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Abstract—Smartphone lock screens are implemented to reduce
the risk of data loss or compromise given the fact that increasing
amount of person data are accessible on smartphones nowadays.
Unfortunately, many smartphone users abandon lock screens due
to the inconvenience of unlocking their phones many times a day.
With the wide adoption of wearables, token-based approaches
have gained popularity in simplifying unlocking and retaining
security at the same time. To this end, we propose to take
advantage of the smartwatch for easy smartphone unlocking.
In this paper, we have designed WearLock, a system that uses
acoustic tones as tokens to automate the unlocking securely. We
build a sub-channel selection and an adaptive modulation in
the acoustic modem to maximize unlocking success rate against
ambient noise only when those two devices are nearby. We
leverage the motion sensor on the smartwatch to reduce the
unlock frequency. We offload smartwatch tasks to the smartphone
to speed up computation and save energy. We have implemented
the WearLock prototype and conducted extensive evaluations.
Results achieved a low average bit error rate (BER) as 8% in
various experiments. Compared to traditional manual personal
identification numbers (PINs) entry, WearLock achieves at least
18% unlock speedup without any manual effort.

I. INTRODUCTION

As smartphone stores a wide variety of sensitive information

of the owner, it is critical to provide effective protection for

smartphone data. Currently, every smartphone operating sys-

tem has a built-in screen lock application, which enables users

to unlock their smartphones via PINs, passwords, patterns,

etc. However, the reality is that a significant portion of users

never lock their smartphones. A recent study [1] indicated

that 53 out of 150 (35%) of participants have never enabled

any sort of screen lock and the primary reason was due to

the inconvenient input methods of screen locks. In another

study [2], a large portion of participants (57.1%) indicated that

they use none or naive screen lock (e.g. slide-to-unlock) while

lots of participants (46.8%) agreed that unlocking their phones

can be annoying and many of them (25.5%) admitted that they

want a way to unlock their phone much easier. Therefore, the

problem of user authentication on mobile devices is how to

balance the security and the user experience [3].

To address this problem, one direction is to reduce the

number of unlocks upon existing authentication mechanisms.

There are two common approaches. One is to provide partial

functionality on lock screens, enabling smartphone interac-

tions before unlocking. This technique potentially reduces

the number of unlocks, thus easing the unlock burden on

users but at the cost of information security. For example,

this approach may display several lines of an incoming email

on a locked screen for user. However, those few lines may

contain sensitive data. Further judgement from users is needed

to determine what functionality or information is safe on

the locked screen. The other approach is to choose the right

moment to surface the authentication instead of enforcing it at

each user session [4], which eventually involves some sort of

implicit authentication methods. This scheme is not suitable

for use in screen lock due to noticeable delays [2].

Another more promising direction to solve this prob-

lem without security tradeoff is to find the most suitable

authentication method for mobile devices. The commonly

seen authenticators on smartphone can be categorized into

passwords (“what you know”), biometrics (“who you are”),

and tokens (“what you have”) [5]. The term password in

this paper includes words, phrases, patterns, PINs, or their

combinations, which are used as secrets for authentication.

However, this approach is problematic for mobile devices for

several reasons. First, simple passwords are easy to guess

while strong passwords are hard to remember. Second, the

input environments on mobile devices introduce difficulties

for users to enter passwords consisting of characters, dig-

its, and symbols. Third, even though pattern or graphical

passwords are much easier to input but all those passwords

including previously mentioned are susceptible to shoulder

surfing attacks or smudge attacks. Alternatively, biometric-

based authentication uses unique features (e.g. fingerprints,

eye iris, faces, voices, etc.) extracted from the human body

and is considered convenience and secure. Recent work has

also considered various gestures and inputting habits [6]–[9]

as the sources for biometric extraction. However, one big

disadvantage of biometric-based authentication is that those

biometrics are uniquely tied to human body and are not as

replaceable as passwords or tokens when being compromised

or disclosed [10]–[12]. The token-based authentication usually

includes contact-less proximity card, smart card with static or

dynamic tokens. The advantages of token are easy-to-use, no

need to memorize passwords, while the disadvantage is the

cost of additional hardware.

In this paper, we seek a smartphone authentication solution

in line with token-based method. Ideally, we want a secure

screen lock that 1) authenticates user on each interaction; 2)

is resistance to malicious observers; 3) requires minimal effort

from user. Originally, the token-based solution is less favored

due to the cost of additional hardware as mentioned. However,
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due to the increasing popularity of smart things and wearables,

this solution has re-gained attentions [13]–[15]. Based on a

market research of Kantar Wearable Technology [16] and

Morgan Stanley [17], 12% of US consumers own at least one

wearable device while 55% of consumers have intentions to

buy at least one wearable devices. Hence, we envision that

many smartphone users will possess at least one peripheral

wearable device, such as a smartwatch or smartband, in the

near future. Therefore, we investigate the solution which

leverages pervasively co-located trusted devices for token-

based authentication to create an automated and secure screen

lock approach. Nevertheless, it is not easy to find a proper

channel to conveniently establish a secure range to associate

smartphone with co-located trusted devices (e.g. a smartwatch

in our system). Solutions utilizing Near Field Communications

(NFC) tags as trusted devices require users to manually

attach a tag close to the phone’s NFC antenna to achieve

proximity of 10 cm or less. Solutions based on Bluetooth-

enabled wearables, speakers and cars, can constantly connect

to smartphones, but the connection range of Bluetooth cannot

be securely guaranteed. Variants such as device model, paired

device, and local environment may sustain a Bluetooth con-

nection up to 100 meters in distance [18]. In our preliminary

experiment, we have confirmed that android trusted devices

based on Bluetooth do not lock one’s phone until the trusted

devices are 10-15 meters away in line-of-sight or 2-3 rooms

away in none-line-of-sight. If someone takes your smartphone

and stay not too far away from your trusted device, he may

access your unlocked phone since your trusted device is still

connected via Bluetooth.
To address those concerns, in this paper, we propose to

exploit the acoustic channel to build the trusted relationship

between a smartphone and its associated smartwatch and auto-

matically unlock the phone when the smartwatch is nearby. To

this end, we build WearLock, a system to automatically unlock

smartphones via an acoustic channel between a smartphone

and its associated wearable, i.e., a smartwatch in this paper.

To be noted that our system is not meant to replace current

smartphone authentication schemes (password or biometric

based authentications), but provides a secure and efficient

alternative which can significant reduce authentication effort

on users. The assumption is that with a given noise level,

we can maintain secure acoustic channel within roughly 1m

distance between two devices using speaker and microphone,

which acts as the secure boundary. Microphones and speakers

are commonly available on these devices, eliminating the need

for extra hardware additions. The communication range of

acoustic channel is shorter than the Bluetooth and longer than

NFC or magnetic-based channel [19], which is more desirable

for the purpose of unlocking smartphones. One challenge is to

build a robust and reliable acoustic modem scheme to secure

the acoustic channel when devices are nearby. The other is to

carefully design a system to accommodate the limited battery

capacity and computation power of wearable hardware.
In summary, we make the following contributions:

• We proposed a novel automated and secure unlocking

scheme for smartphone via a trusted wearable device. It

requires minimal amount of effort from user.

• We are the first, to the best of our knowledge, to exploit

the adaptive modulation of acoustics on common of-the-

shelf (COTS) mobile devices for robust data transmission.

The acoustic modem can adapt to ambient noise levels

and interfering signals.

• We built WearLock on unmodified COTS smartphone and

smartwatch devices and evaluated the system extensively.

II. SYSTEM OVERVIEW

In this section, we describe the system architecture of

WearLock and the smartwatch-assisted unlocking protocol.
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Fig. 1: The architecture of WearLock.

System Architecture. Figure 1 illustrates the architecture of

WearLock, which consists of a smartphone and a smartwatch.

The smartphone usually has a speaker and microphone, a

wireless interfaces (Bluetooth or WiFi), and optionally motion

sensors. The smartwatch usually has a microphone, a wireless

interface and optionally motion sensors. Both devices run

an instance of WearLock Controller, as the agent executing

our proposed unlocking protocol, which takes input from

underlying hardware and controls the the output channels

such as speaker for emitting acoustics, wireless radio for

sending configurations, and Android Keyguard for enabling or

disabling lock screen. The one time password (OTP) module

is responsible for the one time password generation and

verification. The acoustic modem is an OFDM modem which

enables data such as OTP to be transmitted over the acoustic

channel using proper modulation schemes.

The smartphone and the smartwatch communicate with each

other through both the wireless and the acoustic channels.

The wireless channel serves as the secure control channel,

transmitting acoustic channel configuration information, in-

cluding the pilot sub-channel, the null sub-channel, and the

data sub-channel. The acoustic channel conveys data payload

in data sub-channels along with pilot sub-channels. The motion

sensor will be used to construct a pre-filter to skip unnecessary

unlocking requests by matching the motion pattern. In the

following sections, we will provide further details on the

acoustic OFDM modem design, the secure unlocking scheme,

and several system optimizations.

Smartwatch-assisted Unlocking Protocol. Figure 2 illus-

trates the overall protocol of WearLock between the smart-

phone and the smartwatch. The protocol has two phases: 1)

Phase 1 is Request-to-Send/Clear-to-Send (RTS/CTS) phase

for channel probing; and 2) Phase 2 is the data transmission

phase for OFDM modulated OTP token.

12871284470



Smartphone’s view: To avoid continuous probing and mon-

itoring, we design to start our protocol when the user clicks

the power button. The smartphone detects the presence or

absence of the wireless link with the smartwatch. When the

wireless link is present, the smartphone continues to evaluate

the motion patterns of the smartphone and the smartwatch,

respectively. If the motion patterns match, it is assumed that

both are co-located and the smartphone continues to operate

by verifying recorded audio token from the smartwatch. If the

token is validated, then the Android Keyguard service will

maintain the smartphone in screen unlocked state. During this

process, if the wireless link, or the motion pattern, or the token

validation fails, subsequent computations will be skipped and

the Android Keyguard will remain the smartphone locked.

Smartwatch’s view: The smartwatch runs a thin client, which

cooperates with the smartphone controller. The smartwatch

transmits information such as Bluetooth/WiFi status, sensor

data, and recorded acoustics over the wireless channel.
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Fig. 2: The Protocol of WearLock.

III. ACOUSTIC MODEM DESIGN

We designed and implemented a pure software modem for

reliable data transmission over the acoustic channel. The goal

is to meet the challenge of achieving robust communication

under different ambient noise environments. We first discuss

important characteristics of the acoustic channel. Then, we

will describe our modem design, which includes signal detec-

tion using preamble identification, time synchronization using

preamble and cyclic prefix, channel estimation and equal-

ization with pilot tone, and signal modulation/demodulation.

Figure 3 shows the block diagram of OFDM modem design.

The Acoustic Channel. Before diving into the design of

acoustic modem, it is necessary to understand the important

aspects of the acoustic channel, which significantly impact our

design decisions. Next, we will discuss details of our OFDM

modem design followed by practical considerations of our

implementation.

1) Ambient Noise: Ambient noise directly affects the

Signal-Noise-Ratio (SNR) at the receiver side. While ambient

noise introduces many challenges, it also provides opportu-

nities for co-location detection [20]. In order to measure the

sound or noise power, we use the sound pressure level (SPL),

which is defined as SPL = 20 log10
p

pref
, where p is the root

mean square (RMS) power and pref is a reference value.
2) Sound propagation and attenuation: In open air, the

sound attenuation is mainly due to spreading loss. Assuming

that SPLtx and SPLrx are the sound pressure levels at the

transmitter and the receiver, respectively, and the distance

between the transmitter and the receiver is d, then the sound

attenuation in open air is defined as: SPLtx − SPLrx =
20g log10(

d
d0
) where g is a geometric constant, with g = 1

for spherical propagation from a point source, and d0 is

a reference distance, i.e., the distance between transmitter’s

microphone and speaker [21].

In WearLock, we control the propagation range of acoustic

signal by adjusting the speaker volume. We have measured

the SPL at the receiver under line-of-sight (LOS) scenarios

with different distances and volume settings, and the results

are shown in Figure 4. From the figure, we can see that SPL

attenuation match well with the theoretical value in spherical

propagation, decreasing by about 6 dB when distance is

doubled. Therefore, the Signal-to-Noise (SNR) at the receiver

side can be estimated by SNRrx = SPLrx − SPLnoise where

SPLnoise is the SPL of ambient noise.
3) Microphone and Speaker Characteristics: Ringing effect

and rise effect adversely affect speaker and microphone perfor-

mance [22]. Ringing is the effect that the speaker generates a

longer output than the real length of input with a reverberation

tail slowly reducing to 0. Similarly, rise effect is due to the

fact that the speaker unit cannot reach to its highest power

instantly. To overcome these effects, we define a zero-padding

symbol guard interval Tg larger than the largest reverberation

length to reduce the inter-symbol interference (ISI), and we

also apply fading at the beginning of the signal.

OFDM Design. WearLock leverage orthogonal frequency

division multiplexing (OFDM) modulation to modulate our

token information. OFDM efficiently utilizes spectrum by

allowing overlap in the frequency domain. It is also more

resistant to frequency selective fading by enabling sub-channel

selection and equalization techniques.
1) Modulation and Demodulation: The OFDM modula-

tion and demodulation are simply implemented through Fast

Fourier’s Transformation (FFT) algorithms.

Considering a data sequence input to the IFFT, X =
[X0, X1, · · · , Xk, · · · , XN−2, XN−1], where Xk = XI(k) +
jXQ(k), which is in the form of quadrature amplitude mod-

ulation (QAM). Usually, the conversion back and forth be-

tween a binary data and the QAM-represented data input is

done through a constellation mapping/de-mapping. To get the

baseband modulated time-domain signal, we apply the IFFT:

xn =
1

N

N−1∑
k=0

XA(k)e
j( 2π

N fktn+XP (k)) (1)
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Fig. 3: The OFDM modem of WearLock.

Fig. 4: Receiver’s SPL in distance of different volume settings.
Measured in a quiet room with the SPL of ambient noise about 15-20
dB in a line-of-sight scenario.

where fk = k/(NΔt), Fs = 1/Δt is the sampling

rate, and tn = nΔt. And XA(k) =
√
XI(k)2 +XQ(k)2,

XP (k) = arctan(XQ(k)/XI(k)). Then the final representa-

tion of the signal is its real part sn = Re (xn). We directly

use this base-band signal as our output acoustic signal and

send it through the speaker. To demodulate a received time-

domain signal, we just apply the FFT and then look at the

complex representation of Xk in the result, and de-map it

according to the constellation diagram. However, due to the

characteristics of the acoustic channels, which present delay,

attenuation and phase distortion issues, we need to implement

synchronization, sub-carrier selection, channel estimation and

channel equalization.

2) Sub-carrier Frequency Range: Originally, we want to

work on the near-ultrasound frequency ranged from 15kHz

to 20kHz for the following reasons: 1) the frequency range

of most ambient noise in our scenarios is below 15kHz; 2)

humans are most sensitive to frequencies between 2,000 and

5,000 Hz; and 3) many new smart devices support native

44.1kHz or even higher sampling rate which indicates that

the frequency response is acceptable below 20kHz. However,

in real device experiment (A Moto 360 Android watch),

we have found that there is a mandatory built-in low-pass

filter, which limits the frequency range no higher than 7kHz,

where the signal fades significantly from 5kHz to 7kHz1.

Therefore, our design supports a smartphone-smartwatch pair

1We deem the reason of filtering as the main microphone usage in Android
wear is speech recognition. We are planning to test on more android wear
models.

utilizing audible acoustic signals (1kHz-6kHz) and an em-

ulated smartphone-smartphone pair utilizing inaudible near-

ultrasound acoustic signals (15kHz-20kHz).

3) Preamble Design: Existing preambles used in acoustic

OFDM modems are usually based on PN-sequence or linearly

frequency modulated (LFM) signals. The PN-sequence signal

is a sequence of signal that has very strong auto-correlation

output and weak cross-correlation output. The LFM signal is

also known as Chirp signal or Sweep signal, which has nice

Doppler-shift insensitivity and can be accurately detected in

matched filtering. Therefore, we adopted a chirp signal for

signal detection and coarse synchronization. The chirp signal

increases from fmin to fmax in a time frame Tp.

4) Silence Detection and Signal Detection: The purpose of

signal detection is to find the target signal in the recorded

acoustic stream. First, we use an energy-based detector to

filter out the section of silence. When there is a strong signal

with SPL that surpasses our predefined noise level, we will

perform the signal detection, relying on the detection of a

known preamble. A cross-correlator calculates a normalized

score and compares against a threshold value. Once we have

detected a target signal, we will send this audio buffer to next

processing block.

5) Synchronization: Finding the start of a frame is crit-

ical to all the follow-on processing and thus the system

performance. Our synchronization has two steps: a coarse

time-domain synchronization and a fine time-domain synchro-

nization. The coarse synchronization in time-domain is done

during the preamble detection through cross-correlation of

the received signal and the known preamble. The preamble

is a chirp signal, which correlates well with the original

chirp even if there is a frequency shift. This characteristic

ensures that we can always find a coarse start of the frame.

During the processing of OFDM symbol, we perform the fine

time-domain synchronization by leveraging the cyclic prefix.

The cyclic prefix is a technique prefixing a symbol with a

repetition of its end, which usually serves as a guard interval

to eliminate ISI and is a technique to improve the robustness

of multi-path propagation. For the purpose of fine time-domain

synchronization, we use a window-based method, to iteratively

find the best match of the head and tail of the signal after delay

adjustment. Assume the time domain signal is x(t), and the

12891286472



length of cyclic prefix is Tg , we have

argmin
tf

tc+tf+Tg∑
t=tc+tf

x(t)x(t+ Ts), ∀tf ∈ [−τ, τ ] (2)

where Ts is length of symbol excluding the guard interval, tc
is the coarse delay, and τ is the searching range for tf of a

finer synchronization.

6) Channel Estimation and Equalization: Acoustic channel

requires channel estimation and equalization techniques to

overcome the distortions caused by fast fading, delay spread-

ing, and multipath propagation. We insert equal-spaced unit-

powered pilot tones for the purpose of equalization. To get

the channel estimation, we extract pilot tones in frequency

domain after proper synchronization as z(k) where k ∈ P, the

pilot sub-channel set. Since it is equal-spaced in the frequency

domain, we then apply a FFT-based interpolation with a proper

interpolation length to expand it to estimate the data channel

frequency response H(k), k ∈ P ∪ D, where D is the data

sub-channel set. And H(k) = z(k) when k ∈ P . Then, the

equalization on the pilot and data channel is calculated as

follows: ŝ(k) = z(k)
H(k) , k ∈ P∪D. By equalizing the known

a-priori pilot sub-channel to unit-power, we equalize the data

channel at the same time.

7) Adaptive Modulation: WearLock supports modulations

such as BASK/QASK, BPSK/QPSK, 8PSK and 16QAM. We

adopt an adaptive modulation scheme, which has a Request-

to-Send/Clear-to-Send (RTS/CTS) phase before the data trans-

mission phase. The motivation of adaptive modulation is that

in every round, we want to make sure that the acoustic signal

can be delivered reliably from smartphone to the nearby smart-

watch in spite of the ambient noise and interfering signals. As

is well known, the higher the order of modulation, the higher

the date rate R. R can be calculated by R = |D|rc log2 M
Tg+Ts

,

where M is the modulation order, |D| is size of data sub-

channel set, rc is the coding rate for channel coding, and

rc = 1 if no channel coding is used. Higher order modulations

are more vulnerable to ambient noise and interference. This

usually requires a higher SNR to maintain the same error

rate as a lower order modulation. Therefore, dynamically

adaptive modulation are adopted by many communication

systems, in which they sense the channel quality and adapt

the modulation under certain constraints. Unlike traditional

adaptive modulation for communication systems which seeks

to maximize the system data rate, our design goal is to utilize

the propagation loss in transmission to select a modulation

mode to maintain a BER under a target BER. In the RTS/CTS

phase, WearLock sends out a preamble with a block-based

pilot symbol as a channel probing packet, which will serve the

purpose of sub-channel selection and modulation selection.

Channel probing and sub-channel selection: It is important

for WearLock to find the long-term or short-term noise which

lasts for at least the time of transmission, like periodically-

restarting air conditioner, which overlays certain frequencies

for undefined duration. By sending a channel probing packet,

WearLock can get an estimate of the channel state information

and rank all the candidate sub-channels by the noise power.

WearLock also chooses sub-channels in a priority order from

low frequency to high frequency, and from low noise power

to high noise power. We will assess the performance of sub-

channel selection in our evaluation.

Pilot-based SNR indicator: From the channel probing result,

we can also estimate the pilot signal SNR as an indicator

for adaptive modulation. In order to measure and compare

the performance of different modulation schemes, we use

a normalized signal-to-noise ratio (SNR) as metric: Eb/N0,

which is the ratio of the energy per bit to noise power spectral

density. It can be calculated as Eb

N0
= C

N · B
R ∝ PSNR · B

R
where B is the bandwidth, and R is the data rate, as we have

discussed previously.

The C
N is the carrier to noise power ratio, which will

be estimated using a pilot-based SNR [23], which can be

calculated from the spectrum result:

PSNR =
Ek∈P [X(k) ·X∗(k)]− Ek∈N [X(k) ·X∗(k)]

Ek∈N [X(k) ·X∗(k)]
(3)

where N is the null sub-channel set.

Deciding transmission mode: We have measured how BER

of different modulations change in terms of different Eb

N0

in a quiet room (15-20db SPL) and LOS. We control the

ambient noise by an external speaker playing white noise

audio we collected. The result is shown in Figure 5, in which

the scatter plots are fitted by logarithmic tread-lines. The

ranking order of our measures closely matches the theoretic

result [24]. Due to hardware limitations, 16QAM is not usable

in real experiments or at least may need heavy error correction

techniques. Also due to the uneven responses of amplitude

modulation and phase modulation of the audio hardware,

amplitude-shift keying needs less SNR per bit than phase-shift

keying. Therefore, we setup three transmission modes in total:

QASK, QPSK, and 8PSK.

B
E

R

0.001

0.01

0.1

Eb/N0  in dB
0 7 14 21 28 35 42 49 56 63 70

0.1
MaxBER

Min Eb/N0

8PSK  
16QAM  
QPSK  
QASK  
BPSK  
BASK  

Fig. 5: The BER of different modulations changes with Eb/N0

Ambient noise measurement: The ambient noise is measured

in the first processing phase at both sides. The smartphone

also conducts a self-recording while the smartwatch is actively

recording the incoming signals. By detecting the preamble

existing in those recordings, we can coarsely align the two

time series. The time series before the preamble are used to

calculate the ambient noise. The ambient noise similarity is

used to filter the cases that those devices are apparently not
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co-located. The noise level is also used to set proper speaker

volume to control the transmission range.

NLOS filtering: To detection NLOS, we use a low cost

method which analyzes the received preamble: a LFM mod-

ulated signal sent in the RTS/CTS phase. We first check

the maximal normalized cross correlation score. If the max

score is below a certain threshold (0.05 in our experiment),

we will abort the transmission, since it indicates a mismatch

on the preamble with high possibility. Otherwise, we can

coarsely synchronize the signal. Next, we approximate a delay

profile of the preamble using cross correlation. The root mean

square (RMS) delay is calculated as τrms =
√∑

n(tn−τ̂)2A(tn)∑
n A(tn)

where A(tn) is the approximate delay profile, tn = n
Fs

and

τ̂ =
∑

n tnA(tn)∑
n A(tn)

When the τrms is beyond a certain threshold

τ∗, we assume that there is a severe body blocking.

How adaptive modulation works: According to our prelim-

inary measurements in Fig. 4, in the first phase, a probing

packet is sent out using a SPL(volume) that surpasses the

SPL of noise at least a minimal SNR around 1 meters:

SPLtx−20 log10(
1.0
d0

)−SPLnoise > SNRmin where SNRmin

can be decided from a minimal Eb/N0, such as marked in

Fig. 5. This ensures that the receiver in the range receives

this probing packet. WearLock has no explicit ranging and we

use this as the bound on the transmission range, if a receiver

falls within this range, it will be able to receive the signal

which is beyond the minimal SNR. The actual received SNR
is estimated by the pilot-based SNR and will be reported in the

CTS signal. After the transmitter gets the SNRrx, this one is

used to select the modulation scheme that can reach a BER at

least smaller than a decided bound, the MaxBER as we have

also marked in Fig. 5. For example, if the rx’s SNR converts

to Eb/N0 = 35dB and MaxBER = 0.1, we can send the

signal using 8PSK, since we can get a guaranteed BER. If

MaxBER = 0.01, then we can choose modulation like QPSK

and QASK.

IV. SECURE UNLOCKING

Existing work uses SIC to secure information transmitted

in the acoustic channel. However, in our scenario, it is not

feasible since most android wearable devices are not shipped

with speakers. Therefore, we employed one time password

(OTP) scheme to make use the acoustic channel with no secret

disclosed.

Threat Model. We assume that the wireless link is securely

established, and can safely be used as a control channel for

OFDM communication. The sound channel is assumed to be

insecure and an attacker can eavesdrop. We also assume that

the attacker cannot take possession of the smart watch since

it is hard to steal the watch from user’s wrist without being

caught. An attacker may take control of the phone and try to

peak into it for the purpose of online payment, private photos

and emails, etc. In order to fool the WearLock system, we

assume that an attacker may try to perform various attacks.

One is the co-located attack, in which the attacker holds the

user’s phone to get as close to the target as possible without

being discovered. Another one is a record-and-replay attack, in

which the attacker makes use of recording and replay devices

to capture the acoustic signal and replay it to the smartphone.

Jamming or Denial-of-Service attacks are not considered, since

we can simply turn back to traditional locking scheme on

smartphones. Currently, our design cannot protect acoustic

channel against sophisticated relay attack which relies on some

sort of relay to extend the range of between those two devices.

However, we will argue the difficulty of launching this attack

in acoustic channel, then discuss potential counter-measures.

One Time Password. To defend against replay attacks,

we employ a counter-based one time password scheme(i.e.,

IETF RFC 4226 [25]). Assume that the phone and watch have

negotiated a secret key k and a counter c through Bluetooth

link, which can also be updated at anytime. The one time

password is generate by keyed-hash message authentication

code (HMAC) using HMAC-SHA-1, as HMAC(k, c). Then a

dynamic truncation (DT) technique is used to extract a 32 bit

binary from the 160-bit result, which ensures that the outputs

on different counter inputs are uniformly distributed. The final

digits are generated by the DT result taking modulo 10Digit,

where Digit is the number of digits.

Security Discussion. As we have mentioned, an attacker

possessing the victim’s phone, will try various attacks. We

have identified the following attacks and explained why our

system can defend against or mitigate those attacks.

1) Brutal Force Attack: An attacker takes possession of

victim’s phone, will try to mount brutal force attack when the

victim wearing smartwatch is in another room or quite far

away while the Bluetooth is still linked. The attacker need to

properly guess the acoustic modem parameters and guess the

OTP. A 32 bits OTP has a large keyspace as 232 and we can

easily increase the keyspace by adding more data channels

or using higher order modulations. The smartphone will be

locked up after three consecutive failures, which makes the

brutal force attack unrealistic.

2) Co-located Attack: Being similar to brutal force attack,

the attack just tries to get close enough to the victim to perform

a successful unlock. The defense against this attack lies in the

design of the modem that there is high bit error rate when

the transmission distance is beyond around 1 meter. Getting

closer to the user and covering the smartphone stealthily may

not work, since it will obstruct the direct path and result in

significant loss when acoustic channel becomes NLOS.

3) Record and Replay Attack: Since attack can monitor

the acoustic channels, disclosing the OTP token may suffer

from a replay attack, in which an attacker can record the

token signal and replay it to the watch like the man-in-the-

middle (MITM) attack. This attack is defeated by examining

the timing window, since in the protocol, we can measure the

software stack delay and wireless round-trip-time. A MITM

attacker with recorder and player in the loop definitely adds

more delay in the acoustic path. Every time the power button is

pressed, a Bluetooth message is sent to the watch indicating

the start of the protocol, and the watch replies a Bluetooth

message and starts recording. Then the smartphone starts to
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send acoustic token, after which smartphone also sends a

Bluetooth message of stopping recording. And the watch will

stop recording as well. This procedure has two phases, and

it is interactive, which means we can examine the result of

the first phase, and abort the second phase if there is anything

specious. Since the OTP token is sent in the second phase, we

avoid the disclosure of OTP token in such attack.

4) Relay Attack: Sophisticated relay attack will try to use

record-and-replay in a live manner, to circumvent the time

window based protection. If this attack can be performed

in ideal case, our current design cannot protect acoustic

channel against this attack. However, this attack is very hard

to mount since it needs very flat frequency/phase-response

speaker/microphone to avoid acoustic distortions in ADC and

DAC. Otherwise, we can use fingerprinting method to unique

identify those acoustic hardware to check if there are relays.

Additionally, high quality speaker/microphone usually cannot

be made in small sizes, which enlarges the chance being

spotted by victim. Another potential counter-measure is to

employ distance bounding protocol [26].

V. PERFORMANCE OPTIMIZATIONS

WearLock Controllers are the running instances of our sys-

tem on the smartphone and smartwatch. One task of WearLock

Controller is to gather information from various sources and

make the final decisions on questions such as where to run the

computation and when to abort a transmission, which gives

us plenty of opportunities for performance optimizations. The

rationale is that the change of the way of unlocking smart-

phone using a paired smartwatch does not actually reduce the

frequency of unlocking. Every audio transmission is followed

by a series of intensive computations, which would be a burden

on wearable devices. Even though the microphone and speaker

power consumption are relatively low, digit signal processing

computations such as cross correlation, FFT based Modulation

and Demodulation, FFT based interpolation are all relatively

computationally intensive, consuming more power.

We believe that by well addressing those questions, we can

not only save energy for wearable devices but also reduce the

delay of processing. We conduct computation load balance and

computation reduction as two main solutions.

Computation Offloading. To mitigate the power drain on

wearables, we leverage the natural computation pattern of

the smartphone and its paired wearable, offloading heavy

computation tasks from the smartwatch to the smartphone.

Since all the acoustic modem and digital signal processing

libraries are implemented as a common module shared by both

phone-side and watch-side apps, we can easily partition the

computations among those two devices.

In order to understand the trade-off here, we have mea-

sured the time cost of processing after the recording and the

corresponding rough power consumption, in Figure 6. The

processing mainly consists of a sliding window based cross

correlator and an OFDM demodulator. Since it is not possible

to tear apart the Android smartwatch and connect it to a

power meter, we run our system for 50 rounds of acoustic

unlocking and rely on the Android OS battery status to roughly

measure the power consumption by the API provided by

Android framework. To be noted that, this energy consumption

measure is pretty rough, as the measurement procedure keeps

the device awake, violating the life-cycle design pattern of

an Android wear app. We anticipate more energy saving in

daily usage. From the result, we can see that by offloading to

the smartphone, it not only saves energy but also reduces the

computation time.

Fig. 6: Time Cost (a) and Power Consumption (b) Comparison on
Offloading and Local Processing on Wearable.

Computation Reduction. The basic idea of the computa-

tion reduction is to leverage a series of filters using information

such as wireless network, ambient noise and motion sensors, to

avoid unnecessary follow-up heavy computation. For example,

the WearLock only works when the Bluetooth link exists.

Therefore, if there is no Bluetooth link, all the protocols and

algorithms will not run. Alternatively, the technique used in

Sound-Proof [20] is complementary to WearLock by leverag-

ing the similarity of ambient noise, to eliminate unnecessary

acoustic transmission, which is scheduled in the RTS/CTS

phase of adaptive modulation. If the ambient noise similarity

is below a threshold, we believe those two deices are not co-

located with a high confidence and then the transmission is

aborted. Additionally, we can also leverage the activity context

information or hand movement derived from sensor units to

reduce the number of acoustic transmissions.

Leveraging Motion Sensor-based Filtering: When the user

is engaged in activities, or the smartphone is hold by the

same hand that wears the watch, we can use the raw inertial

sensor data to detect the device movement similarity. This

will serve as a filter that can eliminate unnecessary acoustic

transmission if the similarity distance is lower or higher than

predefined thresholds. In order to use sensor traces, we need

to convert the 3-axis sensors to its magnitude representation

by s ←
√

s2x + s2y + s2z , since it is challenge to obtain

accurate relative orientation between those two devices. The

alignment of the sensor time series is not necessary since we

use Dynamic Time Warping (DTW) to find the best alignment

in the time domain [27]. The procedure is presented in Alg. 1.

Even though the time complexity of DTW is O(n2) assum-

ing two inputs are length of n, it is very cheap since n is

usually small ranging from 50 to 150 samples. We will verify

the feasibility and measure the time cost in the evaluation.
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Algorithm 1 Sensor-based Filter

1: procedure SENSOR-BASED FILTERING

2: for each first phase do
3: while recording do
4: spx,y,z ← phone accelerometer
5: swx,y,z ← watch accelerometer

6: sp← Normalized(Magnitude(spx,y,z))
7: sw ← Normalized(Magnitude(swx,y,z))
8: if DTW(sp, sw) > dh then
9: abort protocol � save the computation

10: else if DTW(sp, sw) < dl then
11: skip second phase � save the computation
12: else
13: continue to the second phase

VI. EVALUATION

In this section, we will first briefly discuss the implemen-

tation details. Then, we will evaluate our system in terms

of communication range, adaptive modulation, sensor-based

filtering, system delay, a filed test and a case study.

Implementation Details. We have implemented our system

on Android OS, consisting of Android phone app and Android

wear app. We have wrapped the MessageAPI and ChannelAPI

of Android Wear SDK for implicit message/file transferring

so that we do not need to handle the underlying networking

using either Bluetooth or WiFi. We have also ported the

wear app to a smartphone in order to test near-ultrasound

frequency in WearLock. The OFDM modem is written in

pure JAVA libraries, which can be running on both sides.

The digital signal processing library is also written in JAVA

and we plan to move on native DSP library in the future.

The default FFT size is 256 and the sampling rate is 44.1

kHz, which gives about 172Hz sub-channel bandwidth. We

index our channels from 1-256. and in default we pick channel

{16, 17, 18, 20, 21, 22, 24, 25, 26, 28, 29, 30} as data channels,

and {7, 11, 15, 19, 23, 27, 31, 35} as pilot channels for working

at 1-6kHz frequency band. The rests are null channels. We

shift this channel assignment with higher index when we want

15-20Khz frequency band. This channel assignments will be

adjusted during sub-channel selection. The preamble size is

256 samples, the post-preamble guard size is 1024 samples

and the CP duration is 128 samples. All those parameters can

be easily tuned in the setting activity of our app.

Communication Range. The communication range is a

very important performance metric. Ideally, we want to the

communication range to be strictly constrained within one

meter. However, the performance varies due to different

modulations and ambient noise. In Figure 7, we show the

communication range of the acoustic modem in terms of BER

in three different transmission modes. They are measured at an

office room with a LOS setup. We can see that by constraining

the max BER we can adaptively change the transmission mode

to guarantee that the signal fades significantly when the current

communication range is increased.

Adaptive Modulation. To understand the performance of

adaptive modulation, we have conducted two experiments.

First, we enable adaptive modulation selection in the previous

measurements to show the effectiveness of adaptive modula-

tion. In Figure 8, by constraining the BER, we can adaptively

change the modulation schemes, which can allow us to have

shorter packets or more redundant bits. It also guarantees

that an eavesdropper located nearby will have a larger BER

since a higher order modulation is more vulnerable to noise

and interference. Next, we demonstrate WearLock adaptation

to ambient noise in sub-channel selections. We use audible

frequency range for this experiment and employ an external

tone generator as an acoustic jammer, the Audacity, which

supports at most 6 mono-tracks simultaneously. We use QPSK

modulation with the smartwatch and smartphone placed at a

fixed distance about 15cm. The jammed sub-channel index is

randomly selected every time. The result, depicted in Figure 9,

shows that when the sub-channel selection is enabled, the

modem is able to avoid the noisy or interfered sub-channels

and maintain a stable BER.
Sensor-based Filtering. We have also evaluated the sensor-

based filtering to see how much similarity in sensor data we

can leverage to reduce the number of acoustic transmissions.

We tested WearLock in activities such as sitting, walking and

jogging, and also in different activities. The normalized DTW

scores and the running time are reported in Table II. The

activity context can be queried through Google Play Service

APIs. By setting a threshold on the DTW scores (0.1 in our

case), we can reduce the Max BER or skip the second phase

when the DTW score is under the threshold and abort the

transmission when the DTW score is above the threshold.

Activities Sitting Walking Running Different Cost(ms)
DTW Scores 0.05 0.02 0.06 0.20 45.9

TABLE II: Sensor-based Filtering

System Delay. The system delay is important since users

will lose their patience with the WearLock technique if it

is much slower than entering a password. There are two

types of delay: computation delay and communication delay.

We have broken down the computation delay into phase

1 channel probing processing, phase 2 pre-processing and

phase 2 demodulation in Figure 10 when the computation

is carried out on different devices. We have also measured

the communication delay in WiFi/Bluetooth message and

file transfer in Figure 11. Every experiment is repeated at

least 20 times. We did not measure the modulation since

the generation is very fast. Part of them can be generated

ahead-of-time and therefore the cost can be amortized. For

purpose of comparison, we also measured the time cost for

a user entering 4/6-digit PIN codes on an Android device

using similar method as [2]. The results are also aligned to

the medians of measurements in [2]. We compare the results

with three different configurations: Config1: the fastest case

where the smartwatch offloads computation via WiFi to a high

end smartphone (Nexus 6), Config2: the slowest case where

the smartwatch offloads computation via Bluetooth to a low

end smartphone (Galaxy Nexus), and Config3: local processing

case where the processing is on the smartwatch (Moto 360) as
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Fig. 7: The BER in distances and trans-
mission modes (near-ultrasound).

Fig. 8: The BER in adaptive modula-
tion under different BER constrains(near-
ultrasound).

Fig. 9: The BER under jamming and sub-
channel selection. (QPSK, audible sound)

Fig. 10: The computation delay of each
phase on different devices.

Fig. 11: The communication delay be-
tween smartphone and smartwatch.

Fig. 12: Compare the total delay in differ-
ent configurations with manually entering
pin codes.

BER v.s. Locations Office Class Room Cafe Grocery Store
Diff. Hand (Audible) 0.0486(8PSK) 0.0333(8PSK) 0.0263(QPSK) 0.0119(QPSK)
Same Hand (Audible) 0.0889(8PSK) 0.0512(8PSK) 0.0655(QPSK) 0.0648(QPSK)
Diff. Hand (Near-ultrasound) 0.0556(8PSK) 0.0417(QPSK) 0.0233(QPSK) 0.0139(QPSK)
Same Hand (Near-ultrasound) 0.1054(QPSK) 0.1875(QPSK) 0.1971(QPSK) 0.2060(QPSK)

TABLE I: Field Test Result. The average BER is around 0.08.

shown in Figure 12. The results indicate WearLock has a delay

advantage over manually unlocking even on a low end device

and slow Bluetooth link with a speedup of at least 17.7%.

For the fastest case, the WearLock speedup is at least 58.6%.

Notably, WearLock experiences less delay and only needs the

user to click the power button.

Field Test. We tested WearLock with the smartphone and

smartwatch hold or worn in different configurations: same

hand and different hands. We also tested them in different

locations as offices, classrooms, cafes and grocery stores where

the typical sounds in those scenarios are human voice and

noises from sources such as keyboard typing, cafe machines,

air conditioners, etc. We report the BER results in Table I.

From the results, we find that near-ultrasound may have less

interference but significant signal fade due to direct path

blocking in the same hand case. The audible sound is less

convenient but more usable in most noise cases. It would be

better to use inaudible sound in quiet spaces and audible sound

in noisy spaces as long as the volume is controlled. We can

easily integrate this choice to current mobile OS since it is in

line with how smartphone users set their the sound preferences.

A Case Study. We asked five graduate students to try our

system in a class room environment one by one and made

detailed observation during the procedure. One of the students

held the bottom of the phone tightly covering the speaker at

the beginning. In this case, it gives a success rate of 3/10 when

required BER=0.1. We asked the student to try the second time

without holding the phone so tight. In this case, the success

rate is 8/10 when BER=0.1 and 10/10 when BER=0.15. One

student held the phone in one hand and wore the watch on

another hand, which yielded a success rate of 8/10 at BER=0.1.

One of the students preferred to use the phone with one hand

and wore the watch on the same hand, which gave a success

rate of 4/10 if using BER threshold as 0.1. However, the

NLOS detection can identify 3/10 as NLOS cases. If relaxing

the corresponding required BER of NLOS cases to 0.25, the

corrected success rate is 7/10. The average success rate among

five participants is 90%. From the perspective of convenience,

although the participants have perceived the delay due to

retry after failures in certain scenarios, they still felt that our

scheme was convenient and rated higher in convenience level

comparing to entering 6-digit PINs manually. The overall error

rate is acceptable and they felt no harassment to repeat the

unlocking via acoustics in case of failures. We leave as future

work a comprehensive user study involving more participants

and environments.

VII. DISCUSSION AND LIMITATIONS

Acoustic Frequency Range: Due to the frequency range

limitation of the mobile acoustic hardware, the implemented

system can work on audio range (1-6Khz) on a phone-watch

pair, and near-ultra sound range (15-20Khz) in a phone-phone

pair. This brings the limitation that the acoustic is either
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audible or can be possibly heard by babies or animals. This is

one limitation of our work and we leave this to the smartphone

manufacture when devices with higher sampling rate will be

made. For example, several latest models of Samsung Galaxy

Note supports 96kHz and higher audio recording/playback.

Device with higher sampling rate can utilize higher and more

frequency bands with less noise and more bandwidth.

Bluetooth Proximity: According to the document of Blue-

tooth proximity profile that even the link between devices

has been securely enabled, the device can be spoofed into

assuming that the other device is close due to the internal

design of Bluetooth protocol, which means that naively using

Bluetooth proximity profile for secure distance measurement

is not encouraged [28]. Currently secure distance measurement

using Bluetooth requires additional development upon existing

stacks. Comparatively, our system on mobile and wearable

devices can be easily implemented in the application level and

ported to other devices. However, we do admit that a solution

via Bluetooth is promising, and we leave this in our future

work to explore secure ranged and easy-to-implement token-

based authentication in wireless channel.

VIII. RELATED WORK

There are two main areas related to our work. First, we will

briefly outline the acoustic communication on mobile device

and justify the difference of our work. Then, we will discuss

the existing work about authentications with reduced efforts.

Acoustic Communication on Mobile Devices. WearLock

is an extension of acoustic communications work on smart

devices. Dhwani [22] aims to replace NFC with an acoustic

orthogonal frequency division multiplexing (OFDM) modem

secured by a self-interference cancellation (SIC) technique.

Dolphin [29] and PriWhisper [30] also leverage similar idea

for secure acoustic channel. However, their schemes are not

suitable for practical and efficient implementation on phone-

watch pairs, since most smartwatches have no speakers and

generating a cancellation signal imposes both energy and pro-

cessing burdens on wearable devices. We use a different secure

scheme tailed for smartwatch which acts as a listener in acous-

tic channel and conduct offloading to shift computation and

energy burdens on smartwatch to more capable smartphone.

Work [31] used On-off keying on chirp signals to overcome

one of the main limitations of acoustic communication on

mobile devices: the short communication range. However, our

work make a good use of the relatively short communication

range, and we use OFDM which yields much higher data rate.

Google NearBy [32] is a recently published API to provide

near filed communication and interaction using Bluetooth,

WiFi and acoustics. The acoustic signal is modulated in

Dual-tone multi-frequency signaling (DTMF), which is slower

and less spectrum-efficient compared to OFDM. However, it

requires the devices to support near-ultrasound in 18.5kHz-

20khz and therefore is not supported on Android Wear devices

yet. Other work requires the provision of special acoustic

communication hardware [15], [33], [34]. WearLock requires

no additional special hardware.

Reduced-Effort Authentication. The reduced-effort au-

thentication are those techniques that seek to reduce or elim-

inate the human effort involved in authentications. The sim-

plest schemes utilize short-range radio communication using

Bluetooth or NFC. ZIA [35] is one of the earliest work with

zero-interaction authentication, leveraging an authentication

token. WearLock can be taken as a natural extension from PC

and electronic tokens to the nowadays common smartphone-

smartwatch pairs. Work [4] has proposed the combination

of multiple signals to define a security confidence level and

subsequent the authentication only at certain levels. Their

scheme can reduce the authentication frequency but requires

large effort in data collection and training. Similarly, work [36]

has proposed a method to lock the device when the users

physical separation is detected. Their method is complemen-

tary to ours and can be combined. Another way of reducing

effort in authentication is to leverage device co-location or

localization [20], [37]–[39]. Sound-Proof [20] has proposed

to leverage similarities in ambient noise signals for user

authentication. Sound-of-silent [37] has proposed to utilize the

silence patterns in recordings to provide co-location context.

However, these techniques cannot defend against co-located

attackers due to their reliance on relatively widely pervading

and unvalidated signals. WearLock relies on the presence of a

validated acoustic signal that is designed not to be detectable

more than one meter away from the generating device.

IX. CONCLUSION

In this paper, we show that a convenient and secure smart-

phone unlocking can be achieved by leveraging a paired

smartwatch. We argue that the smartwatch is an ideal wearable

token device that is theft-proof and has constant connections

to the phone. Smartphone users can save much effort from

unlocking. WearLock, the implemented system, secures the

acoustic channel by adapting the transmission power and mod-

ulation configurations, and sends an OTP tokens for validation

via acoustics to unlock the smartphone. To optimize the system

performance, we offload the heavy computation to the phone,

and leverage multi-source information including sensor data

to reduce unnecessary audio transmissions. WearLock can

achieve an average bit error rate of 8% in our experiments.

WearLock achieves at least 18% speedup even on a low-end

device, compared to entering PINs.
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