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Abstract

Training machine learning model on IoT device is a nat-
ural trend due to the growing computation power and the
great ability to collect various data of modern IoT de-
vice.In this work, we consider an edge based distributed
deep learning framework in which many edge devices
collaborate to train a model while using an edge server
as the parameter server. However, the high network com-
munication cost of synchronizing gradients and param-
eters between edge devices and cloud is a bottleneck.
We propose a new method called edge Stochastic Gra-
dient Descent (eSGD) for scaling up edge training of
convolutional neural networks. eSGD is a family of
sparse schemes with both convergence and practical per-
formance guarantees. eSGD includes two mechanisms
to improve the first order gradient based optimization
of stochastic objective functions in edge scenario. First,
eSGD determines which gradient coordinates are impor-
tant and only transmits important gradient coordinates to
cloud for synchronizing. This important update can ag-
gressively reduce the communication cost. Second, mo-
mentum residual accumulation is designed for tracking
out-of-date residual gradient coordinates to avoid low
convergence rate caused by sparse updates. Our exper-
iments show that we reach 91.2%, 86.7%, 81.5% accu-
racy on MNIST data set with gradient drop ratio 50%,
75%, 87.5% respectively.

1 Introduction

The Internet-of-things (IoT) has been widely used in
many areas. Billions of edge devices have already been
deployed for monitoring natural environment, predicting
weather, smart housing, cities, personalized fitness and
healthcare, etc [14]. Edge devices successfully prove
their great ability to collect realtime, local, sensor-based
data from a variety of environments. We also notice that
these edge devices can easily access wealth of data suit-
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Figure 1: Example of Edge Training

able for machine learning model [4], which in turn can
greatly improve user’s QoE. In recent years, not surpris-
ingly, training on a personal mobile device is appeal-
ing due to the concerns about better privacy and bet-
ter personalization [6], but a critical problem is current
edge machine learning is so far limited to cloud-based
training. Edge devices such as mobile phones, environ-
ment sensors, HD cameras and other portable devices
fetch the real time environment data and push this data
to cloud server. The cloud server collects data from all
edge nodes, and trains the large scale machine learning
(ML) model according to this data, then sends the train-
ing result back to edge devices. The cloud-based training
therefore suffers from low throughput, high latency, and
expensive mobile data plan [11]. To mitigate the above
issues, we prefer the training process can be performed
on local devices. That is, the real time data can be used
to train in local ML model without pushing it to cloud
server and waiting for responses from cloud.

Inspired by distributed training system [1, 8, 4, 5, 13]
and recent work DIANNE [7], we deploy the ML train-



ing model on edge devices, and make the edge serve
function as parameter server so that we can both exe-
cute and train the ML model on the edge device. Fig-
ure 1 illustrates the edge training framework. Edge de-
vices keep fetching the trainable environment data and
run learning model locally, and separately. As a result,
users can receive real-time predictions and at same time,
data parallelism is adopted to exploit the compute capa-
bility empowered by multiple edge devices. To achieve
this, we chose stochastic gradient descent (SGD) as opti-
mization method due to its high computation efficiency.
As we mentioned above, the copy of learning model in
each edge device is trained separately by feeding individ-
ual data. And the edge server performs gradient synchro-
nization by collecting all gradients and averaging them
to update parameters. The updated parameters will be
sent back to each edge node for next training step, which
is known as parameter synchronization [19]. However,
as the scale of edge training grows up, a large amount
of training metadata including gradients and parameters
will be pushed to the edge server. This will result in a
high communication overhead due to low network band-
width and highly frequent gradient exchange [15, 20].

Edge Stochastic Gradient Descent (eSGD) solves the
communication bandwidth problem by taking advantage
of gradient sparsification. In fact, an empirical obser-
vation mentioned that training gradients are very sparse
and most of weights have value close to zero [16]. Here,
training gradients are series of multidimensional vec-
tors and we denote the element of training gradient as
gradient coordinate. Due to the limited training sam-
ples on edge device, sub-gradients are normally even
sparser than the weight distribution. Thus we notice that
only a small fraction of the gradient coordinates are re-
quired to be updated after each mini-batch. To guar-
antee zero accuracy loss, eSGD employs two mecha-
nisms: important updating and momentum residual ac-
cumulation. To determine which gradient coordinates
are selected to be synchronized, we introduce a histor-
ical liked method called random weight selection to se-
lect most popular gradient coordinates according on its
hidden weight. Hidden weight is a real positive value.
Every time gradient coordinate participates in gradient
synchronization, the hidden weight value associate with
this gradient coordinate is increased. Therefore, large
hidden weight value indicates that the coordinate partici-
pates synchronization more frequently and is more likely
to be selected than other gradient coordinates in the next
round, that is, importance update. Meanwhile momen-
tum residual accumulation is applied for tracking and
accumulating unsynchronized coordinates value for de-
lay updates. We empirically verified eSGD performance
as desired on MINIST data set. We have achieve 81.5%,
86.7%, 91.2% accuracy with dropping ratio 87.5%, 75%

50% respectively.

2 Related Work

In recent year, most of communication efficient ap-
proaches are done by distributed training scheme. Each
worker keeps a copy of training model and for each it-
eration, all gradients from workers are synchronized and
averaged at parameter server and then sent back to up-
date workers. To accelerate training speed, asynchronous
SGD [10] was proposed by updating gradient immedi-
ately when the training worker finished their batch train-
ing. To reduce the communication cost between work
and parameter server, two type approaches include vector
quantization and gradient sparsification are well studied.
Vector Quantization Quantizing the gradient vector to
low precision value or approximation value are com-
monly used. Seide et al. [9] proposed 1-bit SGD to
reduce gradients transfer data size and track the quan-
tization error by adding it into the respective next
mini-batch gradient before quantization which achieved
10x speedup in traditional speech DNNs. Similarly,
Zhou et al. [18] created DoReFa-Net which uses 1-
bit weights and 2-bit gradients to exchange information
in network. Another approximation based approach is
Wen et al. [19] developed TernGrad which uses 3-level
{-1,0,1}gradients. Alistarh et al. [17] proposed QSGD
which gives a general method of quantized gradient and
it balances the trade-off between accuracy and gradient
precision.

Gradient Sparsification This type of work follows the
very simple intuition that not full gradient will be up-
date to server, instead only some important gradient’s
value(coordinate-based) will participate averaging at pa-
rameter server. How to choose important gradient value
to update is major task of gradient sparsification. Strom
et al. [16] proposed threshold gradient sparsification that
is only gradient elements whose absolute values exceed
a predefined threshold can be updated. However, the
threshold is hard to choose in practice due to the variation
of its value. Then Dryden et al. [12] chose a fixed propor-
tion of gradient value to avoid the threshold drawback.
Gradient Dropping, introduced by Aji & Heafield [2]
found gradient updates are positively skewed as most up-
dates are near zero. Gradient Dropping saves 99% of
gradient exchange and 11% speed improvement but it
has bad BLEU score. Chen et al. [21] proposed Ada-
Comp which can adaptively adjusts compression ratios
in different mini-batches, epochs, network layers and
bins. AdaComp gained compression ratio around 200x
for fully-connected layers and 40x for convolutional lay-
ers with negligible degradation of top-1 accuracy on Im-
ageNet dataset.



3 eSGD Technique

3.1 Observations

The first empirical, observation is that sub-gradients are
very sparse. In general, the weights of a fully connected
DNN are sparsely distributed with most weight values
close to zero [16]. Therefore, it is very obvious that
the sub-gradients of these sparse weights are also sparse.
In addition, considering the capacity on the edge de-
vices, small training data set can greatly impact on the
sparsity of weights and its sub-gradients. This leads to
the core idea of our method, that is, only a small frac-
tion of the parameters is necessarily to be updated af-
ter each training batch. Another observation made by

Algorithm 1 Edge Stochastic Gradient Descent

1: Initialization Hidden Weight Hy < 0, Parameter x,
Fixed proportion k%
EdgeNode:
2: Update parameter x; <— x;—1 — &r—1
3: threshold <— Y 4 8is—1/d
4: if ¢ > 1 then

5. ifI(x,—1) > I(x;) then

6: g;Afdule “ g?f:h]”e

7: Record the index i of updating gradient coordi-
nates

8: Update Hidden Weight H, (i) at given coordi-
nates i

9: else

10: g7 +_ Weighted Random Selection k% co-

ordinates from g,
11:  endif

12 Accumulate Residual Gradient gJesidual  —
Residual (g/esidual)

13:  for all g;i“id““l > threshold do

14: Replace g?ﬁdme with gesidual according to least

significant

15:  end for

16: else

17:  g“Pete  randomly select with fixed proportion
k% from g

18: end if

19: Push g“P4@¢ to Cloud/Fog

Cloud:

20: Average gradients g = ~ ¥, 8" date,n

21: Send g, back to edge node

[11] is that many techniques for optimizing SGD can be
presented as delaying parameter updates [16]. Gener-
ally, the distributed training performs the following syn-

chronous SGD update with N training nodes:

1 N
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where x is the weights of network, ¥ is the learning rate,
N is the number of training nodes, B is a sequence of
samples from universal dataset .2~ with size b and a loss
objective function L(x,z) is used to measure the perfor-
mance of current system with parameter x and input z.
We rephrase the above update equation (1) to coordinate-
based form. We define x;; is the value of weight in fth
iteration at coordinate i, after T iterations, we have:

1 N T—1 )
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Xit = Xit—1

The equation above shows that local gradient accumula-
tion can be regarded as changing the min-batch size from
Nb to NbT. In this case, updates of sub-gradients for in-
dividual samples are delayed until the end of the sparse
update interval.

3.2 Importance Updating

As we mentioned in section 2, neither threshold nor fixed
proportion approaches are suitable for edge training. The
main drawback behind gradients dropping approaches
is how we define the importance of a single coordinate
of the entire gradient so that important gradient coordi-
nates will be selected for synchronizing and less impor-
tant gradient coordinates are going to be ignored. In re-
ality, drop-like approaches are only working on the large
scale distributed training with plenty of computational
resources. All workers keep a copy of training data and
run training task with more than 10%(4 < k < 8) epochs.
However, in edge training, edge nodes have limited stor-
age space and battery supply. Simply dropping the small
value gradient coordinates can degrade training accuracy
and incur occasional divergence [3].

Therefore, the main challenge of our work is how to
select a group of important gradient coordinates so that
training parameters can be converged fast without ac-
curacy loss. To address this, we introduce our novel
technique in Algorithm 1 line 5-8 named random hid-

den weight selection. We define /(x) is the loss function

. L dat .
which we want to minimize. Let g/7*“"* denote the i’ co-

ordinate of gradient g to be updated at time step #. /(x;—1)
and [(x,) are the loss value at time steps t — 1 and 1 — 2
with parameter x;_; and x; respectively. And there is a
hidden weight value of each gradient coordinate which
stores in H;.

Intuitively, we want the loss function to be converged
at each step, which means the loss value is getting close
to the local optimal value. Following this basic trend,



in ideal case, the loss value on time step ¢ should be
smaller than its value on ¢t — 1. However, SDG method
does not always act in this way. The loss value is er-
ratic fluctuation. So, in our design, we keep tracking
the loss values at two consecutive times f — 1 and 7. If
I(x,—1) > I(x)(line 5), it indicates that we have better
result at time step ¢ with current gradient g;, we should
record all index of participated gradient coordinates and
label them as important gradient and sign a positive value
to its hidden weight H, (i). For next iteration ¢ + 1, we use
the same gradient coordinates at time ¢ because we as-
sume these gradient coordinates can be beneficial to our
loss function.

Once I(x;—1) > I(x;) does not hold, it indicates that
at time ¢ the loss function value is undesirable. Then
we stop updating gradient coordinates by using same in-
dexes gradient in previous step, instead, we randomly se-
lect the indexes among the all coordinates according to
their hidden weight values H;(i). Why? Because a co-
ordinate with large hidden weight value is more likely to
be selected for next round and it also indicates that this
coordinate is labeled as important many times during the
training process.

Algorithm 2 Residual

Initialization Decay rate § = 0.9
Input: gradient g,previous
for all coordinate i in g, not update g; ; do

g(esidual _ ﬁ _g'esi[{ual + (] _ ﬁ) -gis

it it— »
end for
Return: gresidual
* t

AN A A e

3.3 Momentum Residual Accumulation

In addition, we should also take care of the gradient co-
ordinates value below the threshold. Because ignoring
these small values will greatly harm convergence. To
choose the threshold, we set a dynamic threshold for each
iteration according to current gradient average value (Al-
gorithm 1, line 3). We do not set a fix threshold due to the
variation of gradient coordinate value and we also do not
use fixed proportion approach to avoid the case that some
small gradient values could never be used or updated.
We keep tracking the residual gradient value, in algo-
rithm 1 line 12. On edge node, each iteration, small gra-
dient values are accumulated in what we call the gradient
residual accumulation. Since residual gradient coordi-
nates have very different dynamic range, therefore, in-
spired by momentum SGD, and deep compression [11],
we want to use momentum correction technique to over-
come this issue. Momentum SGD is widely used in
place of vanilla SGD. However, in our scenario, we do

not apply the momentum to whole gradient but only use
it on residual gradient (Algorithm 2). Since we delay
the update of small gradients, when updates do occur,
they are outdated and have weak influence for next iter-
ation. Therefore, we set a discount factor 8 to correct
residual gradient accumulation. This technique ensures
that parameters with small but biased sub-gradient val-
ues are eventually updated whenever they reach the cur-
rent threshold.

When residual gradients reach the threshold, we need
to synchronize them to cloud server. Algorithm 1, line
13-15 shows how do we replace the updating gradient
coordinates with qualified residual gradient coordinates.
Remember, each gradient coordinate has a hidden weight
value associated with, at this point, we sort the gradient
coordinates in descending order via their hidden weight.
To replace the updated gradient coordinate, we drop the
least significant (small hidden weight value) coordinates
and fill in with the qualified residual gradient coordi-
nates.

4 Experiment

4.1 Experiment Settings

We validate our approach on MNIST data set. The ex-
periments are performed by MATLAB 2018R. We first
investigate the convergence of eSDG under various train-
ing schemers. We maintain the hyper-parameter for
residual gradients to be exponential decay f8 as 0.9 and
learning rate y = % where e is number of epochs. We
fix the drop ratio as 50% and no drop for standard SGD.
The accuracy is evaluated by compare the final training
parameter result with MNIST test set. For fair compar-
ison, in each experiment set, we training the model by
using standard SGD, threshold SGD, and eSGD. Then
we focus on experiment with different drop ratio. We
perform each experiment set 3 times and pick the best
result.

4.2 Result and Analysis

Figure 2 is the loss convergence with different drop ratio.
It is clearly to see full gradient reaches the fast conver-
gence rate, and if only 50% gradient coordinates are per-
severed, convergence rate can be degraded and for drop
rate with 75% the result gets worse. However, standard
SGD receive zero feedback from loss value, therefore,
standard SGD converge with high frequency fluctuate but
eSGD obviously is more smooth.

The first 3 rows in Table 1 shows that the accuracy
result of 3 different training algorithms. Using same
min-batch size, standard SGD optimization can reach the
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Figure 2: Convergence with different drop ratio

highest accuracy for 99.99% in the only 10 epochs. Com-
pared with previous work by using fixed threshold value
to drop the gradient coordinates, eSGD shows much bet-
ter result with accuracy 86.01%, since it is not consid-
erable for threshold-like method to choose a reasonable
value. On the row 4-6, we exam training with eSGD
but different min-batch size, this is useful because we
assume training in different edge devices but has differ-
ent capacity for training sample. We notice that eSGD
is sensitive when mini-batch size changed. It is due to
small mini-batch result in the gradient much more sparse
and as the consequence, momentum residual accumula-
tion process takes more time to reach the upload condi-
tion which can greatly impact the result of our experi-
ment.

SGD batch size iterations accuracy
std SGD 128 200000 99.77
eSGD 128 200000 86.01
thresholdSGD 128 200000 78.23
eSGD 32 200000 82.22
eSGD 64 150000 82.89
eSGD 128 100000 80.43

Table 1: Compare with stdSGD and threshold SGD

Drop Ratio  batch size iterations accuracy
25% 128 200000 95.31
50% 128 200000 91.22
87.5% 128 200000 88.46
75% 32 200000 83.85
75% 64 150000 83.76
75% 128 100000 81.13

Table 2: Drop ratio

In Table 2, we explore different drop ratio on MNIST
CNN model. We see when the drop ratio is low such
as 25% and 50%, we still can have high accuracy with
95.31% and 91.22% respectively. Compared to the
threshold like method, when we drop more than 80% gra-
dient, we still have desirable result.

5 Conclusions

Edge Stochastic Gradient Descent (eSGD) can shrink the
gradient size by 90% of a CNN training model without
slowing down the convergence rate. eSGD employs im-
portant updating method with a core technique of ran-
dom weighted selection. To avoid the exploding gradient
problem, eSGD applies momentum residual accumula-
tion. Edge Stochastic Gradient Descent reduces the re-
quired communication bandwidth and improves the scal-
ability of edge training .
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