average calculation. The client sets a weight

vector w ∈ Rk and computes the weighted average x̃ of v1,
v2, ... , vk with weights of w[1], w[2], ... , w[k] as:

x̃ :=

∑k
m=1 w[m] · vm∑k

m=1 w[m]
. (6)

x̃ is used as an estimation on the probability that each entry
in the optimal x equals 1.

Intuitively, the matrices with smaller subscripts in M1, M2,
... , Mk are split from higher digits in the model matrix Q and
contribute more to xtQx, and the corresponding optimization
solutions should also have larger weights in x. A possible w
is

w[m] :=
1

rm
, ∀m ∈ {1, 2, ..., k} . (7)

We will discuss the choice of w again later in the accuracy
analysis.

3) Sampling and selection. Finally, the client independently
samples t vectors X1, X2, ... , Xt from the distribution:

X ← [0, 1]n, P r[X[i] = 1] = x̃[i], (8)

and selects the one that minimizes the objective function

argmin
x∈{X1,X2,...,Xt}

xtQx (9)

as the final optimal x.

IV. PERFORMANCE ANALYSIS

Our approach has the following principal parameters:
• n - the order of the matrix, determined by the model;
• r - the radix or base in our numeral system, determined

by the client;
• k - the total number of “digit matrices”, determined by

the client;
• t - the total number of random samplings on x̃, deter-

mined by the client.
In this section, we discuss the privacy protection, accuracy and
efficiency of our approach and analyze the effects of the above
parameters.

1349

A. Privacy protection

First of all, due to the setup of the normalization step, Q∗

hides the element-specific values of Q and only retains the
proportionality between them, so neither the element-specific
values of Q nor the optimal xTQx values will be leaked.
Therefore, there can only be leakage of the proportionality of
the elements in Q, and we analyze the leakage of this below.

An optimistic, but without loss of generality, assumption
is that the distribution of the digits of each element of Q∗

in each r-base position is indistinguishable from a uniformly
independent distribution, such that the absolute values of the
elements in M1, M2, ... , Mk are also uniformly independently
distributed. In this case, the server can only estimate a permu-
tation by indices of the sign matrix of Q based on the sign
matrices of any of the received matrices. It is discussed next
whether the server can get more valuable information from the
received matrices Mσ

σ′(1), M
σ
σ′(2), ... , Mσ

σ′(k).

Theorem IV.1. If the absolute values of all digit matrices’
elements follow independently uniform distribution over the
digit value space, the probability of recovering a correct Q∗

is 1
αk−1k!n!

, where α denotes the number of automorphisms of
the sign matrix of Q under the row/column index permutation
transformation.

Proof. Note that before the random permutations on rows
and columns, all k digital matrices {Mm}m=1,...,k share the
same sign matrix (i.e. the matrix formed by all elements’
signs) with the Q or Q∗. Therefore the correct digital matrices
can be recovered only by a combination of permutations
{σ∗

m}m=1,...,k such that applying them on the permuted
matrices {Mσ

m}m=1,...,k respectively would make their sign
matrices become identical. Let Σ be the set of all such
combinations.

Since the absolute values of the elements in digital matrices
are uniformly and independently distributed, the server is not
able to distinguish between the correct combination of per-
mutations (i.e. {σ−1

m }m=1,...,k) that recovers the true digital
matrices and other incorrect combination of permutations in
Σ.

For any σ∗
1 , there are αk−1 possible (σ∗

2 , ..., σ
∗
k) that the

sign matrices of the resulting matrices are the same after
permutation.

Therefore, we know the size of Σ equals αk−1n!, and the
probability that the server correctly guesses {σ−1

m }m=1,...,k

and recovers {Mδ′(m)} that have correct rows and columns
equals 1

αk−1n!
.

Finally, there are k! possible orders that the digit matrices
are sent with. Therefore, the probability that the server recov-
ers the correct Q∗ equals

1
αk−1k!n!

.

In the worst-case scenario, where the absolute values of
the elements in M1, M2, and Mk are not uniformly and

independently distributed, we can employ the optional privacy-
enhancing method mentioned earlier. By sending the server
specific confusion matrices, we ensure that the matrices appear
to match a uniformly independent distribution or another
nonsensical distribution. This approach is effective but requires
contextual analysis.

When a large k is not necessary, we can achieve the privacy
preservation effect of a larger k by sending more confusion
matrices in this manner.

From the analysis above, we find that larger values of n
and k improve privacy performance. With a fixed n, a larger
k means the server receives more matrices related to the
model, which intuitively provides more information. However,
paradoxically, it becomes more challenging to recover the
private data. This suggests that increasing the amount of
information increases the difficulty for the server to organize
and analyze it, due to the larger probability space created by
more matrices.

Although the parameter r does not appear in the equation,
its impact on privacy is significant. As discussed, “recovering
the first k′(k′ < k) correct digits of Q∗” shows that a larger r
provides more space for the first k′ digits, thus containing more
information. In an extreme case, where r is very large, M1

alone may contain almost all the information in Q. Conversely,
a smaller r makes the distribution of each element look
more uniform and independent, thereby enhancing privacy
performance. Therefore, smaller values of r improve privacy
protection.

B. Accuracy

First, we make several qualitative observations regarding the
impact of various parameters. A larger t results in a smaller
error because a greater number of samples increases the
likelihood of obtaining a better binary vector. The parameter k
influences the error up to a point and then has a marginal ef-
fect. A too-small number of matrices primarily contain higher
digits, potentially lacking sufficient information, whereas a
too-large number of matrices include many lower digits, which
contribute minimally to the results and appear more random.
Increasing r reduces the error, as a larger base encapsulates
more information in each digit. In an extreme case, if r is
sufficiently large, sending only the first matrix to the server
can yield an adequately accurate result.

We have conducted numerous experiments demonstrating
that our approach achieves excellent accuracy (see Section V
for details). This can be intuitively understood: higher digits
contribute more significantly to the model matrix Q, thus
having a greater impact on xtQx and the optimal x. The
influence of a higher digit on the optimal x is reflected in
the optimal solution of the matrix formed by that digit. The
weight of this effect on the optimal x is captured in the final
result through the weights we assign to that binary vector in the
weighted average. Each lower digit reduces the weight in Q by
a factor of r, leading us to propose that its weight in the final
result should also be reduced by a factor of r. This is the basis
for the generic weight vector w[i] := 1

ri , ∀i ∈ {1, 2, ..., k}.

1350

However, this weight vector w is not universally applicable.
The selection of w should be related to the distribution of
the elements in Q. For example, when the absolute values of
the non-zero elements in Q are similar in magnitude, focusing
only on the highest position may suffice, and considering lower
positions might reduce accuracy, especially when r is small.
When the magnitude distribution of elements in Q is uncertain,
determining an optimal w is challenging. Conversely, if the
magnitude distribution is known, techniques such as multiple
linear regression or deep learning can be employed to learn a
more appropriate w.

Given the complexity and uncertainty of this problem,
providing a rigorous theoretical analysis of the accuracy is
difficult. A more in-depth analysis of the choice of w and its
impact on accuracy will be the focus of our future research.

C. Efficiency

Our method demonstrates strong performance in terms of
efficiency. For communication, only one round is required:
the client sends k n-order matrices to the server, and the
server returns k n-dimensional binary vectors, resulting in
a communication overhead of O(kn2). For computation, the
client needs to generate and permute k n-order matrices, which
is O(kn2). After receiving the k n-dimensional binary vectors,
the client computes their weighted average, which is O(kn).
Following this, the client samples t candidate vectors and
computes the values of the corresponding quadratic forms,
amounting to O(tn2). The sorting process to obtain the
final result is O(t log t), which is typically subsumed under
O(tn2). Thus, the total computational overhead for the client
is O(kn2+tn2). The server, on the other hand, needs to solve
QUBO for k n-order model matrices, with a total overhead of
O(k) assuming each solution takes O(1) time.

For storage, the client must store O(k) n-order matrices
and O(t) n-dimensional vectors along with their correspond-
ing quadratic values, leading to a total storage overhead of
O(kn2 + tn). The server needs to store k n-order matrices
and the corresponding k n-dimensional vectors, resulting in a
total storage overhead of O(kn2).

As the number of transmitted matrices increases, the com-
munication overhead increases linearly. Conversely, the diffi-
culty for the server to learn information about the matrix Q
increases exponentially.

V. EVALUATION ON ACCURACY

To evaluate whether our approach achieves desirable accu-
racy, we conducted several experiments.

We randomly generated model matrices for testing under a
normal distribution with a mean of 0 and a standard deviation
of 4. Our observations indicate that optimizing these matrices
is quite challenging, making them a rigorous test case. Given
the current limitations in accessing a quantum annealer, we
utilized the well-known commercial optimization solver IBM
ILOG CPLEX to solve QUBO problems in our experiments.
CPLEX is capable of providing optimal results at reasonably
large problem scales [8].

We used the values of the optimization function xtQx as
the observed values and defined the accuracy of our solution
as:

acc =
obtained value of xtQx

true optimal value of xtQx
,

and the error as:

err =
∣∣∣∣obtained value of xtQx− true optimal value of xtQx

true optimal value of xtQx

∣∣∣∣ .
We focus on the difference between the obtained and true
optimal values of the optimization function, as this difference
is more critical than the difference between the obtained and
true optimal solutions.

Figure 1. Error with different matrix orders and total numbers of matrices
when sampling 200 times with a base of 2.

In Fig. 1, we illustrate how the error varies as the matrix
order increases. The results indicate that the error grows slowly
with increasing order, following a trend that appears to be
no more than linear, suggesting O(n)-like behavior. These
encouraging results imply that we can achieve sufficiently
accurate solutions by adjusting other parameters, with an
acceptable overhead. Fig. 1 also demonstrates the effect of
increasing k on accuracy improvement, consistent with the-
oretical predictions. However, beyond a certain point, further
increases in k offer diminishing returns in accuracy. Therefore,
we can select a modest k and employ the transmission of
confusion matrices to enhance security without significantly
compromising accuracy.

Fig. 2 demonstrates the relationship between accuracy and
the number of samples. As depicted, accuracy improves with
an increasing number of samples. For each order of test
matrices utilized, with 5 matrices and a base of 4, we achieved
accuracy exceeding 90% within 300 samples—a notably low
overhead given the complexity of the problem. However, it’s
also evident that beyond a certain number of samples, the rate
of accuracy improvement diminishes, indicating that achieving
very high accuracy solely by increasing the number of random
samples may still be challenging. The current method of
random sampling is suboptimal, and we plan to explore more
efficient techniques to derive the final x from the [0, 1]n vector
x̃ at a reduced cost in the future.

1351

Table I
COMPUTATION, COMMUNICATION AND STORAGE COSTS

Communication Rounds Client Work Server Work Client Storage Server Storage
kn2 1 kn2 + tn2 k ∗ kn2 + tn kn2

∗Here we count the overhead of the server solving a QUBO as O(1).

Figure 2. Accuracy with different total numbers of samples and orders of
model matrix when the number of matrices is 5 with a base of 4.

Figure 3. Accuracy with different total numbers of samples and bases of
numeral/rounding system when the number of matrices is 5 and the order of
model matrix is 40.

Fig. 3 illustrates the increase in accuracy as the base, r,
grows. The base is a flexible and influential parameter, allow-
ing for significant accuracy improvements with its increase.
However, this increase also comes at a cost to security, high-
lighting the trade-off between security, privacy, and overhead.

VI. RELATED WORK

Many quantum computing research projects focus on devel-
oping general quantum computing platforms for new applica-
tions, such as quantum machine learning [9]–[11]. This paper,
however, examines quantum annealers, which are specialized
quantum computers.

A considerable amount of research has been conducted on
privacy-preserving methods for classical optimization. Notable
works include [12]–[21]. However, these methods are not
well-suited for our specific scenario, as quantum annealers

differ fundamentally from general-purpose computation and
continuous optimization, which these methods are designed
for.

Specifically, the gradient descent method are considered
in [14], [15], [17]–[19], while the simplex algorithm is studied
in [20]. However, the methods proposed in these works are
designed for continuous or linear optimization and are not
applicable to discrete quadratic optimization. Additionally, the
quantum annealer does not support general-purpose computa-
tion, making it impossible to adopt these methods.

The works [16], [21] achieve privacy preservation through
matrix transformations; however, their methods are only ap-
plicable to continuous optimization problems, while we are
dealing with a discrete optimization problem.

A few works [12], [13] adopt differential privacy mech-
anisms [22] to protect individual participant’s model matrix
privacy in a distributed joint optimization task where the
objective function to be minimized corresponds to the sum of
all participants’ model matrices. Although differential privacy
can protect individual privacy, it offers little protection to the
overall model matrix. Therefore, it cannot solve our problem.

VII. CONCLUSIONS AND FUTURE WORK

In this work, we propose a novel approach that enables
privacy-preserving access to a remote quantum annealer for
solving QUBO optimization problems. Our approach bal-
ances privacy, accuracy, and efficiency, allowing for trade-
offs among these aspects by adjusting relevant parameters.
Theoretical analysis demonstrates that our method effectively
conceals the values of the elements in the model matrix, with
the probability of an adversary accurately determining the ratio
between them being negligible. Experimental evaluation shows
that, with 5 matrices and a base of 4, our method achieves over
90% accuracy within 300 samples.

Future research will focus on refining the weight vector
selection process, developing more sophisticated methodolo-
gies for deriving final results, establishing theoretical bounds
on accuracy, and testing our approach on a broader range of
existing QUBO benchmarks for large-scale evaluation.

ACKNOWLEDGMENT

The authors would like to thank all the reviewers for their
helpful comments. Qun Li was supported in part by the
Commonwealth Cyber Initiative (cyberinitiative.org).

1352

REFERENCES

[1] A. Das and B. K. Chakrabarti, “Quantum annealing and analog quantum
computation,” Reviews of Modern Physics, vol. 80, no. 3, p. 1061, 2008.

[2] D. A. Battaglia, G. E. Santoro, and E. Tosatti, “Optimization by quantum
annealing: Lessons from hard satisfiability problems,” Physical Review
E, vol. 71, no. 6, p. 066707, 2005.

[3] A. Rajak, S. Suzuki, A. Dutta, and B. K. Chakrabarti, “Quantum an-
nealing: An overview,” Philosophical Transactions of the Royal Society
A, vol. 381, no. 2241, p. 20210417, 2023.

[4] G. Kochenberger, J.-K. Hao, F. Glover, M. Lewis, Z. Lü, H. Wang, and
Y. Wang, “The unconstrained binary quadratic programming problem:
a survey,” Journal of combinatorial optimization, vol. 28, pp. 58–81,
2014.

[5] F. Glover, G. Kochenberger, and Y. Du, “Quantum bridge analytics i: a
tutorial on formulating and using qubo models,” 4or, vol. 17, no. 4, pp.
335–371, 2019.

[6] S. Mücke, N. Piatkowski, and K. Morik, “Learning bit by bit: Extracting
the essence of machine learning.” in LWDA, 2019, pp. 144–155.

[7] P. Date, D. Arthur, and L. Pusey-Nazzaro, “Qubo formulations for
training machine learning models,” Scientific reports, vol. 11, no. 1,
p. 10029, 2021.

[8] IBM ILOG. ILOG CPLEX Optimization Studio Python tutorial. [On-
line]. Available: https://www.ibm.com/docs/en/icos/22.1.1?topic=tutorials-
python-tutorial

[9] J. Wu, T. Hu, and Q. Li, “Distributed quantum machine learning:
Federated and model-parallel approaches,” IEEE Internet Computing,
vol. 28, no. 2, pp. 65–72, 2024.

[10] J. Wu, Z. Tao, and Q. Li, “Scalable quantum neural networks for
classification,” in 2022 IEEE International Conference on Quantum
Computing and Engineering (QCE). IEEE, 2022, pp. 38–48.

[11] J. Wu, T. Hu, and Q. Li, “More: Measurement and correlation based
variational quantum circuit for multi-classification,” in 2023 IEEE In-
ternational Conference on Quantum Computing and Engineering (QCE),
vol. 1. IEEE, 2023, pp. 208–218.

[12] Z. Huang, S. Mitra, and N. Vaidya, “Differentially private distributed
optimization,” in Proceedings of the 16th International Conference on
Distributed Computing and Networking, 2015, pp. 1–10.

[13] S. Han, U. Topcu, and G. J. Pappas, “Differentially private distributed
constrained optimization,” IEEE Transactions on Automatic Control,
vol. 62, no. 1, pp. 50–64, 2016.

[14] Y. Shoukry, K. Gatsis, A. Alanwar, G. J. Pappas, S. A. Seshia, M. Sri-
vastava, and P. Tabuada, “Privacy-aware quadratic optimization using
partially homomorphic encryption,” in 2016 IEEE 55th Conference on
Decision and Control (CDC). IEEE, 2016, pp. 5053–5058.

[15] A. B. Alexandru, K. Gatsis, and G. J. Pappas, “Privacy preserving cloud-
based quadratic optimization,” in 2017 55th Annual Allerton Conference
on Communication, Control, and Computing (Allerton), 2017, pp. 1168–
1175.

[16] L. Zhou and C. Li, “Outsourcing large-scale quadratic programming to
a public cloud,” IEEE Access, vol. 3, pp. 2581–2589, 2015.

[17] S. Gade and N. H. Vaidya, “Private optimization on networks,” in 2018
Annual American Control Conference (ACC), 2018, pp. 1402–1409.

[18] Z. Zhang, X. Che, X. Jiao, W. Yu, and L. Wan, “Quadratic optimization
using additive homomorphic encryption in cps,” in 2022 13th Asian
Control Conference (ASCC). IEEE, 2022, pp. 1995–2000.

[19] S. Han, W. K. Ng, L. Wan, and V. C. Lee, “Privacy-preserving gradient-
descent methods,” IEEE transactions on knowledge and data engineer-
ing, vol. 22, no. 6, pp. 884–899, 2009.

[20] T. Toft, “Solving linear programs using multiparty computation,” in
International conference on financial cryptography and data security.
Springer, 2009, pp. 90–107.

[21] S. Salinas, C. Luo, W. Liao, and P. Li, “Efficient secure outsourcing
of large-scale quadratic programs,” in Proceedings of the 11th
ACM on Asia Conference on Computer and Communications
Security, ser. ASIA CCS ’16. New York, NY, USA: Association
for Computing Machinery, 2016, p. 281–292. [Online]. Available:
https://doi.org/10.1145/2897845.2897862

[22] C. Dwork, “Differential privacy,” in International colloquium on au-
tomata, languages, and programming. Springer, 2006, pp. 1–12.

1353

