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Abstract

The steady-state visual evoked potential (SSVEP) signal is widely utilized for Brain-Computer Interfaces (BCIs) that
enable a direct communication between a user and an external device. Most devices in high-bit-rate SSVEP-based
BCI, however, are lab-oriented and expensive, and thus not suitable for personal use in daily life. In this paper, we aim
to investigate the feasibility of implementing high-bit-rate BCI using consumer-grade portable devices. We utilize a
portable EEG headset to capture brain activities and extract user’s intention from the weak and noisy signal through
an optimization framework. We investigate several important factors that affect the bit rate and finally maximize the
bit rate with the best choices of these factors. We can achieve 54.8 bits/minute on a normal computer monitor, which
is comparable to the result with expensive devices, and 17.3 bits/minute on a smartphone screen, which is the first
work of such on a smartphone screen. Our work can be easily integrated into security application such as defending
against shoulder-surfing attacks, and assist patients with reduced motor abilities as well.
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1. Introduction

There is currently much ongoing research in mobile health, body-area sensor networks, and wearable computing to
sense human body and behaviors. As one of the most important organs, the human brain has drawn special attention.
While there is an established category for Brain-Computer Interfaces (BCI), the full capabilities of these systems are
yet to be realized, especially using portable devices only. Our vision of the future includes brain sensing systems
that have a profound impact on daily life. Users will be able to read each others thoughts and emotions directly as
a completely new method of communication. However, the first step to building such systems lies in our ability to
extract information from the brain using current portable technology. This step allows us to begin understanding how
the brain functions, and what is required to interface with it. In this paper we strive to build a system that senses
the human brain using portable BCI devices. Our goal is to maximize the bit-rate between the brain and the physical
world.

A BCI is a direct communication between the brain and an external device. For instance, a person who cannot
physically use a keyboard may “type” by simply thinking of typing or gazing at a computer monitor. For example,
the great physicist Stephen Hawking is cooperating with some scientists in NeuroVigil Inc. to establish faster com-
munication through BCI technology [1]. Furthermore, BCI applications are recently emerging for a wide range of
areas, such as gaming, entertainment, and secure channel. The information source used in BCIs is electroencephalog-
raphy (EEG), which records the electrical activities of the brain through the use of sensors along the scalp. Several
EEG signals, such as event-related synchronization/desynchronization, slow cortical potential, P300, visual evoked
potential, and steady-state visual evoked potential (SSVEP), are commonly harvested for BCI control. Among these,
SSVEP has received much attention due to several well-known advantages, such as high information transfer rate,
short training time and simple system configuration. SSVEP is a brain response from the visual cortex in the rear
scalp, induced by a repetitive visual stimulus that flickers at a constant frequency. In an SSEVP-based BCI, stimuli
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with different frequencies are simultaneously displayed on a monitor, with each stimulus associated with a distinct
symbol. To choose a symbol, a user gazes at the corresponding stimulus for a certain time, during which EEG signals
are collected. By processing the collected EEG signal, the stimulus that the user is gazing at can be determined, so is
the symbol the user intends to choose.

Current SSVEP-based BCIs, however, are built with specially designed devices. These devices are non-portable
due to their huge size and unwieldy wired sensors, and mainly utilized in laboratories. Furthermore, these devices are
very expensive; for example, Biosemi ActiveTwo devices [2] range from $20,000 to $100,000. Therefore, they are
not suitable for personal daily use. In this paper, we aim to build a high rate SSVEP-based BCI system with portable
devices, which has been seldom investigated so far. Our BCI system consists of an EEG device and a laptop or a
smartphone, which are portable and friendly for personal use. The EEG device is an Emotiv headset [3], which costs
only about $200. We believe headsets like this will become even cheaper if they are manufactured in mass.

When using portable devices, we find that the experience of portable devices is much different from that of
expensive devices in many aspects, and we encounter many challenges and difficulties. As a result, we cannot apply
existing work directly on BCI systems using portable devices only. First, compared to expensive devices, the cheap
devices have much less sensors and sample at much lower rate. Second, due to the quality of the sensors and the loose
contact, the EEG signal is much noisier and weaker than that from expensive devices. Third, during our experiments,
we have found that some existing principles with expensive devices are not valid for cheap devices, which substantially
complicates the entire system design. Finally, there are many factors that affect the bit rate, and it is non-trivial to find
the optimal configuration of these factors to boost the bit rate. In summary, it is very challenging to build a high bit
rate BCI system with portable devices.

We have managed to overcome these challenges and built a prototype of SSVEP-based high bit rate BCI system.
In summary, we make the following contributions:

• We have built a prototype of the SSVEP-based BCI system with portable devices and have demonstrated the
feasibility of obtaining high bit rate with such system.

• We have designed a novel optimization framework to process the weak and noisy raw data, which boosts the bit
rate notably.

• We have identified and solved several challenges that come along only with portable devices.

• We have investigated several factors that affect the bit rate, and figured out the best configuration through
extensive experiments.

• We have extensively evaluated our BCI system. Our system can achieve a bit rate of 54.8 bits/minute on a
computer monitor, which is very close to the best result from expensive devices and almost doubles that from
similar devices, and 17.3 bits/minute on a smartphone screen, which is the first work of such.

The rest of the paper is organized as follows. We review the related work in Section 2, and the architecture of our
BCI system in Section 3. Sections 4 presents the result by implementing an existing work directly, showing that direct
re-implementation dose not work with cheap devices, and describes three main challenges. Section 5, 6, 7 solve these
three challenges, respectively. We present the evaluation in Section 8 and conclude the paper in Section 9.

2. Related Work

Mobile health, body-area sensor networks, and wearable computing are popular nowadays to sense human body
and behaviors [4, 5, 6, 7]. In the following, we will review the category for human brain, called Brain-Computer
Interfaces (BCIs).

BCI has been studied for several decades on the main purpose of assisting disable people. Most of BCI systems
utilize the following EEG signals: visual evoked potentials (VEP), slow cortical potentials, P300 evoked potentials,
sensorimotor rhythms, and cortical neurons. SSVEP, which is one of VEP, has received much attention due to several
well-known advantages, such as high information transfer rate, short training time and simple system configuration.
Researchers have built SSVEP-based BCI systems with expensive and non-portable devices with the goal of obtaining
high information transfer rate (bits/minute). For instance, [8] reported a rate of 58 ± 9.6 bits/minute. [9] reported an
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average bit rate of 61.70 ± 32.68 across seven subjects. Though the above works can achieve considerably high bit
rates, they are non-portable and are not friendly for daily personal use.

For ordinary users, it is desirable to have portable devices, such as Neurosky [10] and Emotiv [3]. Only a handful
of work has been done using cheap and portable devices. Campbell etc. [11] have designed and implemented a
NeuroPhone system using an Emotiv headset, in which a brain-controlled address book dialing app is demonstrated
through a P300 BCI. Paper [12] has demonstrated the feasibility of side-channel attacks with an Emotiv headset.
However, there is little work that uses these devices to implement SSVEP-based BCI, except [13, 14], where the bit
rate is below 30 bits/minute.

In this paper, we aim to build a high-bit-rate SSVEP-base BCI system with portable devices on a laptop and a
smartphone, respectively, with the goal of boosting the bit rate. When displaying stimuli on a laptop screen, our result
nearly doubles that of [13] and [14]. For the scenario of using smartphone, we are the first to display stimuli on a
smartphone screen to implement a BCI channel. Although in [13] the authors also utilized a smartphone, they just
processed the EEG signal with a smartphone while the stimuli were still displayed on a large monitor. In our work,
we use the smartphone’s screen to display stimuli and process the EEG signal as well. Since the smartphone’s screen
is much smaller than a monitor, it is very challenging to obtain high bit rate.

It is worth noting that eye tracking has emerged as a promising technique to control an external device, one may
think it could be an alternative. Compared with SSVEP based BCIs, the most significant barrier of eye track is to
constrain the physical relationship between the participant and the eye tracking system. For instance, the researchers
had to mount a restriction system on participant’s head [15] to avoid tracking loss. Furthermore, eye tracking needs a
bright environment and cannot be used in a dark room, while SSVEP-based BCIs do not have such constraints.

3. Architecture

Acquisition

Data

TranslationProcessing

Signal Command

User ID: ******

Password: ******

Figure 1: The architecture of SSVEP-based BCI.

Most of the existing BCI systems are built with expensive and
non-portable devices, and are not ready for personal use in daily
life. Our motivation is to bridge this gap by building a high bit
rate BCI system with portable devices, and apply it to security
scenario such as defending against shoulder-surfing attacks or use
it to assist people with motor disability.

Our SSVEP-based BCI system is illustrated in Figure 1. The
system has three physical components and three underlying com-
ponents. The physical components are an EEG headset, a regular
computer monitor or a smartphone, and an input application. The
underlying components are Data Acquisition, Signal Processing,
and Command Translation.

The user runs an application that requires her to enter some characters such as user ID and password through her
brain activities. She wears an EEG headset, facing a regular computer monitoror a smartphone displaying stimuli. To
input a character, she gazes at the flickering stimulus associated with that character for a certain duration. EEG signal
is collected by the Data Acquisition component in real time, then processed by the Signal Processing component, and
finally translated to a character as the input by the Command Translation component.

3.1. Prototype System

We have built a prototype of our BCI system, as shown in Figure 2, which only consists of an Emotiv EEG headset
and a Lenovo Windows 7 laptop or a smartphone. The EEG headset used in our BCI system is an Emotiv Epoc headset
[3], as shown in Figure 3. There are 16 sensors in total, two of which are reference sensors. As SSVEP signals are
generated from the rear region of the scalp, only four sensors, located at P7, P8, O1, and O2 in the international 10-20
system notation, are effective in our BCI system.

Compared to BCI systems with expensive and laboratory-oriented devices, our BCI system obviously has two
advantages. One is portability; our system is convenient for personal use in daily life. The other is low cost; our
system is only about 1/100 of the laboratory-oriented system in price.
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4. Challenges

Figure 2: Our prototype system. Figure 3: Emotiv headset.

Since BCI systems with expensive
and non-portable devices have been in-
tensively studied, one would wonder
whether the system of this kind can
be directly applied to portable devices.
To answer this question, we have im-
plemented an existing system by di-
rectly substituting expensive devices
with portable devices, through which
we have identified several challenges
particularly related to portable devices.

4.1. Re-Implementation

In paper [8], researchers have built an SSVEP-based BCI using an LCD monitor (VIEWSONIC, 17”, 60 Hz
refresh rate) and a BioSemi ActiveTwo EEG headset (at least $20,000) sampling at a rate of 256 Hz. Six boxes are
arranged in the form of 2× 3 grid on the monitor. The six flickering frequencies are 15 Hz, 12 Hz, 10 Hz, 8.6 Hz, 7.5
Hz, and 6.7 Hz, which are divisible to the monitor refresh rate (60 Hz). The final bit rate1 is 58± 9.6 bits/minute.

We have re-implemented exactly what was conducted in [8], except that we use the much cheaper and portable
Emotiv headset. The final bit rate is 17.9 bits/minute. In fact, even this result may be inflated. We found that the
0.3 second interval between choosing two symbols in [8] was not long enough for the subjects to shift their focuses.
During this interval, besides shifting their focuses, the subjects must also think about the next symbol they want to
input. In our experiments, the subjects are instructed to gaze at the targets in an fixed order, and the subject actually
do not need time to think about which symbol to focus on next. Based on what we have experienced, a one second
interval of rest is comfortable for subjects to shift their focuses. Considering this, the bit rate would reduce to 13.7
bits/minute.

Table 1: Identification accuracy for each target (frequency).

Frequency (Hz) 15 12 10 8.6 7.5 6.7
p (%) 0 60 60 60 96 83

The main reason for the big decrease in bit rate be-
tween the non-portable and portable devices is the identi-
fication accuracy. We thus calculated and listed the accu-
racy for each individual target in our re-implementation,
as shown in Table 1. We can see that the accuracy rate
in the low frequency range is higher than that in the high
frequency range. The highest rate, 96%, occurs at the
target flickering at the rate of 7.5 Hz, and the lowest one, 0%, occurs at the target flickering at the rate of 15 Hz.

4.2. Challenges

Compared with expensive devices, we find that our SSVEP-based BCI system with portable devices faces three
major challenges based on the re-implementation and the product characteristics of the Emotiv headset.

• The EEG signals from portable devices are weaker and noisier. The Emotiv EEG headset has only 4 effective
sensors2 and much lower sampling rate (128 Hz), while Biosemi ActiveTwo has 32 effective sensors and sam-
ples up to 1000Hz. Furthermore, the contact between Emotiv sensors and the scalp is much looser since Emotiv
headset uses dry sensors while Biosemi applies lotion on the scalp.

• The effective frequency range is much narrower. As shown in Table 1, 15 Hz does not work at all. The narrow
effective frequency range complicates the entire frequency assignment for SSVEP substantially.

1The bit rate is the actual information transfer rate where errors have already been corrected, and thereinafter.
2Even though Emotive headset has 16 sensors, most of them are not SSVEP-effective. Due to the fixed arms of the sensors, only 4 of them can

be placed in SSEVP-effective area of the scalp.
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• Multiple factors affect the bit rate, such as the number of stimuli, the size of stimuli, the color of stimuli, etc. It
is challenging to configure these factors to achieve an optimal bit rate.

In the following sections, we will investigate all these challenges and present solutions for them.

5. Data Processing

In this section, we will design and describe our algorithm to process the weak and noisy EEG signal. In our
algorithm, the raw EEG signals will first be pre-processed, and then be fed into an optimization framework that
identifies the target the user is gazing at.

5.1. Signal Pre-processing
We notice that the contact between the sensors and the scalp is not perfectly tight due to the user’s hair and

dry sensors (with no gel). During signal collection, a small movement, such as head moving, eye blinking, even
swallowing and breathing, may change the contact intensity, leading to dramatic amplitude change in the EEG signal.
Our pre-processing algorithm is a high pass filter, which filters out the linear trend of the raw signal that results from
the contact variation, which enables us to focus only on the fluctuations that reflect the repetitive flickering, i.e., the
frequency information.

5.2. Optimization Framework
Before detailing the optimization framework, we will first explain a fundamental component of the framework,

canonical correlation analysis (CCA). CCA is a multivariable statistical approach to analyze the underlying correlation
between two sets of data. It has been used in EEG processing previously [16, 8, 14]. Given two sets of data, CCA
determines two linear combinations for these two sets of data respectively such that the correlation between the two
linear combinations is maximized. In our EEG signal processing, the first set of data is the EEG signal, denoted by
X = (x1, x2, x3, x4), where x1, x2, x3, and x4 are time-series signals sampled at frequency Fs from senors O1, O2, P1,
and P2, respectively. The other set of data is a series of sine and cosine waves with a fixed frequency, denoted by Y
= (sin(2πf t), cos(2πf t), sin(4πf t), cos(4πf t), ..., sin(2hπf t), cos(2hπf t)), where h is the number of harmonics,
f is a fixed frequency, and t is the time vector at which X is sampled. Let x and y be the linear combination of X and
of Y, respectively, i.e., x = XwTx and y = YwTy , where wx = (wx1

, ..., wx4
) and wy = (wy1 , ..., wy2h). CCA aims to

maximize the canonical correlation ρ between x and y:

max{wx,wy} : ρ(x, y) =
xT y√

(xT x)(yT y)

=
wxXTYwTy√

(wxXTXwTx )(wyYTYwTy )

(1)

The larger the value of ρ, the more likely x and y have the same frequency. Suppose there are N stimulus frequencies,
denoted as fi, ∀i ∈ [1, N ]. For each stimulus frequency fi, we can get a Yi, ∀i ∈ [1, N ]. Given an X and a Yi, we
can get a ρi using the CCA algorithm. Finally, we can conclude that the user is very likely gazing at the box flickering
with frequency fi∗ , where i∗ = argmaxi∈[1,N ] ρi.

Based on the re-implementation of the work in [8], we find that the CCA result from a single chunk of EEG data
performs poorly. To improve identification accuracy, we use a t0-4t sliding-window method. We run CCA algorithm
for each t0-long signal, with4t-long sliding window, until some pre-defined criteria are reached.

The objective function in our optimization framework is to maximize the information transfer rate [17] on average,
i.e.,

max :
60

s
[log2N + plog2p+ (1− p)log2

1− p
N − 1

] (2)

whereN is the number of flickering boxes on the monitor, s is the average time duration for one session (gazing at one
box), and p = n0/n is the identification accuracy rate where n is the total number of sessions and n0 is the number
of sessions that are correctly identified.
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An identification decision is made (at the end of each session) when the identified target dominates in multiple
windows:

Max(

i−1∑
j=1

ρρραj ) < β ×Max2(

i−1∑
j=1

ρρραj ) (3)

Max(

i∑
j=1

ρρραj ) ≥ β ×Max2(

i−1∑
j=1

ρρραj ) (4)

where α > 1 and β > 1 are two variables, Max2 is a function that returns the second largest element in a vector, i is
the window index at end of which an identification decision is made (therefore, the session time s = t0+(i−1)4t)),
and ρρρj is the normalized vector obtained from window j through CCA algorithm, i.e.,

ρρρj = [ρj1, ρj2, ..., ρjN ] (5)

i∑
j=1

ρρραj = [

i∑
j=1

ραj1,

i∑
j=1

ραj2, ...,

i∑
j=1

ραjN ] (6)

The variable α is equivalent to assigning non-linear weights to each element of vector ρρρj . Since α > 1 and
ρjk ≤ 1, k ∈ [1, N ], the greater the value of ρjk, the more the weight assigned to fk. Eq (3) and Eq (4) indicate that
an identification decision is made once the largest of the accumulated weighted ρ values is greater than β times of the
second largest for the first time. We use brute-force search to find the best combination of α and β.

Algorithm 1: Frequency Identification Algorithm.
Input: h, t0,4t, f1, f2, ..., fk, α, β, Fs;
Output: fout, the identified frequency.
i = 0, ρρρsum = 0, ρmax = ρmax2 = 99, //initialization;1

t = ( 1
Fs ,

2
Fs , ..., t0)

T ;2

Wait for t0 after boxes start flickering at t = 0;3

while ρmax < β ∗ ρmax2 do4

X = 4-sensor signals from i4t to i4t+ t0;5

for j = 1, k do6

Y = (sin(2πfjt), cos(2πfjt), sin(4πfjt), cos(4πfjt), ..., sin(2hπfjt), cos(2hπfjt));7

ρj = max{wx,wy}
wxXT YwT

y√
(wxXT XwT

x )(wyYT YwT
y )

;
8

end9

ρρρ = [ρ1, ρ2, ..., ρk];10

ρρρ = ρρρ/max(ρρρ), // normalizing;11

ρρρ = ρρρα, // assigning non-linear weights;12

ρρρsum = ρρρsum + ρρρ;13

ρmax = max(ρρρsum);14

ρmax2 = max(ρρρsum\ ρmax), // second largest;15

i∗ = argmaxj∈[1,k] ρρρsum;16

i = i+ 1;17

end18

fout = fi∗ ;19

Stop flickering for all boxes and prepare for next session;20

Algorithm 1 details the entire optimization framework. lines 5-9 carry out CCA algorithm for each candidate
frequency fj and obtain the corresponding correlation ρj , ∀j ∈ [1, k]. Line 11-13 sums up the weighted normalized
ρ values for all windows so far. Line 14 and Line 15 obtain the most dominant candidate and the second dominant
candidate, respectively. The while-loop (line 4 to line 18) terminates when the most dominant candidate surpasses the
second dominant candidate by a predefined ratio. After the target frequency is identified, all boxes stop flickering and
prepare for the next session.
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6. Frequency Assignment

Traditional wisdom, such as [8], tells us that the stimulus frequency for SSVEP must be divisible to the monitor’s
refresh rate and less than 20 Hz. For instance, for a monitor with a 60Hz refresh rate, the possible candidates could be
6 Hz, 6.7 Hz, 7.5 Hz, 8.6 Hz, 10Hz, 12Hz, and 15 Hz. From Table 1, however, we see that high frequency candidates
perform poorly for portable devices. In this section, we will investigate the feasibility of using more frequency
candidates and design proper frequency assignment for stimuli on the monitor.

6.1. Divisibility is not necessary

0 2 4 6 8

−20

0

20

Targeting Frequency = 7Hz

time (seconds)

6 7 8 9 10
0

0.5

1

1.5

FFT After Filtering

Frequency (Hz)

Figure 4: Original signals and its FFT for stimulus flickering
at 7Hz.

Through extensive experiments we find that the require-
ment of divisibility is not necessary. In the experiments, we
use a Lenovo laptop running Windows 7, with a 17′′ moni-
tor. There are two choices for monitor refresh rate, 40Hz and
60Hz, among which we choose the latter. We directly use a
JAVA timer to control the stimulus frequencies. For instance,
to obtain a frequency of 7 Hz, we let the stimulus alternate with
two colors, each with a duration of 1

14 seconds.
Surprisingly, we find that many frequencies can be identi-

fied through a simple FFT, even though they are not dividable
to the refresh rate. We have tested frequencies ranging from
5Hz to 15Hz with 0.2Hz interval. For the spectrum from 5.6
Hz to 9 Hz, we can clearly see a peak at the corresponding fre-
quency in the FFT result. Figure 4 illustrates one example, in
which the top panel is the 8 second raw EEG data from a 7 Hz
stimulus and the bottom panel is the FFT result after filtering
out low frequency noise. The amplitude at 7 Hz is at least twice
as large as any other peak. 7 Hz, however, is not dividable to
the refresh rate 60 Hz.

6.2. Effective Frequency Range
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Figure 5: The identification accuracy with different flickering
frequencies.

From Table 1 we know that the effective frequency range
will be narrower with portable devices, but it is still unclear
what range is most effective. We will use the CCA algorithm
to find the effective frequency range.

We ran intensive experiments with different flickering fre-
quencies, ranging from 4 Hz to 15.2 Hz with a step size of
0.4 Hz. For each frequency, we run 180 rounds, in each of
which the target flickers for two seconds. For each of the two
second signals, we run CCA for each of the frequency candi-
dates (f = 4 : 0.4 : 15.2) to identify the embedded frequency.
If the identified frequency based on CCA and the embedded
frequency of the target are same, we say the identification is
correct; otherwise, it is wrong. The accuracy is shown in Figure 5. We can see that the accuracy is above 50% from
roughly 5.6 Hz to 9.2 Hz. It is clear that there is a decreasing trend toward both higher frequencies and lower frequen-
cies. We conclude that for portable devices like Emotiv headsets, the effective frequency range is much narrower than
that for laboratory-oriented devices.
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6.3. Frequency Gap
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Figure 6: The identification accuracy with different frequency
gaps.

We also investigate the impact of the frequency difference
or gap among the frequency candidates on the accuracy. Intu-
itively, according to the essence of CCA, the wider the gap, the
higher the accuracy. The reason is that, a wider gap can result
in a larger difference in the ρ values among candidate frequen-
cies. However, since the effective frequency range is bounded
(around 5.6 Hz to 9.2 Hz), we cannot choose a very big gap.
As Figure 6 shows, the accuracy increases and then decreases
when the gap goes from 0.1 Hz to 0.6 Hz. There is no need go
beyond 0.6 Hz due to the limited effective frequency range.

6.4. Interference

Here we aim to determine whether the identification accu-
racy of one stimulus is affected by its neighboring stimuli, i.e., whether there is interference among the flickering
targets. If the interference does exist, we must learn the intensity and the nature of the interference. In the experiment,
we display 9 flickering boxes on the monitor in a form of 3× 3 grid, as shown in Figure 7. The width of each box is
180 pixels, with a 40 pixel margin between boxes.

Figure 7: Interference setting.

It is obvious that the distance between flickering targets will affect the identifica-
tion accuracy. The larger the distance, the weaker the interference. Once the monitor
is chosen and the number of targets is determined, we just need to separate them as
far as possible. Therefore, here we only test the influence caused by neighboring
targets’ flickering frequencies. In this experiment, the subject is gazing at the center
box, which is flickering with frequency f0. The surrounding eight boxes are all flick-
ering with the same frequency f1. Let4f = f1−f0. We calculate the identification
accuracy of f0 by setting different 4f . As shown in Figure 6, the best frequency
gap is 0.5Hz. Therefore, we are interested in the identification accuracy when4f is
multiple of 0.5Hz. The results are shown in Table 2. As we can see, the identification
accuracy is increasing when 4f goes from 0.5Hz to 1.5Hz. That is, the accuracy
has an increasing trend when 4f increases. Therefore, once the frequency gap is
determined, we need to assign flickering frequencies to boxes such that the frequency difference among neighboring
boxes is as large as possible.

6.5. Frequency Assignment

Table 2: Identification accuracy under the in-
terference of neighboring targets.

4f 0.5 1.0 1.5
p (%) 59.3 63.9 69.0

Based on the previous observations, our task here is to assign flickering
frequencies to targets on the monitor. Suppose there arem×n targets placed
on the monitor, where m is the number of rows and n is the number of
columns. Now each target will be assigned a unique frequency chosen from
a frequency set f = {f1, f2, ..., fmn} with cardinality mn. Based on the
observation on frequency gap, the effective frequency range [fmin, fmax]
is equally divided to obtain f; that is,

fi = fmin +
(i− 1)(fmax − fmin)

mn− 1
, ∀i ∈ [1,mn] (7)

Based on the observation of interference, the larger the frequency gap between a target and its neighboring targets,
the less the interference. At the same time, the bigger the distance between two targets, the less the interference.
Therefore, we assign a weight to each frequency gap, which is inversely proportional to the distance of two targets
to whom the pair of frequencies are assigned. Our goal is to maximize the overall weighted frequency gaps among
all targets. Since two targets far away from each other have a little or no interference, we only consider the direct
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neighbors of each target. Each target has at most 8 direct neighbors. The frequency assignment problem is formulated
as follows.

maximize :

mn∑
i=1

(
∑
j∈Ni

|fi − fj |/dij) (8)

where Ni is the set of direct neighbors of box i, and dij is the distance between box i and box j.
In our implementation, m = 2 and n = 4 (to be explained later), fmin = 5.6, and fmax = 9.1. The spacing in

rows is 1.2 times of that in columns. Since m and n are small, we resort to brute-force search to obtain the optimal
frequency assignment. Table 3 shows one of the optimal assignments.

7. Configuration Design

Table 3: One optimal frequency assignment.

8.1 5.6 7.6 8.6
6.1 7.1 9.1 6.6

In addition to the frequency assignment, there are several other factors
that affect the bit rate, including the number of targets on the monitor, the
size of the targets, the decision parameters in Algorithm 1, the distance
between the user’s eyes and the monitor, target pattern and color, etc. In
this section, we assume a simplified model that these factors do not interact
with each other. Under this simplified model, we can search the optimal
or quasi-optimal configuration of each factor one by one by fixing all other
factors.

7.1. Impact of Number of Boxes

Figure 8: The layout of 8 boxes.

According to Eq (2), the number of targets, N , plays an important
role in bit rate. One would think the more the targets, the higher the bit
rate. However, as the number of targets increases, the interference also in-
creases. At the same time, the frequency gap among targets decreases due
to bounded effective frequency range. As a result, the accuracy rate will de-
crease. Here, we will calculate the bit rate with different number of boxes
and determine the best number of boxes.

Using a 900× 1500 pixel monitor, we did experiments with 2 boxes, 4
boxes, 6 boxes, 8 boxes, 12 boxes and 16 boxes. The layout of the boxes are
1× 2, 2× 2, 2× 3, 2× 4, 3× 4, and 4× 4, respectively, where x× y means
that there are x rows and y columns of boxes. Figure 8 shows the layout of 8 boxes. On the screen, the background
is black. Each box has an inner square and a square ring around the inner square. The outer ring and the inner square
have different colors, either red or black, alternating with a fixed frequency. At the bottom, there is a Start button and
a Stop button. For 8 boxes, the frequencies assigned is listed in Table 3.
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Figure 9: Bit rate (bits/minute) with respect to number of
boxes.

We examine the bit rate (bits per minute), which is the ul-
timate metric of performance. Figure 9 shows the relation be-
tween the bit rate and the number of boxes. We can clearly see
the increase-decrease trend. Only when a proper N is used,
neither too small nor too large, does the optimization frame-
work result in a high bit rate. Clearly, N = 8 is the best choice
based on Figure 9. We do not consider 7 boxes, 9 boxes, 10
boxes, or 11 boxes, by considering the layout configuration
and user experience.

7.2. Impact of Stimulus Size

The performance of SSVEP-based BCI mainly relies on
the stimulus intensity. On one hand, if the boxes are too small,
the stimulus will not be strong enough. On the other hand, if the boxes are too big, severe interference will be
introduced into neighboring boxes.
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Figure 10: Bit rate (bits/minute) with respect to box size.

We have conducted experiments to determine the best
value of box size. We run several experiments many times
with different values of box size, and evaluate the bit rate. In
these experiments, we set the number of boxes N = 8, and
the layout is shown in Figure 8. For data processing, we set
2 seconds as the window size and 0.25 seconds as the sliding
size.

The bit rate against box size is shown in Figure 10. Based
on this set of experiments, we set 180 pixels as the box size in
our final implementation.

7.3. Impact of Window Size and Sliding Size
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Figure 11: Bit rate (bits per minute) with respect to window
size and sliding size.

In previous experiments, we used a 2 second window size
(t0) and a 0.25 second sliding size (4t) (see the definitions in
Section 5.2). Here we explain why these parameters are chosen
throughout our experiments.

We processed the data with different window sizes and
sliding sizes. We set the window size ranging from 1 second
to 3 seconds with a 0.25 second step, and set the sliding size
of the sliding window ranging from 0.125 seconds to 1 second
with a 0.125 second step. By doing this, we can obtain the bit
rates (bits per minute) for different window sizes with differ-
ent sliding sizes. Figure 11 show the bit rate. We can see that,
if we fix the sliding size, the bit rate first increases and then
decreases as the window size increases; if we fix the window
size, the bit rate also first increases and then decreases as the
sliding size increases. The bit rate peaks exactly at the position
when the window size is 2 seconds and the sliding size is 0.25 seconds. Therefore, in our final implementation, we
set 2 seconds as the window size and 0.25 seconds as the sliding size.

7.4. Distance
The identification accuracy of SSVEP-based BCI depends heavily on the strength of the EEG signal, i.e., the

quality that the retina responds to the flickering stimulus. It is obvious that the strength of the EEG signal is greatly
influenced by the distance between the eyes and the monitor and by the angle between the line of sight and the plane
of the monitor. As for the angle, it is clear that 90 degree is the best; therefore, when doing experiments, we always
place the monitor such that the line between the center of two eyes and the center of the monitor is perpendicular to
the monitor plane. Thus, this experiment solely focuses on the distance between the eyes and the monitor. We do
not consider extreme cases, such as very small distance and very large distance. In this experiment, we measure the
identification accuracy with distances ranging from 40 cm to 80 cm, with an interval of 10 cm.
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Figure 12: Accuracy vs Distance.

The monitor layout is shown in Figure 8. There are eight
boxes, flicking with frequencies of [5.6, 6.1, 6.6, 7.1, 7.6, 8.1,
8.6, 9.1] Hz, respectively. For each distance, the subject is
instructed to focus on each box for 2 seconds for at least 90
rounds. We use the CCA algorithm to calculate the identifica-
tion accuracy on average for each distance. The result is shown
in Figure 12.

As we can see, from 40 cm to 60 cm, the identification ac-
curacy is pretty similar, around 75%. When the distance keeps
increasing, the identification accuracy drops sharply. Based on
this observation, we decide to choose 60 cm as the distance in
the final setting. There are two reasons. First, the identification accuracy is acceptable at 60 cm. Second, 60 cm is a
normal distance between the eyes and the monitor when the user usually uses a computer.

10



7.5. Impact of Color and Box Pattern

(a) (b) (c) (d)

Figure 13: Stimulus patterns: (a) small squares; (b) vertical strips; (c) single
square; (d) circle. The screen background is black. Each pattern alternates
between two different colors, which are red and white in the current figure.

We also conduct experiments for stimuli
with different colors and with different patterns.
The colors we have investigated are red, yellow,
blue, black, and white. We find through experi-
ments that the combination of red and white on
a black background performs best. Besides the
pattern shown in Figure 8, we have also exam-
ined the patterns shown in Figure 13. However,
the performance of all patterns in Figure 13 are
consistently worse. Our current box pattern has
a small square box in the middle and a square
ring outside of the inner square box. This pattern has at least two advantages. First, the inner small box can help users
focus on the target; when users are doing experiments, they are instructed to gaze at the center of the target. Second,
the inner part and the outer part alternate with red and white, which can intensify the stimulus.

7.6. Configuration Summary

Based on extensive experiments, our final configurations are: the number of targets N = 8; target size = 180
pixels; distance between user’s eye and the monitor = 60 cm; window size t0 = 2 and sliding size4t = 0.25 seconds.
The colors for the targets are white and red. And the target pattern is a square box with a square ring outside.

8. Evaluation

In this section, we will present the evaluation of our prototype BCI system. First, we will examine the performance
when stimuli are displayed on a computer monitor, including precision and recall, and online results. Second, we will
show the performance when stimuli are displayed on a smartphone screen.

8.1. On Computer Monitor

8.1.1. Precision and Recall
Precision and recall are two important metrics for identification accuracy. The precision on one target is the ratio

of the number of correct identifications of that target over the total number of sessions that are identified as that target
including both correct and incorrect identifications. The recall on one target is the ratio of the number of correct
identifications of that target over the total number of sessions the user has gazed at that target. Here we are interested
in the precision and recall of our optimization framework. Table 4 shows the results of one subject. We can see that
the precision and the recall across different frequency candidates do not fluctuate much. The average of the precision
is 0.87, with a standard deviation of 0.04.

Table 4: Precision and Recall.

Frequency (Hz) 5.6 6.1 6.6 7.1 7.6 8.1 8.6 9.1
Precision 0.80 0.87 0.87 0.90 0.93 0.86 0.86 0.85

Recall 0.88 0.84 0.83 0.89 0.93 0.82 0.89 0.88

8.1.2. Online Results
We have recruited 4 subjects to conduct the online experiments. Before starting this work, we submitted a human

subjects proposal to the Protection of Human Subjects Committee in the university and received a written approval.
Before conducting experiments, we formally told each subject what the task was and explained there was no risk
during experiments. Additionally, each subject signed a consent form. The age of the subjects ranges from 25 years
to 36 years. All of them have short hair and (corrected) normal vision. The results are shown in Table 5.
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Table 5: The online bit rate for four subjects.

time (s) p (%) bits/min bits/min∗

subject 1 3.25 86.5 37.8 48.2
subject 2 3.09 95.0 50.0 64.6
subject 3 3.14 88.8 41.7 53.7
subject 4 3.04 86.5 40.4 52.5
average 3.16 87.7 42.5± 5.3 52.5± 7.0

The average bit rate is 42.5 bits/minute, with a standard deviation of 5.3 bits/minutes. To the best of our knowledge,
the average bit rate with expensive devices is about 60 bits/minute, such as [8]. Note that in [8], the interval of rest
between two sessions is 0.3 seconds, while it is 1 second in our BCI system. To make a fair comparison, we should
calculate the bit rate by using the same interval. The last column in Table 5 shows the results after adjusting the
interval time. The average bit rate becomes 54.8 bits/minute, with a standard deviation of 7.0 bits/minute. Then
our result is very close to that in [8]. Recall the average bit rate from direct re-implementation in Section 4.1 (17.9
bits/minute), our result here is three times better.

Table 6: The improvements contributed by the pre-processing and the optimization framework.

w/o both w/o opt w/o pre with both
subject 1 38.9 41.1 47.0 48.2
subject 2 53.7 56.2 62.8 64.6
subject 3 41.7 49.7 47.9 53.7
subject 4 45.0 47.7 51.1 52.5

We also investigated the individual improvement contributed by each component of our algorithm. The base line
is the algorithm in [8] that identifies the targets using the CCA algorithm with a 2 second data chunk. Our algorithm
has two additional components, the pre-process and the optimization framework. Table 6 shows the improvements
by these two components (the interval time of rest has been adjusted). “w/o both” is the base line algorithm. “w/o
opt” is our algorithm without the optimization framework. “w/o pre” is our algorithm without the pre-processing.
“with both” is exactly our algorithm in this paper. On average, the pre-processing improves 8.9%, the optimization
framework improves 16.5%, and the combination of the two improves 22.4%.

8.2. On Smart Phone

Figure 14: The config-
uration of SSVEP on a
smartphone.

Currently, many people use smartphones to conduct various online activities, which re-
quire user name and password. This may also introduce risk of shoulder-surfing attacks.
Therefore, we also investigate the feasibility of SSVEP on smartphones. Since the screen of a
smartphone is much smaller than that of a laptop, we cannot place as many targets as before.
By repeating the same procedure as before, we finally display three squares on the screen of
smartphone, as shown in Fig. 14. The frequencies used are 6 Hz, 10 Hz, and 8 Hz respectively.

We have conducted online evaluations with four subjects. The average bit rate is 17.3
bits/minute with 0.3 second rest interval, with a standard deviation of 2.7 bits/minutes, as
listed in the last column of Table 7. Since there are only three targets, 0.3 second interval is
enough to choose one from three. Anyway, we also show the results with 1 second interval in
the fourth column.

9. Conclusion

In this paper, we have carefully designed an SSVEP-based BCI system with cheap and
portable devices, which can achieve high bit rate. The system can be integrated into security
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Table 7: The online bit rate for four subjects on smartphone.

time (s) p (%) bits/min bits/min∗

subject 1 3.31 85.2 15.1 19.1
subject 2 3.37 81.6 12.7 16.0
subject 3 3.32 86.4 15.8 20.0
subject 4 3.33 78.5 11.2 14.1
average 3.33 82.9 13.7± 2.1 17.3± 2.7

applications such as defending against shoulder-surfing attacks, and provide assistive care for people with motor
disability as well. The cheap and portable devices in our BCI system impose several challenges and complicate the
entire system design. Through extensive experiments, we have designed an optimization framework to process the
weak signal and have determined an optimal stimulus configuration by considering various factors.

We have built a prototype and evaluated it with real experiments. The bit rate of our system on computer monitor
is 54.8 bits/minute on average, which is comparable to that of existing systems with expensive and laboratory-oriented
devices and is the best so far with such portable devices. We believe that this is an appealing accomplishment in this
area. Furthermore, we are the first to design and evaluate the SSVEP-based BCI system by displaying stimuli on a
smartphone screen, with an average bit rate of 17.3 bits/minute.
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