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Abstract
As RFID tags become more widespread, new approaches

for managing larger numbers of RFID tags will be needed.
In this paper, we consider the problem of how to accurately
and efficiently monitor a set of RFID tags for missing tags.
Our approach accurately monitors a set of tags without col-
lecting IDs from them. It differs from traditional research
which focuses on faster ways for collecting IDs from every
tag. We present two monitoring protocols, one designed for
a trusted reader and another for an untrusted reader.

1 Introduction
Retail outlets lose an estimated30 billion dollars a year

to shrinkage, of which70% are due to administration error,
vendor fraud and employee theft [4]. Inexpensive RFID
technology can alleviate this problem by providing a low
cost and efficient means of performing inventory control.
One possible approach is for a retailer to first attach an
RFID tag to each item to be monitored. Each tag contains a
unique ID which is recorded and stored on a secure server.
The retailer then deploys an RFID reader to periodically
collect all the IDs from the tags and match them against the
IDs stored on server. This way, the retailer can be immedi-
ately notified of any errors. We refer to this simple approach
ascollect all.

However, the collect all approach suffers from three
drawbacks. First, collecting tag IDs for comparison is time
consuming when there are a lot of tags due to the tag data
collection protocol. A reader collects tag data by first broad-
casting the number of available time slots. Each tag will
independently pick a time slot to reply. When multiple tags
pick the same slot, a collision occurs and the reader obtains
no information and must repeat the process again. When
the set of tags is large, the number of collisions will rise,
increasing the data collection time.

Second, routine monitoring for missing items usually
does not require every ID to be accounted for. Consider
an RFID tag attached to every product in a grocery store,
and the store contains hundreds of thousands of items. In
this setting, it is impractical to notify the retailer each time
there is asingleRFID tag missing. This is because a miss-
ing ID might indicate a scratched RFID tag, or simply that

the RFID tag is physically blocked from receiving the query
by another object. A more reasonable approach is to deter-
mine a threshold or tolerance for missing items, and alerting
the retailer only when this threshold is breached.

Third, collect all is vulnerable to dishonest RFID readers
returning incorrect information to the server. This is a seri-
ous threat since an estimated45% of thefts are committed
by employees [4]. A dishonest employee can first collect all
the tag IDs prior to the theft, and then replay the data back
to the server later.

In this paper, we consider the problem of accurately and
efficiently monitoring for missing RFID tags. We assume
that the RFID reader interacts with the tags and passes the
collected information to the server. The server has been
programmed with a threshold set by the owner, and will
issue a warning if the number of missing tags exceed the
threshold. We provide two protocols to solve this problem, a
trusted reader protocol (TRP) and an untrusted reader proto-
col (UTRP). In the trusted reader protocol, a short bitstring
is formed by forcing each tag to reply in a certain slot. The
bitstring can be a very efficient way to determine whether a
certain number of tags are missing. In the untrusted reader
protocol, we adopt a timer in the server and an incrementing
counter in the RFID tag to prevent a dishonest reader from
replaying previously collected data.

We make the following contributions in this paper.(1)
We propose a monitoring technique which does not require
the reader to collect IDs from each RFID tag, but is still able
to accurately monitor for missing tags.(2) Our monitoring
technique provides privacy protection by neither broadcast-
ing tag IDs in public, nor revealing IDs to the RFID reader.
(3) We present a lightweight solution to the dishonest reader
problem that does not require expensive tag hardware such
as an accurate on-chip timer or cryptographic MAC func-
tions which are unavailable on passive RFID tags.(4) Our
technique is more flexible than prior research in that we can
accommodate different size groups of tags.

The rest of the paper is as follows. Related work is
found in the next section. Section3 contains the problem
formulation, and Sections4 and5 present our trusted and
untrusted reader protocols respectively. Section6 evaluates
our schemes, and Section7 concludes.



2 Related Work
In an RFID system, a collision occurs when multiple tags

try to transmit data to a reader at the same time. This results
in the reader being unable to obtain any useful information.
Prior work [2, 3, 7, 8, 13, 15] have focused on improv-
ing protocols to reduce collisions, and secure search tech-
niques to isolate particular tags [14] one at a time. While
these techniques improve monitoring performance, such so-
lutions are ultimately bounded by the number of tags. Re-
gardless of the protocol used, the RFID reader will still have
to isolate each tag at least once to obtain data.Our approach
does not require the reader to isolate every tag.

Another approach is to use probabilistic techniques to
determine some features of a large collection of RFID tags.
These include methods to estimate the cardinality of a set
of tags [6], and to determine popular categories of tags [12].
Our paper differs from these work by including a security
protocol that deals with dishonest RFID readers.

The problem of a dishonest reader is similar to the “yok-
ing proof” problem [5, 9, 10, 11]. A yoking proof allows
an RFID reader to prove to a verifier that two RFID tags
were scanned simultaneously at the same location. The yok-
ing proof only relies on a trusted server and not a trusted
RFID reader. A dishonest reader cannot tamper with the
result without being detected by the sever. Bolotnyy and
Robins [1] improves on the idea by creating yoking proofs
for multiple tags. However,their approach requires each tag
to be contacted individuallyand in a specific order. These
requirements are time consuming when there are many tags.
Furthermore,their scheme requires each RFID tag to have
an on-chip timer that is specific to the size of the group of
tags. This makes their approach inflexible in accommodat-
ing different group sizes.

3 Problem Formulation
We assume that a server has a group of objects, and an

RFID tag with a unique ID is attached to each object. We
refer to this group of objects as aset of tags. A set of tags
once created is assumed to remain static, meaning no tags
are added to or removed from the set.

We consider an RFID reader,R, and a set ofn RFID
tags,T∗. We consider this set of tags to be“intact’ ’ if all
the tags in the set are physically present together at the same
time. There are two additional parameters in our problem, a
tolerance ofm missing tags and a confidence levelα. A set
is considered intact if there arem or less tags missing. The
set is considered not intact where there are at leastm + 1
missing tags. The confidence levelα specifies the lower
bound of the probability that a not intact set of tags is de-
tected. Bothm andα parameters are set according to the
server’s requirements. A higher tolerance (m) and lower
confidence level (α) will result in faster performance with
less accuracy. Table 1 summerizes the remaining notations.

Anti-collision : In this paper we assume that RFID tags
resolve collisions using a slotted ALOHA type scheme [15,
6]. The reader first broadcasts a frame size and a random
number,(f, r), to all the tags. Each RFID tag uses the ran-
dom numberr and its ID to hash to a slot numbersn be-
tween[1, f ] to return their ID, where

sn = h(ID ⊕ r) modf.

Tags that successfully transmit their data are instructed to
keep silent. Tags that pick the same slot to reply will be
informed by the reader to retransmit in subsequent rounds
where the reader will send a new(f, r). The reader repeats
this process until all IDs are collected.

Protocol goals : The goal of a server is to remotely,
quickly, and accurately determine whether a set of tags is
intact. The server first specifies a tolerance ofm missing
tags and a confidence levelα, and instructs a reader to scan
all the tags to collect a bitstring. The server then uses this
result to determine whether there are any missing tags. Our
protocols succeed if the server is able to determine a set of
tags is not intact when more thanm tags are missing with
probability of at leastα. In this paper, we assume that an
adversary will always stealm + 1 tags, since for anym, the
hardest scenario for the server to detect is when there are
justm + 1 tags missing.

Adversary model : The goal of the adversary is to steal
RFID tags. The adversary launches the attack by physically
removing tags from the set. We do not consider more in-
volved attacks such as “clone and replace”. In such an at-
tack, the adversary steals some tags, clones the stolen tags
to make replicate tags, and replaces the replicate tags back
into the set. Cloning creates replicate tags that are identical
to the stolen tags. In this scenario, the server cannot detect
any missing tags since the replicate tags are identical to the
removed tags. This attack requires considerable technical
expertise due to the cloning process, and is unlikely to be
used against commodity items tracked by low cost tags.

Our paper considers two scenarios: an honest reader and
a dishonest reader scenario. In the first scenario, the adver-
sary simply attempts to steal some tags. Once the tags are
stolen, the tags are assumed to be out of the range of the
reader. Therefore, when a reader issues a query, the stolen
tags will not reply.

In the second scenario, the adversary controls the RFID
reader responsible for replying to the server. The terms “ad-
versary” and “dishonest reader” are used interchangeably in
this paper. After stealing some RFID tags, the adversary is
assumed to be able to communicate with the stolen tags.
This can be thought of as the adversary having a collabora-
tor also armed with an RFID reader and the stolen tags. The
adversary can communicate with the collaborator using a
fast communication channel to obtain data about the stolen
tags if needed.



Table 1. Notations
R/T∗ RFID reader / set of RFID tags
f/r frame size / random number
n/m # of tags inT∗/# of tolerated missing tags
α confidence level

h(.) hash function
sn slot number between[1, f ]
bs bitstring of lengthf
c number of adversary communications
ct counter built into RFID tag

4 TRP: Trusted Reader Protocol
In this section, we present our trusted reader protocol,

TRP, where the RFID reader is assumed to be always hon-
est. Given a set of RFID tags, TRP returns a bitstring to the
server to check if the set of tags is intact.

4.1 Intuition and assumptions

TRP modifies the slot picking behavior used incollect
all so that instead of having a tag pick a slot and return its
ID, we let the tag simply reply with a few random bits sig-
nifying the tag has chosen that slot. In other words, instead
of the reader receiving

{· · · | id1 | 0 | id6 | collision | 0 | · · ·},

where0 indicates no tag has picked that slot to reply, and
collision denotes multiple tags trying to reply in the same
slot, the reader will receive

{· · · | random bits | 0 | random bits | collision | 0 | · · ·}.

This is more efficient since the tag ID is much longer than
the random bits transmitted. From the reply, the reader can
generate the bitstring

bs = {· · · | 1 | 0 | 1 | 1 | 0 | · · ·}.

where1 indicates at least one tag has picked that slot.
TRP exploits the fact that a low cost RFID tag picks a

reply slot in a deterministic fashion. Thus, given a particular
random numberr and frame sizef , a tag will always pick
the same slot to reply. Since the server knows all the IDs in
a set, as well as the parameters(f, r), the server will be able
to determine the resulting bitstring for an intact set aheadof
time. The intuition behind TRP is to let the server pick a
(f, r) for the reader to broadcast to the set of tags. The
server then compares the bitstring returned by the reader
with the bitstring generated from the server’s records. A
match will indicate that the set is intact.

4.2 TRP algorithm

The reader uses a different(f, r) pair each time he wants
to check the intactness ofT∗. The server can either com-
municate a new(f, r) each time the reader executes TRP,

or the server can issue a list of different(f, r) pairs to the
reader ahead of time.

Alg. 1 shows the overall interaction between the reader
and tags. Each tag in the set executes Alg. 2 independently.
The reader executes Alg. 3 to generate the bitstringbs and
return it to the server. Notice that unlike thecollect all
method which requires several rounds to collect the tag in-
formation, our TRP algorithm only requires a single round.
Furthermore, in Alg. 2 Line5 the tag does not need to return
the tag ID to the reader, but a much shorter random number
to inform the reader of its presence. This shortens the trans-
mission time since less bits are transmitted. bitstring to the
server for verification.

Algorithm 1 Interaction between tags andR

1: Reader broadcasts(f, r) to all tagsT∗

2: Each tagTi executes Alg. 2
3: Reader executes Alg. 3
4: Reader returnsbs to server

Algorithm 2 Executed by TagTi

1: Receive(f, r) from R
2: Determine slot numbersn = h(idi ⊕ r) modf
3: while R broadcasts slot numberdo
4: if broadcast matchessn then
5: Return random number toR

Algorithm 3 Executed by ReaderR
1: Create bitstringbs of lengthf , initialize all entries to0
2: for slot numbersn = 1 to f do
3: Broadcastsn and listen for reply
4: if receive replythen
5: Setbs[sn] to 1

4.3 Analysis

We present the analysis of how to choose a frame sizef
subject to a tolerance levelm and confidence levelα. As
mentioned earlier, we define a tolerance ofm missing tags,
where a set of tags can be considered intact when there are
at mostm missing tags from the set. The set is considered
not intact when at leastm + 1 tags are missing. Since an
appropriate value ofm is application specific, we assume
thatm is a given parameter in this paper.

To quantify accuracy, we introduce a confidence param-
eterα. The parameterα describes the requirement of the
probability of detecting at an set that is not intact. An ap-
propriate value ofα is also defined by the application. A
server requiring strict monitoring can assignm = 0 and
α = 0.99 for high accuracy.



Our problem can be defined as givenn, m and α, we
want to pick the smallestf for Alg. 1 such that we can de-
tect with more thanα probability when there are more than
m out of n tags are missing. We useg(n, x, f) to denote
the probability of detecting the set is not intact with frame
sizef when exactlyx tags are missing. Since the scanning
time is proportional to the frame sizef , our problem is for-
mulated as to

minimizef

s.t. ∀x > m, g(n, x, f) > α. (1)

Theorem 1 Givenn, x andf ,

g(n, x, f) = 1 −

f
∑

i=0

(

f
i

)

pi(1 − p)f−i · (1 −
i

f
)x,

wherep = e−
n−x

f .

PROOF. Let N0 represent the number of empty slots in
the frame generated by the currently presentn − x tags. A
missing tag will be detected if it selects one of theseN0 slots
to respond, which has a probability ofN0

f
. The probability

that we can not detect any ofx missing tags is(1 − N0

f
)x.

For each slot, the probability of being one of theN0 empty

slot is p = (1 − 1

f
)n−x = e−

n−x
f . Thus,N0 is a random

variable following a binomial distribution. Fori ∈ [0, f ],

Pr(N0 = i) =

(

f
i

)

pi(1 − p)f−i.

Therefore,

g(n, x, f) = 1 −

f
∑

i=0

Pr(N0 = i) · (1 −
i

f
)x

= 1 −

f
∑

i=0

(

f
i

)

pi(1 − p)f−i · (1 −
i

f
)x.

Lemma 1 Givenn andf , if x1 > x2, theng(n, x1, f) >
g(n, x2, f).

PROOF. It is obvious that more missing tags tend to yield
higher probability of being detected.

Theorem 2 If we setg(n, m + 1, f) > α, the accuracy
constraint (1) is satisfied.

PROOF. According to Lemma 1,∀x > m, g(n, x, f) ≥
g(n, m+1, f). Therefore, missing exactlym+1 tags is the
worst case for our detection. Thus, any value off satisfy-
ing g(n, m+1, f) > α can guarantee the accuracy require-
ment.

Considering the objective, the optimal value off is

f = min{x|g(n, m + 1, x) > α}. (2)

5 UTRP: UnTrusted Reader Protocol
In this section, we discuss UTRP, our protocol to de-

fend against an untrusted reader. UTRP prevents a dishon-
est reader from generating abs that can satisfy the server
without having an intact set. For sake of brevity, the terms
“dishonest reader” and “reader” are used interchangeable
for the remainder of this section. An honest reader will be
explicitely specified.

5.1 Vulnerabilities

In the introduction, we mentioned that a dishonest reader
can replay a previously collected bitstringbs back to the
server. This attack can be easily defeated by letting the
server issue a new(f, r) each time the reader scans the set
of tags. This renders previously collected bitstrings invalid.
However, simply issuing a new(f, r) cannot defend against
a dishonest reader and a collaborator.

The dishonest reader first steals a subset of tags from the
original set of tags, and gives the stolen tags to his collab-
orator. We denote the remaining set of tags ass1 and the
stolen tags ass2. The collaborator is also equipped with an
RFID reader. The dishonest reader is denoted asR1 and
the collaborator’s reader is denoted asR2. When the server
issues a new(f, r), the dishonest reader will scan the re-
maining set of tagss1, and instruct his collaborator to scan
the stolen tagss2 and return the collected information. The
dishonest reader will then combine the information to return
a bitstring to the server. Fig. 1 illustrates the attack.

R2
Hi−speed
communication

R R1

Honest reader Dishonest readers

=Vbs bsbs1 bs2

Figure 1. Vulnerability of TRP

The reader succeeds if he is able to generate a proofb̂s
from s1 ands2 located in two separate locations, such that
b̂s is the same asbs. The reader assigns himself asR1 to
reads1 and his collaborator asR2 to reads2. We assume
thatR1 andR2 both know(f, r). Alg. 4 presents the algo-
rithm of the attack. We see that so long as the both readers
R1andR2 have a high speed communication, they behave
just like a single reader.

One possible defense against the attack is to require a
reader to complete Alg. 1 within some specified time limit
t. However, selecting an appropriate value oft is difficult
sincet has to be long enough for an honest reader to com-
plete abs for the server, yet short enough such thatR1 and



Algorithm 4 Attack algorithm against TRP
1: Both R1 andR2 execute Alg. 1 ons1 ands2, and ob-

tainsbss1
andbss2

respectively.
2: R2 forwardsbss2

to R1.
3: R1 executes(bss1

∨ bss2
) to obtainb̂s, whereb̂s = bs

4: R1 returnsb̂s to the server.

R2 cannot collaborate by passing data to each other. For in-
stance, in Alg. 4,R1 andR2 can derive a correct̂bs by just
havingonetransmission. Assuming thatR1 andR2 com-
municates via a high speed channel, estimating a time limit
t that is shorter than the time needed for a single transmis-
sion is difficult.

5.2 Intuition and assumptions

The intuition behind our solution is to force collaborat-
ing readers to communicate multiple times such that the
latency is large enough to be accurately estimated by the
server. UTRP accomplishes this by introducing two addi-
tional components, a re-seeding process, and a counter.

Each time a reader encounters a time slot that is cho-
sen by at least one RFID tag, UTRP requires the reader to
re-seedby sending a new(f, r) to all tags that have yet to
reply. The newf is equal to the number of slots left from
the previousf . For example, initially we havef = 10 and
the first slot has a tag reply. The newf value will thus be
9. The new random numberr is determined by the server.
The re-seeding will result in abs different from the prior
one. We illustrate an example in Fig. 2. We let the tag
T 1 to be the first tag to reply. The reader will send a new
(f, r) to remaining tags to pick a new slot. TagT 2 picks a
different slot after re-seeding, creating a differentbs. Col-
laborating readers wanting to obtain̂bs = bs have to re-seed
each time either reader receives a reply. Since no reader can
determine in advance which slot will receive a reply, col-
laborating readers must check with each other after either
reader obtains a reply in a single slot.

0 1 10 0 1 1 0 ..
T1 T1T2 T2

Original bs New bs after re−seeding

Remaining tags re−seed
First reply

Figure 2. Re-seeding after first reply

However, re-seeding does not prevent readers from run-
ning the algorithm multiple times to gain some information.
Each reader can first read every slot in frame sizef to deter-
mine which slot has a reply. The readers then exchange this
information and scan all the tags again to arrive at the cor-

rect bitstring. For example in Fig. 3,R1 andR2 first scan
all their tags to determine that a re-seed is necessary in slot
2. Both readers can then repeat the process by re-seeding
tags starting from slot2 to complete thebs. A mechanism
to prevent a reader from going backwards is needed.

Re−seed
backwards

0 0

1 2 3 4 1 2 4

0

First reply

Slot 
Number

. 1 .
3

Reader 2Reader 1

0 0

Figure 3. Re-seeding just from slot 2

We adopt an assumption made in several earlier re-
search [1, 5, 9, 10, 11] that each RFID tag has a counter
ct, and the counter will automatically increment each time
the tag receives a new(f, r) pair. A reader that attempts to
move backwards to re-seed the tags will have an incorrect
counter value. An RFID tag now picks a slot as

sn = h(ID ⊕ r ⊕ ct) modf.

Recall that the server knows the ID, and provides the frame
sizef and random numbersr. The server also knows the
value of each tag’s counterct sincect only increments when
queried by the reader. Thus, the server can still determine
the correctbs for verification.

Algorithm 5 Interaction between server andR

1: Server generates(f, r1, · · · , rf ), sends toR, and starts
the timer

2: R broadcasts(f, r1) to all the tagsT∗

3: T∗ executes Alg. 7
4: R executes Alg. 6
5: if R returns correctbs to server before timer expires

then
6: Server verifiesR’s proof

Algorithm 6 UTRP algorithm for readerR
1: Create a bitstringbs of lengthf , initialize all entries to

0.
2: Setf ′ = f
3: for slot numbersn = 1 to f do
4: Broadcastsn − f + f ′ and listen for reply
5: if receive replythen
6: Setbs[sn] to 1, andf ′ = f − sn
7: Broadcast(f ′, r) wherer is the next random num-

ber in the sequence
8: Returnbs to server

5.3 UTRP algorithms

We let the server issue a frame size together withf ran-
dom numbers,(f, r1, · · · , rf ), to a reader. The reader is



Algorithm 7 UTRP algorithm for tagTi

1: Receive(f, r) from R. Incrementct = ct + 1.
2: Determine slot numbersn = h(idi ⊕ r ⊕ ct) modf
3: while R is broadcastingdo
4: if R broadcasts slot number and slot number matches

sn then
5: Return random number toR, keep silent
6: else if R broadcasts a new frame size and random

number(f, r) then
7: Receive(f, r) from R. Incrementct = ct + 1
8: Determine new slot numbersn = h(idi ⊕ r ⊕

ct) modf

supposed to use each random number only once in the given
order. For example, letf = 15 andr1 = 5, r2 = 9. Reader
R will first send out(15, 5). Assuming that some tag replies
in the first slot,R is supposed to re-seed by broadcasting
(14, 9) so that each remaining tag can pick a new slot. A
reader that does not follow this rule will not yield the right
answer to the server.

Alg. 5 illustrates the overall protocol, and Alg. 6 and
Alg. 7 show the reader and tag behavior respectively. Col-
laborating readers will have to communicate with each other
after Alg. 6 Line5 to determine whether to re-seed. If ei-
ther collaborating reader receives a reply, both readers must
re-seed. A reader cannot predict in advance whether any tag
will reply in the next slot since a tag picks a slot numbersn
using the random numberr, and the list of random numbers
is determined by the server.

The reader also cannot attempt to execute Alg. 6 multi-
ple times to determine which slots will have a reply since
the counter value will change. In Alg. 7 Line1, the tag will
automatically increment the counter each time it receives
a new(f, r). Since a tag in UTRP picks a new slot using
ID ⊕ r ⊕ ct, a differentct will cause the finalbs to be
different. Since an RFID tag can only communicate with
a single reader at a time, the counter in Alg. 7 will not be
incremented by any other readers.

5.4 Analysis

The analysis for UTRP is similar to the TRP analysis
presented earlier. The difference is that in TRP, the infor-
mation contained in the missing tags is gone. In UTRP,
we consider the dishonestR removes more thanm missing
tags, but yet is able to obtain some information from the re-
moved tags. Compared with TRP, when the same number
of tags are missing, the dishonest reader has higher proba-
bility to pass the verification since the dishonest reader has
more information than that in TRP.

UTRP requires the reader to returnbs before timert ex-
pires. The intuition here is to limit the communication be-
tween dishonest readers, thus increase the probability of de-

tecting the missing tags. The communication time increases
with the number of readers an adversary controls, making it
easier for an adversary to be detected. In our analysis, we
consider the best case for an adversary to escape detection
by having the adversary only controltwo readers.

For a given frame size and random number, the scanning
time for a honest reader to finish the protocol may vary. The
server sets the timer to an empirical value, which is conser-
vative so that a honest reader can definitely respond before
the due time. We assume that the server can estimate the
minimum and maximum scanning time of a honest reader,
indicated asSTmin and STmax respectively. The server
thus setst = STmax.

Since a reader cannot predict in advance in which slot
there will be a reply, UTRP forces the dishonest readers
to wait for a message from other readers every time it en-
counters an empty slot. If a dishonest reader receives a re-
ply in the current slot, it can continue re-seeding and scan-
ning the following slots without waiting for the results from
other readers. We lettcomm be the average communica-
tion overhead between two dishonest readers. Givent, we
claim that the dishonest readers can communicate in at most
c = t−STmin

tcomm
slots.

Let us consider the whole set ofn tags is divided into
two setss1 ands2. Without loss of generality, let|s1| ≥
|s2| > m. Assume there are two dishonest readersR1 and
R2 scannings1 ands2 respectively. Each timeR1 encoun-
ters an empty slot (a slot where no tag replies),R1 will have
to pause to check withR2. If R2 receives a reply inthatpar-
ticular slot, bothR1 andR2 will have to re-seed. Otherwise
R1 can continue broadcasting the remaining slots. Since
the dishonest readers cannot communicate after every slot
within t, the best strategy for the dishonest readers to pass
our verification is as follows: (1)R1 waits for the messages
from R2 in the firstc empty slots it has encountered; (2)R1

finishes scanning the following slots (withs1) and sends the
bitstring to the server.

With this strategy, the first part (with communication) of
the bitstring is correct, but the remaining part may be suspi-
cious. The following analysis tries to derive an appropriate
value forf , such that the server can catch the difference in
this scenario with high probability (> α).

Similar to the TRP analysis, the worst case occurs when
the number of missing tags is just beyond the tolerant range,
i.e., |s2| = m + 1. Intuitively, while the number of missing
tags is smaller, we need longer frame size to guarantee the
same accuracy requirement. In the following, we will dis-
cuss how to set parameter in this worst case to satisfy the
accuracy requirement. The optimal frame size for the worst
case is thus the optimal for all cases.

Theorem 3 Assume afterc′ slots, the dishonest readR1

will have encounteredc number of empty slots. The ex-



pected value ofc′ is c

e
−

n−m−1

f

.

PROOF. For each slot, the probability that no tags re-

spond isp = (1 − 1

f
)|s1| = e−

|s1|
f . After c′ slots, the ex-

pected number of empty slots isp·c′. By resolvingp·c′ = c,
we havec′ = c

e
−

n−m−1

f

.

Theorem 4 Let x be the number of the tags ins2, which
respond after the firstc′ slots. Giveni ∈ [0, m + 1),

Pr(x = i) =

(

m + 1
i

)

(1 −
c′

f
)i(

c′

f
)m+1−i.

PROOF. Since each tag randomly picks a slot in the
frame, it has1 − c′

f
probability to respond after the first

c slots. Thus,x follows a binomial distribution asx ∼
B(1 − c′

f
, |s2|). Thus, we have

Pr(x = i) =

(

m + 1
i

)

(1 −
c′

f
)i(

c′

f
)m+1−i.

With similar proof, we have the following theorem.

Theorem 5 Let y be the number of the tags ins1, which
respond after the firstc′ slots. Giveni ∈ [0, n − m − 1),

Pr(y = i) =

(

n − m − 1
i

)

(1 −
c′

f
)i(

c′

f
)n−m−i−1.

On one hand, ins2, the tags replying after the firstc′

slots are ‘real’ missing tags in this problem. On the other
hand, among the tags ins1, only those responding after the
first c′ slots are considered useful in detecting the missing
tags. For a given frame sizef , f − c′ is the effective frame
size for distinguishing the bitstring with missing tags. Thus,
the server hasg(x + y, x, f − c′) probability to detect the
difference. Considering all possible values ofx andy, a
frame sizef can satisfy the accuracy requirement, if

m+1
∑

i=0

n−m−1
∑

j=0

Pr(x = i) · Pr(y = j) · g(i + j, i, f − c′) > α. (3)

Therefore, the optimal frame size is the minimal value sat-
isfying the above condition.

6 Evaluation
In this paper, we use simulations to evaluate the effi-

ciency and accuracy of TRP and UTRP. We measure effi-
ciency by the frame sizef . A smallerf has fewer slots,
which translates into faster performance. We assume the
duration of each slot is equally long. We measure accuracy
by first setting values ofm andα to derive af satisfying
Eq. (2) for TRP and Eq. (3) for UTRP. We then execute our
simulation to test if our protocols can determine “missing”

when there arem + 1 tags randomly removed from the set.
We average the results over1000 trials.

We perform simulations varyingn from100 to 2000 tags
at 100 tag increments. The tolerance level is set to tolerate
m = 5, 10, 20 and30 missing tags. Finally, we uniformly
set our confidenceα = 0.95.
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Figure 4. Comparing collect all versus TRP
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Figure 5. Accuracy of TRP with α = 0.95

Fig. 4 compares the efficiency between thecollect all
method against our TRP algorithm. Lee et. al. [7] deter-
mined that the optimal frame size is equal to the number of
unidentified tags in a set. Based on this, we simulatecollect
all by settingf = n in the first round, andf equal to the
remaining tags that have yet to transmit. The final number
of slots forcollect allmethod is the sum of all thefs used in
each round. To accommodate the tolerancem, we consider
collect all algorithm to be completed oncen − m tags are
collected. From Fig. 4, we observe that the scanning time
in bothcollect alland TRP increases linearly as the number
of tags increases. TRP uses fewer slots, especially when the
set size is large. Note that the actual performance ofcollect
all will be worse since the tag needs to return its ID rather
than a shorter random number in TRP, resulting in a longer
duration of each slot.
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Figure 6. Comparing TRP versus UTRP
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Figure 7. Accuracy of UTRP with α = 0.95

Fig. 5 shows the accuracy of TRP when using the frame
sizef shown in Fig. 4. With a tolerance ofm, the most dif-
ficult situation for TRP to detect missing tags is when there
are justm + 1 missing tags. The horizontal dashed line in
Fig. 5 denotes the confidence levelα. Each bar represents
probability TRP detectsm+1 missing tags from a set. Bars
over the horizontal line denotes TRP has successful detected
m + 1 missing tags with probability greater thanα. As we
can see TRP detects the missing tags over probabilityα. In
evaluating UTRP, we assume that a dishonest reader splits
the set into two, and can communicate forc = 20 slots be-
fore executing Alg. 5 on the remaining tags in his set. To
determine the efficiency of UTRP, we compare the size of
f used in UTRP against TRP, and Fig. 6 shows the results.
We observe that the overhead of UTRP over TRP is small.
Note that for UTRP, we have added a very small number
of slots (between5 10 slots) to the the optimal frame size
given in Eq. (3). This is because the derivation ofc′ in
Theorem3 relies on the expected value, which introduces a
slight inaccuracy. Note that Fig. 6 does not imply that the
performance of UTRP is comparable to TRP since we do
not take into account the time needed forR to broadcast a

new (f, r) pair to remaining RFID tags in UTRP. Finally,
the accuracy of UTRP is shown in Fig. 7. UTRP also accu-
rately detects missing tags with probability larger than the
confidence levelα.

7 Conclusion
In this paper, we consider the problem of monitoring for

missing RFID tags. We provide protocols for both an hon-
est and dishonest RFID reader. Our approach differs from
prior work in that our techniques do not require the reader
to collect the ID from every tag.

Acknowledgments
We would like to thank the reviewers for their helpful

comments. This project was supported by US National Sci-
ence Foundation award CCF-0514985, CNS-0721443, and
CNS-0747108.

References

[1] L. Bolotnyy and G. Robins. Generalized “Yoking-Proofs”for
a group of RFID tags. InMobiquitous 2006.

[2] M. A. Bonuccelli, F. Lonetti, and F. Martelli. Tree slotted
ALOHA: a new protocol for tag identification in RFID net-
works. InWoWMoM 2006.

[3] J.-R. Cha and J.-H. Kim. Novel anti-collision algorithms for
fast object identification in RFID system. InICPADS 2005.

[4] R. Hollinger and J. Davis. National retail security survey
2001.

[5] A. Juels. “Yoking-Proofs” for RFID tags. InPervasive Com-
puting and Communications Workshops 2004.

[6] M. Kodialam and T. Nandagopal. Fast and reliable estimation
schemes in RFID systems. InMobiCom 2006.

[7] S.-R. Lee, S.-D. Joo, and C.-W. Lee. An enhanced dynamic
framed slotted ALOHA algorithm for RFID tag identification.
In Mobiquitous 2005.

[8] A. Micic, A. Nayak, D. Simplot-Ryl, and I. Stojmenovic. A
hybrid randomized protocol for RFID tag identification. In
WoNGeN 2005.

[9] P. Peris-Lopez, J. C. Hernandez-Castro, J. M. Estevez-
Tapiador, and A. Ribagorda. Solving the simultaneous scan-
ning problem anonymously: Clumping proofs for RFID tags.
In SecPerU 2007.

[10] S. Piramuthu. On existence proofs for multiple RFID tags.
In ICPS 2006.

[11] J. Saito and K. Sakurai. Grouping proof for RFID tags. In
AINA 2005.

[12] B. Sheng, C. C. Tan, Q. Li, and W. Mao. Finding popular
categories for rfid tags. InMobihoc 2008.

[13] D. Simplot-Ryl, I. Stojmenovic, A. Micic, and A. Nayak.A
hybrid randomized protocol for RFID tag identification. In
Sensor Review 2006.

[14] C. C. Tan, B. Sheng, and Q. Li. Severless search and au-
thentication protocols for rfid. InInternational Conference on
Pervasive Computing and Communications (PerCom), 2007.

[15] H. Vogt. Efficient object identification with passive RFID
tags. InPervasive 2002.


