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Abstract

Deep convolutional neural networks (DNNs) have

brought significant performance improvements to face

recognition. However the training can hardly be car-

ried out on mobile devices because the training of these

models requires much computational power. An indi-

vidual user with the demand of deriving DNN models

from her own datasets usually has to outsource the train-

ing procedure onto a cloud or edge server. However this

outsourcing method violates privacy because it exposes

the users’ data to curious service providers. In this pa-

per, we utilize the differentially private mechanism to en-

able the privacy-preserving edge based training of DNN

face recognition models. During the training, DNN is

split between the user device and the edge server in a

way that both private data and model parameters are pro-

tected, with only a small cost of local computations. We

show that our mechanism is capable of training models

in different scenarios, e.g., from scratch, or through fine-

tuning over existed models.

1 Introduction

People with mobile devices such as smartphones, Google

glasses or HoloLens can sense the environment and use

collected sensitive data (image, sound, and more) to train

a deep convolutional neural network (DNN) for various

applications, e.g., face recognition of people met before.

Usually, there are two ways for these mobile devices to

train a DNN. The first one is to send all sensitive data

to a central server (or cluster) which has enough com-

puting power. The second one is to perform distributed

training with a local DNN being trained on each device.

Obviously, the first one is more suitable for mobile de-

vices with limited computing resources. But user’s pri-

vate data will be violated seriously if the central server

is untrusted [3]. The second one has higher requirements

for devices’ computing power. Assuming that it’s pos-

sible for mobile devices to perform distributed training

given powerful equipments like neural engines built in

iPhone X and Tensorflow Lite training framework for

mobile devices provided by Google, user’s private data

will still be violated by an active adversary even with ef-

ficient privacy-preserving schemes applied [13, 7]. To

meet privacy and resource requirements, we offer a more

suitable option for privacy-aware DNN training for mo-

bile devices aided by edge computing. In particular, we

will show how this can be done through the popular ap-

plication of DNN based face recognition.

Training a multi-label DNN entirely on a mobile de-

vice is daunting due to resource limitations. Mean-

while, users’ privacy cannot be guaranteed in client-

server model. An untrusted server can peek at users’ im-

ages containing confidential information. Even if cryp-

tographic tools or obfuscation schemes are applied to

protect images, membership inference attacks against a

trained model could still be achieved [14, 6] even with-

out training data present. There is still a huge gap be-

tween deploying fully functional DNNs on devices and

reality. This paper tries to fill the gap by introducing a

new client-server model based DNNs training scheme in

privacy-preserving manners. Users within the scheme

just do limited computation to train very deep neural

networks on off-the-shelf devices and aided edge server

with users’ private data preserved. For example, smart-

phone users can train their own multi-label face recogni-

tion models on a edge server with their private images.

Another possible application is to use smart cameras and

edge computing server [15] to make real-time neighbor-

hood surveillance with residents’ privacy preserved. It

will just take seconds to process a batch on mobile client.

Privacy issue in deep learning has been a hot topic re-

cently because of severe privacy leakage results [14, 7,

6]. Several efficient privacy-aware DNN training mecha-

nisms have been proposed. A differentially private (DP)

gradients computing mechanism is designed in [1] to

protect locally trained parameters. Privacy-preserving



parameters aggregation for distributed learning has been

studied in [13, 3]. A DP parameters updating mechanism

is introduced in [13], while a secure parameters aggre-

gation mechanism based on combing masking technique

and threshold secret sharing is proposed in [3]. Target-

ing at privacy-preserving fine-tuning, [11] migrates the

learning process from a client to a server after mixing ba-

sic features extracted by clients with noise. However this

scheme focuses on fine-tuning only. None of these ex-

isted mechanisms can protect mobile user’s private data

in a client-server training model very well.

The basic idea of our scheme is based on an impor-

tant observation, that a DNN can be split inside between

two successive layers and deployed two partitions on dif-

ferent locations without hazarding the optimization. To

minimize the cost of mobile users, we partition DNN af-

ter the first convolutional layer. Deploy the first part on

user side while the second part on the edge server side.

We keep the output of the user part privacy-preserving

and feed the output of the user part as the input of the

second part on server side. We avoid cryptographic tools

so that we can keep user side lightweight. Meanwhile,

we use the differential privacy to ensure a strong privacy

guarantee for user’s confidential datasets. In general, our

contribution can be summarized as,

• We have designed a new privacy-preserving algo-

rithm to calculate DP activations for convolutional

layers. Based on this algorithm, we have designed

a new privacy-preserving DNN training scheme for

face recognition.

• We have implemented a privacy-preserving VGG-

Face network for face recognition1. We evaluate

our scheme for training and fine-tuning tasks using

public datasets. Evaluation results show that both

privacy and accuracy are satisfactory.

2 Threat Model

In a client-server model, the client is supposed to send

training data to the server, and the server then performs

training for the client. The privacy considered here is

about client’s confidential data. So the privacy property

that we want to guarantee is, no semi-trusted server can

tell whether a specific labeled face image is in client’s

datasets or not if the server has not seen this labeled im-

age in any public dataset.

The semi-untrusted server is considered to be curious.

This adversary type is similar to [13, 1]. However ours

has a view of the whole learning procedure including in-

put, output and parameters of every network layer which

1We use VGG-Face network as a study example. Our scheme is

based on VGG-16 architecture, but not limited to specific image pro-

cessing techniques.

is on the server side, while [13] feeds the adversary with

selected gradients and the adversary of [1] only has a

view of the model’s parameters. This means that our ad-

versary is relatively powerful and hard to defend against.

Generally, the curious server can violate client’s pri-

vacy by copy-and-embezzling client’s input images di-

rectly, or infering client’s input images from learned

model parameters [6]. We will deal with these two at-

tacks in this paper. Other kinds of attacks will be left for

further study.

3 Differentially Private Deep Convolu-

tional Neural Network

In neural networks, each hidden layer can be seen as a

separate unit taking previous layer’s output as its input.

Input of the first layer in DNNs is special because it is

original image data. It is not recommended to use high

noise to perturb images directly because the utility of im-

ages will be damaged seriously [10]. However we con-

sider to partition the network inside at some specific con-

volutional layer instead of the input layer because layers

in DNNs are loosely coupled units. Once we select one

layer to partition the whole network into two parts for the

client and the edge server, the client can hide all interme-

diate results and input from the server. All information

that the server needs to know for the forward passing is

the output of the last layer in the client’s part. As for

backward passing, the client can compute gradients and

update parameters by following the chain rule as long

as the server provides the partial of loss with respect to

client’s output. Without the loss of generality, we will

introduce our scheme with a simple partitioning strategy

where the client holds the first convolutional layer (with

ReLU attached) and feeds the output to an untrusted edge

server, who will succeed the client to finish following

layers in a pre-designed DNN. A partitioning example

for the VGG-Face network is illustrated in Figure.1.

In our scheme, client sends output activations of the

first convolutional layer instead of raw images to the edge

server. Artificial noise will be added to output activa-

tions. The addition of artificial noise can prevent adver-

sary edge server from reversing activations in case that

the edge server learns parameters of the first convolu-

tional layer somehow (e.g. if client does fine-tuning on

any public pre-trained model). We are going to show that

if we use DP Gaussian noise then model parameters’ up-

dating will also be privacy-preserving.

3.1 Differentially Private Activations

As shown in Figure.1, when we partition VGG-Face net-

work into two parts, except for the first convolutional

layer on the client, all other layers being deployed on
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Figure 1: After the partitioning, the first convolutional

layer with our DP-algorithm is deployed on the client

while the rest part of VGG-Face network will be de-

ployed on an edge server.

the edge server are the same as in original VGG-Face

network. When the client communicates with the edge

server, in client’s view, server’s partial network can be

seen as a black-box function and vice versa. In forward

passing, the first layer on the client can be seen as a com-

posite function, whose input is client’s datasets and out-

put is volume of activations. Activation function denoted

by f is actually the composition of kernels in convolu-

tional layer, ReLU and local response normalization unit.

In the first convolutional layer, we assume that there are

m kernels with size l × l × r, where r is number of color

channels. When one training example s in client’s private

datasets goes into f i, i ∈ [1,m], each activation is gener-

ated corresponding to one spatial position (e.g. (x,y))
on the surface of face image s. Then function f i ( f will

be used equivalently if no ambiguity is caused.) can be

defined as,

f i(s(x,y)) = ai
(x,y)/(γ +α ∑min(m−1,i+ u

2 )

j=max(0,i− u
2 )
(a j

(x,y)
)2)β ,

(1)

where u,α,β ,γ are constants which should be deter-

mined using a validation set empirically (Please refer to

ImageNet paper [8] for more detailed information if in-

terested). ai
(x,y) is the activation generated by i-th kernel

at position (x,y).

To protect confidential datasets of the client, we need

to guarantee that output activations of function f for ev-

ery single image is privacy-preserving. Function f can

be regarded as a specific query on client’s datasets d ∈D .

To construct a (ε,δ )-DP mechanism for f with Gaussian

noise, sensitivity of f on adjacent datasets d,d′ should be

clarified. Based on the definition of function sensitivity

[4] and ReLU’s output activation ai
(x,y) ≥ 0, we can de-

fine f ’s sensitivity as S f . Given sensitivity S f , when f is

applied at the same spatial position (x,y) on training face

images, we can use ci
(x,y)+N (0,S2

f σ2) to replace ci
(x,y)

as output of f . Since 0 ≤ ai
(x,y)(s) < 1,∀s ∈ d after we

pre-process input images, we can have 0 ≤ S f < 1/
√

2

when we select parameter u = 5,α = 1,β = 0.5,γ = 2.

Although parameters including stride, padding and ker-

nel size should usually be selected to give perfect align-

ment, we use rounding operator here just in case. In this

way, we will have a (ε,δ )-DP mechanism for activations

of convolutional layer.

3.2 Privacy-Preserving Weights Updating

After DP activations are transmitted to the edge server,

client’s task in forward passing is finished. To continue

training, the edge server will run subsequent training pro-

cess from the second convolutional layer with activa-

tions received as its input. There is no additional mod-

ification needed for our scheme to be deployed on the

edge server. However, it’s important to ensure that when

all activations generated by DP activation algorithm are

compounded through server’s convolutional layers, the

output will still be privacy-preserving. The output of

each layer can be seen as combination of DP activations.

The total loss of network prediction can also be seen as a

composed mechanism of multiple DP mechanisms. But

the real challenge is how to guarantee the privacy loss of

our composed mechanism can be tightly bounded instead

of a simple composition of multiple DP mechanisms.

When multiple DP mechanisms are composed, the pri-

vacy guarantee normally goes down. Basically we en-

counter an adaptive composition situation suggested in

Dwork’s boosting theory [5]. If we directly follow the

adaptive composition theory, the prediction mechanism

of this deep learning network should be (ε ′, pqδ + δ ′)-
DP in adversary’s view, where p,q are dimensions of ac-

tivations for each kernel, ε ′ = ε√2pqln( 1δ ′ )+ pqε(eε −
1),δ ′ > 0. We find that in DNN training, we can actually

achieve a tighter bound than simple composition theory.

Assume that we are looking at the first iteration of

training session. All weight parameters in convolutional

layers are initialized by sampling from normal distribu-

tion N(0,0.01). For prediction mechanism Mp(S), the

definition of adjacent datasets are still the same as be-

fore, but the element of dataset is one integral face im-

age instead of just one group of pixels. This means we

group dataset families for activating function into one

new dataset family D. If we process two identical batch

generated from D with Mp, then output loss for each sam-

ple should be the same. So is the gradient estimation. To

show that Mp can be privacy-preserving, we need bound

probabilistic differential when Mp applies to two adja-



cent datasets d,d′ ∈ D.

Based on this, we can also count privacy loss in back-

ward passing. We use mini-batch stochastic gradient de-

scent (SGD) method to compute gradients. Simply, if we

want to update parameters W in t-th iteration, we can use

Wt = Wt−1 − lr ∗ gt , where gt is an average estimation

cross the mini-batch to the gradient, lr indicates learn-

ing rate. One trip of backward passing mainly consists

of gradient computing and variable updating. When we

have gradient computed, variable updating will be triv-

ial. So the part that really matters is gradient computing.

To secure user’s privacy against revealing from model’s

parameters, we here prove that our privacy-preserving

weights updating satisfies differential privacy. Since we

can control privacy loss with ε , the privacy level can be

designed as a flexible hyperparamter for user to choose

(within a feasible range).

3.3 Fine-tuning

Many fine-grained, well-trained face recognizing models

are public for use. Public face recognizing models such

as [12, 2] have contributed a lot to accelerate develop-

ment of both academia and industry. But how to make

greater use of these public models is still an open ques-

tion. One of the major concerns is that public models

are pre-trained using fixed datasets. Datasets for training

will never be big enough to satisfy all applications, espe-

cially when we want to recognize some identities belong-

ing to private datasets. Also, some people may not want

to train an entire DNN from scratch in practice, because

it is difficult to get a proper dataset of sufficient volume

and training procedure usually takes long time. Instead,

it is a good idea to do fine-tuning [16] on a pre-trained

DNN with one’s own target datasets.

(a) ε = 1 (b) ε = 5 (c) ε = 20 (d) w/o DP-A

Figure 2: Output activations with DP-A and without DP-

A when we fine-tune VGG-Face model on LFW dataset

for T = 10000, δ = δ ′ = 1e − 5, u = 5,α = 1,β =
0.5,γ = 2.

The scheme we proposed is capable of privacy-

preserving fine-tuning. Intuitively, fine-tuning with our

scheme is a special case of training. Here we will focus

on the situation where only output layer parameters will

be tuned. Recall that each output activation of DP ac-

tivation algorithm is (ε,δ )-DP. But in adversary’s view,

strength of privacy will degrade because images with the

same noise distribution may appear in multiple rounds

with regarding to one identity. We show some results

of output activations of the first convolutional layer with

different epsilon values in Figure.2. All activation vol-

umes showed in this figure have been multiplied by 255

with negative values removed to make them more visual-

friendly. We can tell from this figure when ε = 1, utility

of images is damaged significantly. When ε is around 5,

input images can be well preserved. But when ε reaches

14 ∼ 20, privacy is almost gone.

4 Evaluation

We have implemented our privacy-preserving DNN for

face recognition with TensorFlow framework. The

dataset we use is Labeled Face in the Wild dataset (LFW)

[9], which has been regarded as a standard benchmark

for unconstrained face recognition. According to [12],

training data for published model does not contain LFW

dataset. So some subsets of LFW dataset will be used to

perform training and fine-tuning. To allow further com-

parison with other work, we use the same training param-

eters as described in original VGG-Face training process

[12]. All convolutional layers have stride = 1, pad = 1.

Max pooling size is 2× 2. Mini-batch size is 64. Mo-

mentum coefficient is 0.9. Learning rate is initialized

with 0.01 and exponentially decayed with factor 0.1. Be-

sides, for the local normalization unit that we use in the

partitioning layer, u = 5,α = 1,β = 0.5,γ = 2. We first

perform experiments with the first convolutional layer as

partitioning position. Then we will show how different

partitioning positions affect training process exclusively.

We filter LFW dataset by choosing persons with no

less than 10 images. This leads to a subset which con-

tains 158 identities, 4324 labeled face images. We split

images of each person in a 9:1 ratio to define training

set and testing set. For each iteration, images in training

set are randomly sampled to compose a batch. To evalu-

ate training progress, we record output of loss function,

training accuracy and testing accuracy. In Figure.3, train-

ing results of different epsilon values are shown. Train-

ing session with no noise added is recorded as baseline.

The smaller the epsilon is, the higher the noise is. It is

obvious that small epsilon makes training process more

unstable. It will take more epochs to train with higher

noise than lower noise to achieve the same training accu-

racy or the same loss. When ε = 2 ∼ 5, our scheme can

achieve strong privacy and high accuracy.

To perform fine-tuning on pre-trained VGG-Face

model, weights in pre-trained VGG-Face model are

loaded before training. The network is still partitioned

at the first convolutional layer. Fine-tuning result in the

same setting with no noise added is seen as our baseline
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Figure 3: Training results of accuracy and loss with regard to different epsilons.
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Figure 4: Fine-tuning results of accuracy and loss with regard to different epsilons.

of tuning. Results of tuning with different epsilons are

shown in Figure.4. High accuracy can be achieved in

early learning stage. But adding noises to activations can

affect learning speed. Especially when ε ≤ 1, noise is too

large for the network to minimize its loss because train-

able parameters are limited in tuning cases. However,

when epsilon = 2∼ 5, we can still get high accuracy and

strong privacy after slightly more epochs. Specifically,

it takes no more than 5 epochs for tuning with ε = 3 to

achieve similar accuracy as the baseline.

We have deployed our implementation on a Huawei

Nexus 6P phone (2GHz Qualcomm Snapdragon 810 pro-

cessor, with a non-removable Li-Po 3450 mAh battery)

and AWS based edge server. Evaluation result shows that

a batch of training samples from LFW can be loaded on

the phone under 0.4s when batch size is 8. In each itera-

tion, forward pass for the batch will be done under 0.6s.

Backward pass will cost less than 0.2s per sample. The

allocated mobile memory usage will be under 500MB for

processing a batch of samples. When the mobile phone

is processing the first convolutional layer, battery will be

consumed under 3.5mAh per minute for the batch.

5 Conclusion

We have proposed a new edge computing based DNN

training architecture with DP mechanism to protect pri-

vate data. Evaluation results presented in this paper en-

sure that applying DP mechanism on activations is a

feasible solution for outsourcing training tasks to un-

trusted edge servers. Taking mobile user’s resource cost

and training accuracy into consideration, we recommend

to keep just the first convolutional layer on user side.

Since there are many other DNNs except for VGG net-

works, verifying similar corollaries and observation in

other DNNs may be our future work.
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