
QuantumFed: A Federated Learning Framework for
Collaborative Quantum Training

Qi Xia
Department of Computer Science

College of William and Mary
Williamsburg, VA 23185, USA

qxia@cs.wm.edu

Qun Li
Department of Computer Science

College of William and Mary
Williamsburg, VA 23185, USA

liqun@cs.wm.edu

Abstract—With the fast development of quantum computing
and deep learning, quantum neural networks have attracted
great attention recently. By leveraging the power of quantum
computing, deep neural networks can potentially overcome
computational power limitations in classic machine learning.
However, when multiple quantum machines wish to train a global
model using the local data on each machine, it may be very
difficult to copy the data into one machine and train the model.
Therefore, a collaborative quantum neural network framework
is necessary. In this article, we borrow the core idea of federated
learning to propose QuantumFed, a quantum federated learning
framework to have multiple quantum nodes with local quantum
data train a mode together. Our experiments show the feasibility
and robustness of our framework.

Index Terms—quantum neural networks, federated learning

I. INTRODUCTION

Quantum computing has been greatly developed in recent
years. The idea of building a quantum computing based Turing
machine was first proposed in early 1980s by Paul Benioff [3].
Many explorations on this area were conducted by Richard
Feynman [8], David Deutsch [6], etc. and people started to
believe that quantum computing has the capability to beat
classic computer in some tasks. In 1994, Shor’s algorithm
was proposed to factor an integer using a quantum computer
in polynomial time, which is exponentially faster than the
fastest classic algorithms [19]. Recently, Google AI [1] and
USTC [23] claimed quantum supremacy for tasks that are
infeasible on any classic computer. In the meantime, deep
neural network [14] has been found efficient in many practical
tasks such as computer vision [10], [13], [15], [21], natural
language processing [4], [5], [7], [20], etc. It uses a hierarchi-
cal neural architecture to understand the world and achieves a
great success in both industry implementation and academic
research.

In recent years, there is a trend of combining deep learning
and quantum computing together to reduce the huge compu-
tational cost for larger and deeper classic neural networks.
For this purpose, the quantum neural network was naturally
proposed [11]. A quantum neural network uses the idea of
a classical neural network in a quantum way to learn from
the training data. By utilizing the main property of qubit
superposition and entanglement in quantum mechanics, it
tries to improve the computational efficiency and reduce the

long training time and heavy computational resources in deep
learning [2], [9], [17], [18], [22].

In deep neural network model training, sometimes it is
necessary to train a model through multiple machines in a
distributed manner, e.g., federated learning [12], [16]. Fed-
erated learning is a collaborative way to train a global model
where each node has their private local data in classic machine
learning. For quantum machine learning, it is natural to use
this collaborative approach for collaborative training. In this
paper, we learn from this idea and propose a QuantumFed
framework. Our contributions are summarized below:
• We propose QuantumFed, a quantum federated learning

framework to collaborate multiple quantum nodes with
local quantum data together to train a global quantum
neural network model.

• We conduct several simulation experiments to show that
our QuantumFed framework is capable of collaborating
multiple nodes and is robust for noisy data.

II. PRELIMINARIES

A. Quantum Computing Basis

In quantum computing, the qubit is the basic unit to
represent the information. A qubit has two basis states |0〉
and |1〉 like the classic bit in traditional computer, but it can
also be in a superposition, which is a combination of the
two basis states: |ψ〉 = α|0〉 + β|1〉 where α2 + β2 = 1.
Therefore, a qubit is capable of expressing more information
than a classic bit. When observing the qubit, it will collapse to
one of the basis states with corresponding probability, and thus
we can get a statistically accurate estimation after sufficient
times of observations. In addition, the entanglement of qubits
allows more qubits to have correlations with each other and n
qubits, in this scenario, will have 2n basis states and can be in
a superposition among them, which carries an exponentially
increasing amount of information.

In order to perform computations on the qubits, there
are several common quantum logic gates: Pauli, Hadamard,
Controlled Not. Unlike the AND and OR gate from classic
computers, quantum operators are always reversible and will
compute an output with the same dimension, and thus can
be represented as a unitary. If we represent the input qubits

state as a column vector, for example, |ψ〉 = 1√
6
|00〉 +

1√
6
|01〉+ 1√

3
|10〉+ 1√

3
|11〉 → [1√

6
, 1√

6
, 1√

3
, 1√

3
]T , the output

of operators are corresponding unitary left multiplied states.

B. Quantum Neural Network

There are lots of explorations of implementing deep neural
networks in a quantum way. In this article, we adopt a widely
used quantum deep neural network architecture as Figure 1.
Assume in layer l, the input is a state ρl−1 of ml−1 qubits

...

Input
layer layer 1 layer L output

layer

ρin

ρ1 ρL

ρoutU1,1

U1,2

...U1,m
1

UL,1

UL,2

Fig. 1. An architecture example of the quantum neural network.

and this layer will give an output of ml qubits, then the l-the
layer transition map E l is given by:

E l(ρl−1) = trl−1(U l(ρl−1 ⊗ |0 · · · 0〉l〈0 · · · 0|)U l
†
) (1)

U l is the 2ml−1+ml × 2ml−1+ml dimensional perceptron uni-
tary of layer l. A partial trace operation is performed to get
the output state of layer l. For simplicity, we apply U l by se-
quentially applying ml independent perceptron unitaries U l,j

that act on ml−1 input qubits and j-th qubit in layer l, that is,
U l =

∏1
j=ml

U l,j . Note that U l,j here are acting on the current
layer, which means U l,j is actually U l,j ⊗ Il1,···j−1,j+1,···ml

.
In this way, we can feedforward the input state layer by layer
to get an output state:

ρout = Eout(EL(· · · E2(E1(ρin)) · · ·)) (2)

The hyper parameters of the quantum deep neural network are
the unitaries, so as long as we have the network structure and
unitaries, we can describe a model.

In order to represent the input and output data in a quantum
way, for data that is stored by classic bits, we need to first
transform the data to qubit representation. One way to do
this is that we can use a d-qubits state |ψ〉d to represent a
superposition of 2d basis states in Hilbert space H2d , that is,
|ψ〉d =

∑2d

i=1 αi|zi〉 where αi is the complex amplitude and
zi is a basis state in H2d .

C. Federated Learning

Federated learning is a special kind of collaborative dis-
tributed learning in the machine learning area to train a global
model across multiple computational devices or nodes who
keep their private local training data. In federated learning,
the central server only keeps a global model and does not

keep data. Each node queries a global model at some times,
performs local updates on their local data, and uploads the
update information to the central server. During one itera-
tion, the central server receives all the computation results
and updates the global model by aggregating local updates.
In a classic neural network environment, the global model
parameter at time t is wt. Assume there are m participating
nodes at time t and node i performs local update to get
updated model wit = LocalUpdate(wt). The LocalUpdate
function is the classic gradient descent for one or more steps
on local data. Then after the central server receives all the
local updated models, it aggregates those models and updates
the global model by wt+1 = GlobalUpdate(w1

t , w
2
t , · · · , wmt).

In practice, we usually simply use a weighted average function
as GlobalUpdate to aggregate the uploaded models, where the
weight is usually the data volume of each node.

III. QUANTUMFED FRAMEWORK

In this section, we will detail our QuantumFed framework.

A. Cost Function

The cost functions in classic neural networks are usually
mean squared error loss or cross-entropy loss. Although these
cost functions can still be applied in quantum neural networks,
they are not easy to compute with quantum operations. Here
like [2], we use fidelity as our cost function to measure the
difference between label data states and output states. Fidelity
represents the probability that one state will be identified
as the other state in one measurement. Let (φinx , φ

out
x), x =

1, 2, · · · , N be the training data and ρoutx be the output states
that are derived by the current quantum neural network with
the input data φinx , the cost function C is:

C = 1

N

N∑
x=1

〈φoutx |ρoutx |φoutx 〉 (3)

(3) measures the closeness between two states. When the
output states are not pure, we can use a generalized fidelity

function: C = 1
N

∑N
x=1(tr

√
φoutx

1/2ρoutx φoutx
1/2)2. Note that

the value of the fidelity cost function is between 0 and 1, while
1 expresses the best performance.

B. Local Update

The local update is performed in each node in the quantum
federated learning system. The goal of the local update is to
maximize the cost function to 1 based on the local dataset in
the given steps (interval length). In quantum neural networks,
the analogue of the model weight in classic neural networks
is the model perceptron unitary U , and the model update is
defined as U → eiεKU . Here ε is the update step size and K
is the update matrix. Therefore, each local step is to maximize
the cost function by choosing an appropriate update matrix:

K = argK max(C(eiεKU, (φinx , φoutx))− λ‖K‖22) (4)

C(U, (φinx , φoutx)) is the fidelity cost of a model with perceptron
unitary U and local dataset (φinx , φ

out
x). The −λ‖K‖2 is

introduced by a Lagrange multiplier λ to bound the norm of
update matrix K and ‖ · ‖2 is the matrix L2-norm.

Specifically, on the node n side, let (φinn,x, φ
out
n,x), x =

1, 2, · · · , Nn be the local training data in node n, U l,jn be
the perceptron unitary of layer l, perceptron j and U ln =∏1
j=ml

U l,jn , the output states of data x at layer l ρlx equal

to trl−1(U
l
n(ρ

l−1
x ⊗ |0 · · · 0〉l〈0 · · · 0|)U ln

†
) similar to [2], we

can derive the update matrix Kl
j by Proposition 1.

Proposition 1. Let the cost function be the fidelity defined in
(3), we can solve (4) using gradient ascent by the following:

Kl
j = η

2ml−1i

Nn

Nn∑
x=1

trrestM
l,j
x (5)

trrest is over all qubits that are not affected by U l,jn
and M l,j

x is computed by M l,j
x = [

∏1
α=j U

l,α
n (ρl−1x ⊗

|0 · · · 0〉l〈0 · · · 0|)
∏j
α=1 U

l,α
n
†
,
∏ml

α=j+1 U
l,α
n
†
(Il−1 ⊗

σlx)
∏j+1
α=ml

U l,αn]. Here F l is the adjoint channel to E l
and σlx = F l+1(· · · Fout(|φoutn,x〉〈φoutn,x|)).

From Proposition 1, we can derive a closed-form update
matrix for each perceptron unitary. This update matrix is an
analogue of the gradient in the classic neural network, and
the way to derive it is like the back-propagation process.
Therefore, we can update the perceptron unitary like gradient
descent based on local data and Proposition 1 for each step to
maximize the cost function.

In classic federated learning, participating nodes are not
required to do only one step gradient descent in each iteration.
Therefore, we also assume that the local perceptron unitary
can update for several steps. Here we define the number of
steps as the interval length Il. Then the local update algorithm
QuanFedNode is described in Algorithm 1.

In QuanFedNode algorithm, there are basically two steps:
• Feedforward step. We apply the input state of the training

data to the quantum neural network and feedforward it
to every qubit by using the perceptron unitaries.

• Temporary update step. We first compute the unitary
update matrix Kl

j for layer l, perceptron j by Propo-
sition 1. Then the local temporary update is derived by
U l,jn ← eiεK

l
jU l,jn . Meanwhile, we also compute another

update unitary at interval k, U l,jn,k = eiε
Nn
Nt

Kl
j . Nt is the

number of data on all participating nodes in this iteration.
U l,jn,k is computed for global update and will be sent to
the central server later.

The temporary update will be processed in each participating
node with their local training data and repeat for Il times. Then
we can simply send the update unitaries U l,jn,k to the central
server.

C. Global Update

Global update is performed on the central server side. It
maintains a global model that is updated by each node’s local
data and update unitaries. The goal of the global update is to
maximize the cost function based on the global dataset among

Algorithm 1 QuanFedNode (Node n Side)
Input:

Network architecture: there are L layers in the quantum
neural network and layer l has ml quantum perceptrons;
a copy of network perceptron unitaries from the global
model U l,jn = U l,jt ; training data: (φinn,x, φ

out
n,x), x =

1, 2, · · · , Nn; interval length Il; total number of data
among all participating nodes Nt; learning rate η and
update step size ε;

Output:
Send update unitaries to the central server.

1: Set the interval index k = 1;
2: If k <= Il, continue to the next step, otherwise go to

step 6;
3: Feedforward the training data at each layer:

• For every layer l, apply the current channel E l to layer
l − 1: let U ln =

∏1
j=ml

U l,jn ;

• Let ρlx = trl−1(U
l
n(ρ

l−1
x ⊗|0 · · · 0〉l〈0 · · · 0|)U ln

†
) and

store ρlx for every layer;
4: Temporarily update the network:

• Compute the unitary update parameter at layer l,
perceptron j, Kl

j by (5);

• Store update unitary at interval k, U l,jn,k = eiε
Nn
Nt

Kl
j ,

and temporarily update the network by U l,jn =

eiεK
l
jU l,jn ;

5: Let k = k + 1 and go to step 2;
6: Send all stored update unitaries U l,jn,k to the central server.

all quantum nodes. Because the data is stored in each node
and the central server is not able to access the private local
data, the global update can only be computed based on the
update unitaries that are uploaded by each node. We describe
the QuanFedPS algorithm in Algorithm 2.

Basically there are three major steps in QuanFedPS algo-
rithm:

• Initialization step. At the beginning of the quantum fed-
erated training process, the central server first initializes
the model parameters (perceptron unitaries) by randomly
assigning the value.

• Node selection step. Like the classic federated learning
framework, we need to randomly select Np nodes out of
all N nodes who will participate in the current iteration.
This can help improve the randomness of the data dis-
tribution and decrease the data heterogeneity. Besides, it
can reduce the communication cost by selecting fewer
nodes.

• Global update step. After participating nodes complete
the local training and send update unitaries back to
the central server, the central server updates the global
model by applying those update unitaries and finishing
the current iteration. We will take the global model update
for Ns iterations.

Algorithm 2 QuanFedPS (Central Server Side)
Input:

Network architecture: there are L layers in the quantum
neural network and layer l has ml quantum perceptrons;
total number of nodes N and number of selected nodes
in each iteration Np; total synchronization iterations Ns;
number of training data on node n Nn; interval length Il;

Output:
The trained quantum neural network.

1: Initialize the network by randomly choosing all the uni-
taries U l,jt , set the iteration index t = 1;

2: If t <= Ns, continue to the next step, otherwise go to
step 6;

3: Randomly select Np nodes from all nodes. Assume the set
of selected node indexes is Sn, compute the total number
of data among all participating nodes Nt =

∑
n∈Sn

Nn.
For each selected node, run QuanFedNode algorithm and
get update unitaries U l,jn,k;

4: Compute the global update unitaries by applying update
unitaries from all selected nodes:

U l,j =

1∏
k=Il

∏
n∈Sn

U l,jn,k (6)

5: Update the global model by U l,jt+1 = U l,jU l,jt ;
6: Let t = t+ 1 and go to step 2;
7: Output the trained quantum neural network model.

The design of global update is based on the observation that
the order of applying update unitaries almost does not matter
and the update unitaries almost surely have multiplicative
identity property when ε → 0. Theoretically, we have the
following lemma.

Lemma 1. Assume U1 = eiεK1 , U2 = eiεK2 are two update
unitaries and K1,K2 are bounded by the L2-norm, we have
limε→0 U1U2 = eiε(K1+K2) at convergence speed O(ε2).

Proof. By Taylor’s expansion, we have:

U1 = I + iεK1 +O(ε2)

U2 = I + iεK2 +O(ε2)

eiε(K1+K2) = I + iε(K1 +K2) +O(ε2)

Then we have:

U1U2 − eiε(K1+K2) = O(ε2) (7)

From (7), we can derive limε→0 U1U2 = eiε(K1+K2) at
convergence speed O(ε2).

From Lemma 1, when ε is small enough, we can rewrite
the global update unitaries (6) as:

U l,j =

1∏
k=Il

eiεK
l,j
k ,Kl,j

k =

∑
n∈Sn

NnK
l,j
n,k∑

n∈Sn
Nn

(8)

Here we define Kl,j
n,k as the update matrix for node n at step

k, layer l, and perceptron j. Note that the update matrix Kl,j
n,k

is derived from (5), and (5) is actually an average of the partial
trace of M l,j

x for all the local data. Therefore, if we denote
the dataset on node n is Dn, and Dp =

⋃
n∈Sn

Dn, we have:

Kl,j
k =

∑
n∈Sn

(Nnη
2ml−1i
Nn

∑
x∈Dn

trrestM
l,j
x)∑

n∈Sn
Nn

= η
2ml−1i∑
n∈Sn

Nn

∑
x∈Dp

trrestM
l,j
x

This is equivalent to compute for a local update on the
union dataset of the data on all participating nodes in this
iteration when k = 1. So when the interval length is set to
1, the QuantumFed framework is exactly the same as training
on a single quantum machine with all data. However, when
the interval length is greater than 1, things become much
more complicated. We will discuss this problem in the next
subsection.

D. Discussions

1) GD vs SGD: The QuanFedNode algorithm that we
described in Algorithm 1 uses all the training data in each
update step. Therefore, the training process is more like
gradient descent (GD) in classic deep learning. An alternative
training method is by randomly choosing a mini-batch of
training data in each step, which is an analogue of mini-batch
stochastic gradient descent (SGD) in classic deep learning.
SGD can solve the biased data distribution problem by in-
troducing randomness and reduce the computational cost. In
the experiment part, we will compare GD-type and SGD-type
quantum federated training.

2) Interval Length > 1: As we discussed before, when
Il = 1, the QuantumFed framework is exactly the same as
training on a single machine. When Il > 1, because of the
local temporary update, the update unitaries that are computed
after the first step are based on the temporarily updated model
parameters, which are not the same as each other participating
nodes in one iteration. One way to understand it is that
since we usually choose a small ε, the temporary update is
a small perturbation of the perceptron unitaries. Assume the
perceptron unitary is Up and the update unitary is Uu = eiεKu .
By Taylor’s expansion, the update perturbation is given by:

UuUp − Up = (I + iεKu +O(ε2)− I)Up
= (iεKu +O(ε2))Up

Therefore, the perturbation is small compared to the perceptron
unitary when ε is small and Ku is bounded, and intuitively
we can consider the local temporary updated model as a
same model. We also show it is feasible to use larger interval
length in the experiment, where it reduces the synchronization
iterations and accelerates the training speed.

3) Why Unitary: When communicating between the central
federated server and quantum nodes, we choose to use update
unitary matrix as the model parameters for transmission. The

reasons are below. First, in classic federated learning, each
node sends the local updated model, or gradient to the central
server. In the quantum neural network, the analogue is the local
updated network unitary U l,jn or updated unitary U l,jn,k. Second,
the central server can simply apply the update unitaries from
each worker to update the global model. It is more convenient
and reduces the computations in the central server side. Third,
unitary is the basic operation in quantum mechanics and it is
easier to optimize in the system level.

4) Learning Rate and Step Size: In the QuanFedNode
algorithm, there are learning rate η and step size ε to control
the update and they have different meanings. ε is derived from
classic quantum neural network update, and η is derived from
how we would like to bound the update matrix K. A larger
η leads to a tighter bound of K. However, actually we can
rewrite the update unitary by:

U l,jn,k = eiε
Nn
Nt

Kl
j = eiεη

2
ml−1 i
Nt

∑Nn
x=1 trrestM

l,j
x (9)

We can actually combine ε and η to one parameter. For
convenience and easy to understand, we set λ = 1.0 at all
time and fine tune the step size by adjusting ε in practice.

IV. EXPERIMENT

In this section, we conduct simulated experiments for our
QuantumFed framework.

A. Environment Setup

Here we use a quantum environment simulated by QuTip
library 1 (Quantum Toolbox in Python). We set up our exper-
iment environment in the following aspects.

First, in order to get the training data, similar to [2], we first
randomly generate a global unitary Ug which is the unitary we
would like to approximate. Then we randomly generate the
training data input and apply the global unitary to the input to
get the corresponding output. We use the randomly generated
input and output pair as the clean training data. The same
method is applied to generate the test data. In this way, we can
generate clean training data (|φinn,x〉, Ug|φinn,x〉) on the node n
side, and test data (|φintest,x〉, Ug|φintest,x〉) on the central server
side. In order to show the robustness of the training, we also
pollute a proportion of training data with randomly generated
input and output to get noisy training data. Second, as for the
quantum neural network architecture, because the experiments
that we conduct are in a simulated environment using the
classic computer and the computational complexity increases
exponentially with the width of the network increases, we
choose to train small-size quantum neural networks with width
that are not greater than 3. In this section, we choose a network
of size 2-3-2. Third, in order to simulate the heterogeneous
federated learning environment, we put similar training data
into the same node. We first gather all the generated training
data from all nodes, sort them by their vector representation
value, and divide them to each node in order. In this way, we
can somehow guarantee that the data on each node is not i.i.d.

1QuTip: https://github.com/qutip/qutip

Fourth, we measure the experiment results using two metrics.
First metric is the fidelity cost function that we defined in (3),
to show the probability that the output state will be identified
as the output label in a measurement. We also adopt another
metric mean square error (MSE) that is widely used in classic
machine learning as a comparison. The MSE is defined below:

MSE =
1

N

N∑
x=1

‖ρoutx − |φoutx 〉〈φoutx |‖2 (10)

We examine our experiments using both metrics on the training
and test data respectively to show the performance.

We set η = 1.0, ε = 0.1, N = 100, and Np = 10 if not
specified.

B. Experiment Results

1) Accuracy: We first show how a 2-3-2 quantum network
performs with different interval lengths in Figure 2. Here, the

0 10 20 30 40 50
iterations

0.4

0.6

0.8

1.0

fid
el

ity

Fidelity on Training Data

0 10 20 30 40 50
iterations

0.00

0.25

0.50

0.75

1.00

1.25

1.50

m
se

MSE on Training Data

0 10 20 30 40 50
iterations

0.4

0.6

0.8

1.0

fid
el

ity

Fidelity on Test Data

0 10 20 30 40 50
iterations

0.00

0.25

0.50

0.75

1.00

1.25

1.50

m
se

MSE on Test Data

Interval = 1
Interval = 2

Interval = 5
Interval = 10

Interval = 20
Interval = 2, SGD

Fig. 2. Experiment results of a 2-3-2 quantum network with different interval
lengths.

interval length of 1 case is actually the same as the scenario
that is running on a single machine. Therefore, we can see that
after 50 iterations, all of them reach fidelity of approximately
1 and MSE of approximately 0 on both training data and test
data. This shows that our QuantumFed framework works on
collaborating different quantum nodes for training a global
model. Besides, we can find that the performance becomes
better when we conduct more local steps in each iteration.
This is because we have more local training on local data,
which learns more information in each iteration. In addition,
as a comparison, we also plot the SGD scenario with interval
length 2, here we use a mini-batch of 5 for this experiment.
We can see that the convergence speed is slower a little
bit, which makes sense because we have less data in each
iteration, but the final performance is similar. This shows that
our framework is feasible for both SGD and GD optimization.

2) Robustness: We then show the performance of a 2-3-
2 quantum network with a different ratio of noisy data. We
compare the data with 10% noisy data to 90% noisy data
on noisy training data and clean test data. The results are in
Figure 3. As we can see from the figure, the performance

0 10 20 30 40 50
iterations

0.3

0.4

0.5

0.6

0.7

0.8

0.9

fid
el

ity

Fidelity on Training Data

0 10 20 30 40 50
iterations

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

m
se

MSE on Training Data

0 10 20 30 40 50
iterations

0.4

0.6

0.8

1.0

fid
el

ity

Fidelity on Test Data

0 10 20 30 40 50
iterations

0.00

0.25

0.50

0.75

1.00

1.25

1.50

m
se

MSE on Test Data

Noise ratio: 10%
Noise ratio: 20%
Noise ratio: 30%

Noise ratio: 40%
Noise ratio: 50%
Noise ratio: 60%

Noise ratio: 70%
Noise ratio: 80%
Noise ratio: 90%

Fig. 3. Experiment results of a 2-3-2 quantum network with different ratios
of noisy data.

keeps acceptable when the noise data ratio is no more than
70%, while the final performance is similar when the noise
ratio is no more than 50%. This shows the robustness of
our QuantumFed framework and it is able to resist with a
considerable proportion of noisy data.

V. CONCLUSION

In this paper, we propose a novel quantum federated learn-
ing framework in which multiple quantum nodes collaborate
using local quantum data. Several experiments are conducted
to show the feasibility and robustness of our QuantumFed
framework. With the emergence of quantum computing, the
potential of quantum neural networks is enormous. We believe
it will be practical to train a deep neural network collabora-
tively on multiple quantum devices in the near future.

REFERENCES

[1] F. Arute et al., “Quantum supremacy using a programmable supercon-
ducting processor,” Nature, vol. 574, pp. 505–510, Oct 2019. [Online].
Available: https://doi.org/10.1038/s41586-019-1666-5

[2] K. Beer et al., “Training deep quantum neural networks,” Nature
Communications, vol. 11, p. 808, Feb 2020. [Online]. Available: https:
//doi.org/10.1038/s41467-020-14454-2

[3] P. Benioff, “The computer as a physical system: A microscopic quantum
mechanical hamiltonian model of computers as represented by turing
machines,” Journal of Statistical Physics, vol. 22, pp. 563–591, May
1980. [Online]. Available: https://doi.org/10.1007/BF01011339

[4] Q. Chen et al., “Enhanced LSTM for natural language inference,”
in Proceedings of the 55th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers). Vancouver,
Canada: Association for Computational Linguistics, Jul. 2017, pp. 1657–
1668. [Online]. Available: https://www.aclweb.org/anthology/P17-1152

[5] R. Collobert and J. Weston, “A unified architecture for natural language
processing: Deep neural networks with multitask learning,” in Proceed-
ings of the 25th International Conference on Machine Learning, ser.
ICML ’08. New York, NY, USA: Association for Computing Ma-
chinery, 2008, p. 160–167. [Online]. Available: https://doi.org/10.1145/
1390156.1390177

[6] D. Deutsch, “Quantum theory, the Church-Turing principle and the
universal quantum computer,” Proceedings of the Royal Society of
London Series A, vol. 400, pp. 97–117, Jul. 1985.

[7] J. Devlin et al., “BERT: Pre-training of Deep Bidirectional Trans-
formers for Language Understanding,” in Proceedings of the 2019
Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, Volume 1
(Long and Short Papers). Stroudsburg, PA, USA: Association for
Computational Linguistics, 2019, pp. 4171–4186. [Online]. Available:
http://aclweb.org/anthology/N19-1423

[8] R. P. Feynman, “Simulating physics with computers,” International
Journal of Theoretical Physics, vol. 21, pp. 467–488, Jun 1982. [Online].
Available: https://doi.org/10.1007/BF02650179

[9] S. Gupta and R. Zia, “Quantum neural networks,” Journal of Computer
and System Sciences, vol. 63, pp. 355–383, 2001. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0022000001917696

[10] K. He et al., “Deep residual learning for image recognition,” arXiv
preprint arXiv:1512.03385, 2015.

[11] S. Kak, “On quantum neural computing,” Information Sciences, vol. 83,
pp. 143–160, 1995. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/002002559400095S

[12] J. Konecný et al., “Federated learning: Strategies for improving com-
munication efficiency,” CoRR, vol. abs/1610.05492, 2016.

[13] Y. Lecun et al., “Gradient-based learning applied to document recogni-
tion,” Proceedings of the IEEE, vol. 86, pp. 2278–2324, 1998.

[14] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
pp. 436–444, May 2015. [Online]. Available: https://doi.org/10.1038/
nature14539

[15] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for
semantic segmentation,” in 2015 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2015, pp. 3431–3440.

[16] H. B. McMahan et al., “Communication-efficient learning of deep net-
works from decentralized data,” in Proceedings of the 20th International
Conference on Artificial Intelligence and Statistics (AISTATS), 2017.
[Online]. Available: http://arxiv.org/abs/1602.05629

[17] B. Ricks and D. Ventura, “Training a quantum neural network,”
in Advances in Neural Information Processing Systems, S. Thrun,
L. Saul, and B. Schölkopf, Eds., vol. 16. MIT Press,
2004. [Online]. Available: https://proceedings.neurips.cc/paper/2003/
file/505259756244493872b7709a8a01b536-Paper.pdf

[18] M. Schuld, I. Sinayskiy, and F. Petruccione, “The quest for a quantum
neural network,” Quantum Information Processing, vol. 13, pp. 2567–
2586, Nov 2014. [Online]. Available: https://doi.org/10.1007/s11128-
014-0809-8

[19] P. W. Shor, “Polynomial-time algorithms for prime factorization
and discrete logarithms on a quantum computer,” SIAM Review,
vol. 41, pp. 303–332, 1999. [Online]. Available: https://doi.org/10.1137/
S0036144598347011

[20] A. Vaswani et al., “Attention is all you need,” in Advances in Neural In-
formation Processing Systems, I. Guyon et al., Eds., vol. 30. Curran As-
sociates, Inc., 2017. [Online]. Available: https://proceedings.neurips.cc/
paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

[21] A. Voulodimos et al., “Deep learning for computer vision: A brief
review,” Computational Intelligence and Neuroscience, vol. 2018, p.
7068349, Feb 2018. [Online]. Available: https://doi.org/10.1155/2018/
7068349

[22] K. H. Wan et al., “Quantum generalisation of feedforward neural
networks,” npj Quantum Information, vol. 3, p. 36, Sep 2017. [Online].
Available: https://doi.org/10.1038/s41534-017-0032-4

[23] H.-S. Zhong et al., “Quantum computational advantage using photons,”
Science, vol. 370, pp. 1460–1463, 2020. [Online]. Available: https://
science.sciencemag.org/content/370/6523/1460

