
CE-SGD: Communication-Efficient Distributed
Machine Learning

Zeyi Tao∗, Qi Xia∗, Qun Li∗ and Songqing Cheng†
∗ Department of Computer Science

William & Mary. Williamsburg, VA 23185
† Department of Computer Science

Geroge Mason University Fairfax, VA 22030

Abstract—Training large-scale machine learning models usu-
ally demands a distributed approach to process the huge amount
of training data efficiently. However, the high network commu-
nication cost introduced by parallel stochastic gradient descent
(SGD) algorithms is a well-known bottleneck. To this end, we
propose CE-SGD, a communication-efficient distributed machine
learning algorithm that aggressively reduces the amount of
gradient data exchanged among the training workers. CE-SGD
belongs to the family of gradient sparsification schemes. CE-SGD
adaptively adjusts the gradient sparsity according to the model’s
feedback. It also selectively transmits the gradients based on
their degree of participation in the backpropagation. We mathe-
matically prove the convergence of CE-SGD for both convex and
non-convex cases and conduct a series of experiments on our CE-
SGD implementation. Our experiments reveal that CE-SGD can
achieve fast convergence, desirable gradient compression ratio,
and high accuracy with low network bandwidth cost compared
to state-of-the-art algorithms.

I. INTRODUCTION

The data explosion mainly stimulated the remarkable prolifer-
ation of artificial intelligence (AI) in recent years. The emerging
of fifth-generation (5G) wireless communication systems, at
the same time, accelerates global data traffic growth. Given
the ubiquitous smart mobile gadgets and Internet of Things
(IoT) devices, they can easily access a wealth of data suitable
for intelligence applications, which in turn can significantly
improve users’ daily lives. It is expected that a majority of
intelligent applications will be deployed at the edge of wireless
networks. Recently, the distributed learning frameworks [1],
[2] aim at enabling the wireless devices to build a shared
learning model collaboratively. In a central parameter server
(PS) based machine learning paradigm, each worker retains
an identical model copy and trains the model in parallel by
feeding it with different subsets of data. The PS performs
gradient synchronization, which collects the gradients from the
synchronous stochastic gradient descent (SGD) algorithm from
all the workers. The averaged gradient is then broadcast from
the PS back to each worker to update their model parameters.
The PS based approaches scale up distributed machine learning
by increasing training workers and computational power.

However, a subsequent challenge emerges that the persistent
gradient synchronization requires an enormous amount of
network bandwidth [3]. Given the number of total workers N ,

the total communication cost for one round of training can be
formulated as

2 ·N · S (1)

where S is the size of the training model, including all
weights and training metadata. For simplicity, we denote
S = P ·bit where P is the number of total trainable parameters
and bit is precision such as 4, 8, 16. For example, as the
winner of ILSVRC-2013 competition, AlexNet [4] comes
along with nearly 61 million 32-bit real value parameters
with an actual model size of 61 × 106 × 32 ≈ 244MB. The
communication cost for one round of training is approximately
500Mb. The current averaged 5G speed is around 50Mbps. It
will take approximately 10 sec to complete single iteration
communication, significantly increasing the training time usage
because training AlexNet or other typical deep neural networks
(DNNs) usually requires 100k to 500k iterations.

To reduce the communication cost between training workers
and the PS, two types of distributed SGD schemes have been
widely studied: gradient quantization and gradient sparsifi-
cation. Gradient quantization is quantizing the gradients to
low precision or approximation value. For example, Quantized
SGD (QSGD) [5] randomly quantizes gradient values by using
uniformly distributed quantization levels to achieve a commu-
nication cost of 32 + d log2(2l + 1) bits per communication
round where d is the dimension of gradient and l = 4, 8, 16
is the predefined quantization level. Other approaches [6], [7],
[8] are similar but different in error compensation mechanism.
One drawback of gradient quantization is that it increases the
stochastic variance and causes slow convergence. Gradient
sparsification drops the less beneficial coordinates of gradient
and then synchronizes with the PS to ensure unbiasedness.
Gradient sparsification works due to two reasons. First, most
deep neural models are over-parameterized [9], in which a
considerable amount of model parameters have values close
to zero. Therefore, we can use gradient sparsity to reduce
the communication cost by only sending non-zero gradient
coordinates to the PS. Second, even though the gradient is non-
zero but small enough, we can accumulate them and send them
to the PS for later synchronization. The above procedure can
also be described as a variant of asynchronous SGD [10], [11]
where the convergence is guaranteed. Even though gradient
sparsification works in theory, it is impractical in real scenarios

PS Sever

PS Sever PS Sever

(a)

PS

(b)

Fig. 1: (a) illustrates a typical PS based learning scheme. Model train and inference happen on local works. To enable model
training, it only requires gradient communication between the PS and workers. (b) illustrates a detailed PS based learning
model training process via synchronous SGD. Layer-wise model parameter wi,m,t is updated via averaged gradient ḡi,m,t.

because it is very hard to choose threshold values for dropping
gradients in different layers of DNNs. For example, in our
experiments, we observed gradient sparsification approach fails
to converge if the thresholds are not chosen appropriately.

To address the issues mentioned above in gradient quantiza-
tion and sparsification, we propose CS-SGD, a communication
efficient distributed learning algorithm that allows sparse
gradients to synchronize on the PS and aggressively reduces
the overall communication costs. The main idea of CE-SGD
is to select gradients for transmission based on the feedback
from the parameter server. If a gradient has contributed to loss
reduction (observed by the parameter server) multiple times,
it will be selected for transmission with a higher probability.
Otherwise, a gradient will not be transmitted. Aside from
being communication efficient, CE-SGD has several other
advantages:

• The implementation of CE-SGD is simple and is compat-
ible with all existing training frameworks.

• CE-SGD can adaptively tune layer-wise gradient drop
ratio for each layer without any threshold tuning.

• CE-SGD allows the model to choose the best gradients
to improve the training speed and accuracy.

• Moreover, CE-SGD reduces the staleness effect and
gains the critical model performance improvements by
speculative gradient update.

II. PRELIMINARIES

Notations Given a vector x ∈ Rk we denote its j-th entry
by x(j). We use |x(j)| to denote the absolute value of x(j).
The ||x||2 and ||x||∞ are l2-norm and the maximum absolute
entry of vector x respectively. We use gi,m,t to denote the
m-th layer gradient that computed by i-th worker at iteration t.
We use g(e) to denote the e-th entry of gradient g. Given two
vectors x, y ∈ Rk, we use 〈x, y〉 to denote their inner product,
x� y to denote the element-wise product. This is also known
as Hadamard product.

A. PS based learning and layer-wise synchronization

Figure 1(a) and Figure 1(b) illustrate a typical PS based
deep learning model training process via synchronous SGD.
At iteration t, a mini-batch of local training samples are fed to
each worker i (i ∈ [N]). Worker i computes the gradient gi,m,t
for deep learning model layer by layer w.r.t its input samples
Di. All gradients from the same model layer but on different
local workers at iteration t are synchronized and averaged
at the PS and then sent back to local workers. Frequently
exchanging layer-wise gradients therefore causes huge amount
of communication traffic.

B. Problem Formulation

We consider distributed learning with a central PS and
N (N is larger) workers. Given a universal dataset D, the
training tasks aim to solve the following minimization problem
in a synchronous manner, also known as empirical risk
minimization (ERM):

arg min
x∈Rk

f(x) =
1

N

N∑
i=1

Ed∼Di [Fi(x; d)] + λr(x) (2)

where x ∈ Rk is the parameter we want to learn from the model.
And F(·; ·) is a prespecified loss function which measures the
accuracy of the predictions and r(x) is a regularization function.
For simplicity, we let fi(x) = Ed∼Di

[Fi(x; d)] in the rest of
the sections. Generally, this minimization problem can be
solved by using stochastic gradient descent (SGD) algorithm,
that is, with some proper initialization parameter x, we update
the parameters as following rule:

xt+1 = xt − γtgt (3)

where gt = ∇f(xt; d) is the gradient of the loss function at
the current parameter xt over a random data sample d from
Di and γt is current step size (learning rate).

Algorithm 1 Generalized Communication Efficient Algorithm

1: Initialization Initialize model parameter xi for all workers.
gi,t is local gradient on worker i and gupdate is update
gradient from local.

Parameter Server:
2: Perform Reduce and gather all gupdatei,t−1
3: Averaging gradients ḡt−1 = 1

n

∑
i g
update
i,t−1

4: Perform Broadcast ḡi,t−1 to workers i ∈ [N]
On i-th worker

5: Update model parameter xt ← xt−1 − γtḡi,t−1
6: Compute local gradients gi,t = ∇f(xt;Di)
7: if Gradient quantization then
8: gupdatei,t ← Quantization(gi,t)
9: else if Gradient sparsification then

10: gupdatei,t ← Sparsification(gi,t)
11: else
12: gupdatei,t = gi,t
13: end if
14: Send gupdatei,t to Parameter Server

More specifically, in the context of PS based distributed
scheme, the standard distributed SGD algorithm can be
expressed as

xt+1 = xt −
γt
n

n∑
t=1

gt (4)

Algorithm 1 illustrates a generalized communication efficient
distributed algorithms.

III. COMMUNICATION EFFICIENT ALGORITHM: CE-SGD

In this section, we will introduce our communication efficient
distributed training algorithm CE-SGD. We shed light on the
analysis of communication reduction of different schemes. We
also prove the convergence of CE-SGD on both convex and
non-convex problems.

A. CE-SGD Algorithm

The main idea of the algorithm is to transmit a gradient
with a probability according to its usage. For this purpose,
we define a selection vector Vi,m,t (definition 1) as a mask to
determine whether a gradient will be transmitted. When an
element of the vector is 1, the gradient will be transmitted,
otherwise it will not. The sparse operator (definition 2) works
on generating a selection vector. The element of the selection
vector corresponding to a gradient will be more likely to be
1 if (1) previously sending the exact gradient will make the
loss function decrease and (2) the gradient has been selected
multiple times (stored as weighted coordinate map). In essence,
the change of the loss function based on a gradient will give
feedback to the worker to show whether the transmission
of the gradient will contribute to reducing the loss function.
The worker will transmit the gradient that will be more
likely to reduce the loss function based on the observation
in the previous rounds. Before moving on to our algorithm,

Algorithm 2 CE-SGD

1: Initialization Initialize model parameter xi for all workers.
Learning rate γ0 = 0.001. Weighted Coordinate Map
M0 = 0. A random selection vector V0.

Parameter Server:
2: Perform Reduce and gather all gupdatei,m−1,t−1
3: Averaging gradients ḡ,m−1,t−1 = 1

n

∑
i g
update
i,m−1,t−1

4: Perform Broadcast ḡi,m−1,t−1 to workers
On i-th worker

5: Compute local loss fi(xt,Di)
6: for Model Layer 1, · · · , L do
7: Update m− 1 ∈ [L] layer parameter

xi,m−1,t ← xi,m−1,t−1 − γtḡi,m−1,t−1 � Vi,m−1,t−1
8: Compute m-th layer gradient gi,m,t by backpropgation
9: if f(xt−1, Di) > f(xt, Di) then

10: Retain selection vector Vi,m,t ← Vi,m,t−1
11: gupdatei,m,t ← gi,m,t � Vi,m,t
12: Update weighted coordinate map

Mi,m,t =Mw(Vi,m,1→t) =
∑t
t=1 Vi,m,t

13: else
14: Calculate selection vector Vi,m,t ← ρ(Mi,m,t−1)

15: gupdatei,m,t ← gi,m,t � Vi,m,t
16: end if
17: Speculative Update: Randomly choose some rare-update

coordinate to gupdatei,m,t

18: Send gupdatei,m,t to Parameter Server
19: end for

we introduce the selection vector, sparse operator and sum
weighted coordinate map as following.

Definition 1. (Selection Vector Vi,m,t) We define Vi,m,t ∈
[0, 1]k as the selection vector of gradient gi,m,t where k is the
dimension of gradient gi,m,t.

Selection vector Vi,m,t of i-th worker’s model m-th layer
only select gradient g(e)i,m,t if and only if V (e)

i,m,t = 1. Selection
vector is generated via applying a sparse operator ρ on a sum
weighted map Mt which accumulates all previous selection
vectors that have been used for each iteration.

Definition 2. (Sparse operator) Given a non-negative defined
vector vt ∈ Rk, the j-th entries of sparse vector µt w.r.t vector
vt is defined as

µ
(j)
t ,

{
1, with the probability ρ(j)(vt)
0, otherwise

(5)

where the sparse operator ρ(vt) ∈ [0, 1]k. For weighted
sparse operator, we define ρ(j)(vt) = |v(j)t |/‖vt‖2 for nor-
malization purpose. For Bernoulli operator, the ρ(j)(vt) =

Bernoulli(|v(j)t |/‖vt‖∞).

We also define weighted coordinate mapping function M
as

Definition 3. Given selection vector Vi,m,t defined above,
coordinate mapping functionM takes Vi,m,1, Vi,m,2, · · ·Vi,m,t
as input and return an accumulated map Mt where

Mt =M(Vi,m,1, Vi,m,2, · · · , Vi,m,t) (6)

In this paper, we use sum weighted gradient coordinate
mapping function Mw where

Mt =Mw(Vi,m,1→t) =

T∑
t=1

Vi,m,t (7)

At this point, we can present the synchronous distributed
communication efficient algorithm in Algorithm 2. PS performs
the sparse synchronization via the Reduce and then Broadcast
averaging gradients to each worker (line 2-4). Each worker
keeps an identical model copy and maintains a tuple of 1)
layer-wise gradients gi,m,t computed in each iteration; 2) a
sum weighted coordinate map Mi,m,t that keeps tracking the
coordinate-wise weight changes of layer-wise gradients and
3) a selection vector Vi,m,t at current step t that marks which
gradient coordinate can be used for PS synchronization. It is
worth mentioning that we use the Bernoulli operator to generate
sparse selection vector. That is our sparsification function is
defined as ρ(j)(gi,m,t) = Bernoulli(|g(j)i,m,t|/‖gi,m,t‖∞).

On each worker, we keep the loss value of last update
f(xt−1) for current iteration t. We train the model on local
dataset Di and do backpropagation layer-wisely. For the
gradient of m-th layer, we use loss feedback mechanism (line
8) and selection vector Vi,m,t to decide which gradient entries
will be upload to the PS for next step synchronization. When
the learning model receive a positive feedback (for example
f(xt−1) > f(xt)), we think the current gradient coordinate
selection will reward the model and we increase the probability
of that coordinate being selected in the next iteration by
fine-tuning the weighted coordinate map (line 9-12). On the
opposite, if negative feedback is received (line 13) such as
f(xt−1) > f(xt). It means the current gradient coordinate
selection is not beneficial for the model. Therefore we are
looking for new gradient coordinate selection. The CE-SGD
then generates sparse gradient by applying sparse operator on
weighted coordinate map (line 14-15).

In order to avoid some gradient coordinates never being
updated and ensuring the unbiasedness, we randomly select
coordinates that have a small weight value or the coordinate
that has not been updates for long time (line 17). We call
this process as speculative update. Speculative update can
be performed in a periodical manner. Figure 2 explains how
to generate sparse gradient according to sparse operator on
coordinate mapping function M.

B. Communication Reduction Analysis

To analyze how much worker-to-server traffic that CE-SGD
can reduce, we make the following assumptions. For simplicity,
we use a non-dropout and non-skipped deep neural network
with L layers in total. We suppose it has all fully connected
layers in the set FC and other layers in the set NFC such

that |FC| + |NFC| = L. We define the dimension of its
m-th layer as km. Let us assume the ratio of the total number

1

1 0 0 1 1

1 1 0 0 0 5 2 0 4 1 1 0 1 0 1

1 0 1 1 =

Fig. 2: This figure demonstrates how the selection vector Vi,m,t,
sparse operator ρ and coordinate mapping function M work
together. In order to update selection vector Vi,m,t to Vi,m,t+1,
we sum up all previous selection vector element-wise from t
= 1 to t for example Mi,m,t =

∑t
t=1 Vi,m,t. Then we apply

Bernoulli operator ρ to Mi,m,t such that Vi,m,t = ρ(Mi,m,t−1).
The update gradient gupdatei,m,t is computed by Hadamard product
of gradient gi,m,t and current selection vector Vi,m,t shown
as green colored coordinates. The coordinate in red box is
selected because of the speculative update where we randomly
select some coordinates for synchronization.

of non-fully-connected layer parameters to fully-connected
layer parameters is 1/c < 1. For gradient quantization, the
quantization level is l. The layer-wise gradient drop ratio is
1− rVm,t

at iteration t. Suppose rVm,t
∼ N (µ, σ2) over t and

µ ∈ (0, 1). As a results, the bits that required by gradient
quantization per communication round are:

32∗
∑

m∈NFC
km +

∑
m∈FC

km(log2(2 ∗ l + 1)) + 32

= (
32

c
+ (log2(2 ∗ l + 1))

∑
m∈FC

km + 32
(8)

Meanwhile, for the CE-SGD:

32 ∗
∑

m∈NFC∪FC
kmrUm,t = 32(µ/c+ 1)

∑
m∈FC

km (9)

When we use gradient quantization level l = 4, 6, 8 and
FC/NFC ration c < 1/µ − µ, CE-SGD outperforms other
algorithms.

C. Convergence of CE-SGD

In this section, we will analyze the convergence of CE-
SGD on convex and non-convex optimization problems. The
theoretical results are consistent with our experimental results.
We present two theorems below, the proofs of which are
omitted due to the page limit.

Theorem 1. (Convex Case) Suppose the loss function f(x) is
convex and differentiable on Rd. We assume that the optimal
set X∗ of our objective function f(x) is nonempty and bounded.
f(x) has bounded gradients E||∇f(x)|| ≤ G. Let the learning

sequence {γt} be
∞∑
t=1

γ2t < ∞ and
∞∑
t=1

γt = ∞. Then

the iterative CE-SGD shown in Algorithm 2 converges to a
stationary point s.t. f(xt)− f(x∗) ≤ Cγ ||x0 − x∗|| where x0

0 20 40 60 80
epochs

0.0

0.5

1.0

1.5

2.0

2.5
lo

ss

50

60

70

80

90

ac
cu

ra
cy

Loss and Accuracy: CIFA10 on ResNet18

0 20 40 60 80
epochs

1

2

3

4

5

lo
ss

0

20

40

60

ac
cu

ra
cy

Loss and Accuracy: CIFAR100 on VGG11

0 20 40 60 80
epochs

0

1

2

3

4

5

lo
ss

0

20

40

60

80

ac
cu

ra
cy

Loss and Accuracy: CIFA100 on ResNet50

0 20 40 60 80
epochs

2

4

6

lo
ss

0

20

40

60

80

ac
cu

ra
cy

Loss and Accuracy: CIFAR100 on MobileNet

Fig. 3: Loss (in blue color) and Top-1 accuracy (in red color) of CIFAR10 on ResNet18 and CIFAR100 on VGG11, ResNet50
and MobileNet. In all experiments, we use Adam optimizer with initial learning rate 0.001. The min-batch size is 64 which is
smaller than other experiments. This is due to the limited memory and computational resource on Raspberry Pi.

is random initial point and Cγ = 2/
∑
γt. We also conclude

that
f(xt)− f(x∗) ≤ Rx0 ||∇Ut,if(xt)|| (10)

where Rx0 = supxt
{maxx∈X∗ ||xt − x∗|| : f(xt) ≤ f(x0)}

The following theorem shows the convergence of CE-SGD
on the non-convex problems.

Theorem 2. (Non-convex case) We assume that the optimal set
X∗ of our loss function f(x) is nonempty and bounded. f(xt)
has bounded gradients E||∇f(x)|| ≤ G. Let the learning

sequence {γt} is
∞∑
t=1

γ2t <∞ and
∞∑
t=1

γt =∞. And we define

φt ≡ E[f(xt)|It]. Algorithm 2 converges to a stationary point
in expectation as:

φT ≤ φ0 −
1

2

T∑
t=0

γtE||∇f(xt)||2 +
1

2

T∑
t=0

γtκt (11)

In the next section, we show our experimental results and
analysis.

IV. NUMERICAL RESULTS

In this section, we validate our algorithm with experiments
on various machine learning image classification and language
tasks. Compared to the state-of-the-art efficient algorithms,
CE-SGD outperforms in convergence speed, test accuracy and
communication costs.

A. Experiment Setup

Environment In order to simulate the real world scenario,
we conduct experiments on the distributed system that contains
4 Raspberry Pi 3 Model B as remote workers and a PC as
central parameter server. We link Raspberry Pi with PS via
standard wireless connection protocol. Raspberry Pi has one
Camera Module port and one Audio jack which make it to be
capable of any image classification or language recognition
tasks.

Datasets and networks The datasets we use for image
classification include: MNIST, FashionMNIST, CIFAR10, CI-
FAR100 and ImageNet (ILSVRC2013). The MNIST database
of handwritten digits has a training set of 60,000 examples,
and a test set of 10,000 examples. Fashion-MNIST consists
of the same number of train samples and test samples as

MNIST. Each example is a 28x28 grayscale image, associated
with a label from 10 classes. The CIFAR-10 and CIFAR-100

TABLE I: Communication Cost for Large Scale Training

Method Cost Per-round (MB) Top-1 Top-5

BaseLine 66 77.55% 93.37%

GradientDrop 36.2 65.40% 89.12%

QSGD 24.6 71.48% 92.89%

CE-SGD 21.1 (Avg.) 75.13% 93.64%

are labeled subsets of the 80 million 32x32 colour image
dataset. ImageNet consists of two parts, training data and
validation data. The training data contains 1000 categories and
1.2 million images and the validation and test data consists of
150,000 photographs, collected from flickr and other search
engines, hand labeled with the presence or absence of 1000
object categories. The training models we are using include
LeNet, AlexNet, ResNet, VGG, GoogleNet and MobileNet.
LeNet contains 60k parameters and AlexNet contains 60M
parameters with actual model size 233MB. ResNet (actual
size 44.7 MB) and GoogleNet (also known as InceptionV3,
104MB) are typical very deep neural networks and they contain
12M and 23M parameters respectively.

B. Communication reduction

We first evaluate the convergence of CE-SGD as shown
in Figure 3. All four results are achieving the state-of-the-
art accuracy. Further, we evaluate the communication cost of
gradient transmission cost per-round as shown in Table I. We
train CIFAR100 on GoogleNet. The raw size of GoogleNet
is 104MB with all trainable parameter and hyper-parameters
and the actual transmitted gradient size is 66MB. The highest
drop ratio that gradient drop can achieve is 0.45 and the
communication cost per-round is 36.2MB. If we choose some
large drop ratio (≥ 0.45), the model accuracy will significantly
drop and it occasionally does not even converge. For quantlized
approach QSGD, theoretically, it can reduce the worker-to-
server traffic by a factor of 32/log2(8) ≈ 10.3. However,
we are unable to achieve this amount of reduction in reality.
Because, in gradient quantization schemes, communication

4 8 160

2

4

ba
tc
h
tim

e
(s
ec
)

LeNet on MNIST
CE-SGD
Gradient Drop
QSGD
TernGrad

4 8 160.0

2.5

5.0

7.5

10.0
AlexNet on FashionMNIST

4 8 160

25

50

75

100
ResNet on CIFAR10

4 8 160

50

100

150

200
GoogleNet on CIFAR100

Fig. 4: The average batch time is defined as the cost of time of one round communication including the local training time,
network transmission time and global aggregation time. When we increase the number of training workers, the network delay
becomes a bottleneck of TernGrad because TernGrad uses a shared scalar [7].

Model Cost/Actual Size (MB) # Epochs Top-1

MobileNet 11/14 120 76.12%

VGG11 44/89 80 76.41%

WideResNet 27/62 80 78.82%

TABLE II: Experiments on Respberry Pi 3 (CIFAR100)

reduction only benefits from quantization on the fully con-
nected layers but not on convolution layers. The precision loss
due to vector quantization and extra quantization variance will
hurt convolution weights. CE-SGD, instead, applies adaptive
sparsed gradient selection and lets the model decide what
gradient is best for training. Unlike the QSGD, CE-SGD can
apply gradient sparsification over all model layer including the
convolution layer since we do not sacrifice gradient precision.
In Table I, CE-SGD reduces the communication cost to 21.1MB
per-round and achieves higher Top-1 and Top 5 accuracy
(75.13% and 93.64% respectively). Further, we track the
averaged cost for MobileNet, VGG11 and WideResNet shown
in Table II. It shows that the CE-SGD can achieve up to
50% and 60% communication reduction on VGG 11 and
WideResNet respectively.

In addition, we also conduct the experiments of distributed
learning by using Google Cloud Service. We create separate
VM instances (4, 8, 16) which has an NVIDIA K80 GPU with
24 GB of GDDR5 memory. We use NVIDIA Collective Com-
munications Library (NCCL) as the communication backend to
perform distributed multiple GPUs training. By default, NCCL
backend will use the standard TCP-based network interface
for communication. Compared with QSGD and TernGrad,
CE-SGD will introduce extra computation. It is necessary to
evaluate whether the extra computations could cause delay in
distributed training process or not. As shown in Figure 4, the
overhead extra computation of CE-SGD is negligible. When
the complexity of DNNs is low and number of training workers
is small, CE-SGD uses similar batch time like other methods.
However, when the model grows bigger and more training
workers involve in, the CE-SGD shows its advantage on batch
time.

V. CONCLUSION

In this paper, we present the communication-efficient SGD
algorithm to improve the learning efficiency for large-scale dis-

tributed optimization. The CE-SGD algorithm can effectively
reduce the communication cost without observable learning
accuracy loss by introducing the error feedback scheme.
We analyze its convergence behavior from the theoretical
perspective and demonstrate its advantage over state-of-the-art
algorithms. Our experiments demonstrate the efficacy of the
proposed algorithm.

ACKNOWLEDGEMENTS

We thank all reviewers for their helpful comments. This
project was supported in part by US National Science Foun-
dation grant CNS-1816399. This work was also supported in
part by the Commonwealth Cyber Initiative, an investment in
the advancement of cyber R&D, innovation and workforce
development. For more information about CCI, visit cyberini-
tiative.org.

REFERENCES

[1] B. Recht, C. Re, S. Wright, and F. Niu, “Hogwild: A lock-free approach
to parallelizing stochastic gradient descent,” in Advances in Neural
Information Processing Systems 24. USA: Curran Associates, Inc.,
2011, pp. 693–701.

[2] J. Dean, G. S. Corrado, R. Monga, K. Chen, M. Devin, Q. V. Le, M. Z.
Mao, M. Ranzato, A. Senior, P. Tucker, K. Yang, and A. Y. Ng, “Large
scale distributed deep networks,” in NIPS. USA: NIPS, 2012.

[3] M. Li, D. G. Andersen, A. J. Smola, and K. Yu, “Communication efficient
distributed machine learning with the parameter server,” in Advances in
Neural Information Processing Systems 27, Z. Ghahramani, M. Welling,
C. Cortes, N. D. Lawrence, and K. Q. Weinberger, Eds. USA: Curran
Associates, Inc., 2014, pp. 19–27.

[4] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Proceedings of the 25th
International Conference on Neural Information Processing Systems
- Volume 1, ser. NIPS’12. USA: Curran Associates Inc., 2012, pp.
1097–1105.

[5] D. Alistarh, J. Li, R. Tomioka, and M. Vojnovic, “QSGD: randomized
quantization for communication-optimal stochastic gradient descent,”
CoRR, vol. abs/1610.02132, 2016.

[6] F. Seide, H. Fu, J. Droppo, G. Li, and D. Yu, “1-bit stochastic gradient
descent and application to data-parallel distributed training of speech
dnns,” in Interspeech 2014. USA: Interspeech 2014, 2014.

[7] W. Wen, C. Xu, F. Yan, C. Wu, Y. Wang, Y. Chen, and H. Li, “Terngrad:
Ternary gradients to reduce communication in distributed deep learning,”
CoRR, vol. abs/1705.07878, 2017.

[8] S. Zhou, Y. Wu, Z. Ni, X. Zhou, H. Wen, and Y. Zou, “Dorefa-net:
Training low bitwidth convolutional neural networks with low bitwidth
gradients,” arXiv preprint arXiv:1606.06160, vol. abs/, 2016.

[9] A. Brutzkus, A. Globerson, E. Malach, and S. Shalev-Shwartz, “SGD
learns over-parameterized networks that provably generalize on linearly
separable data,” in International Conference on Learning Representations.
USA: ICLR, 2018.

[10] N. Strom, “Scalable distributed dnn training using commodity gpu cloud
computing,” in INTERSPEECH. USA: INTERSPEECH, 2015.

[11] Y. Lin, S. Han, H. Mao, Y. Wang, and W. J. Dally, “Deep gradient
compression: Reducing the communication bandwidth for distributed
training,” 2020.

