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Abstract—Mobile edge computing (MEC) is proposed as
an extension of cloud computing in the scenarios where the
end devices desire better services in terms of response time.
Edge nodes are deployed at the proximity of the end devices,
and it can pre-download parts of data stored in the cloud so
that the end devices can access these data with low latency.
However, because the edges are usually owned by individuals
and small organizations, which have limited operation capac-
ities for maintaining the machines, the data on the edges is
easily corrupted (due to external attacks or internal hardware
failures). Therefore, it is essential to verify data integrity in
the MEC. We propose two Integrity Checking protocols for
MEC, called ICE-basic and ICE-batch, which are designed for
the cases where the user wants to check data integrity on a
single edge or multiple edges, respectively. Based on the concept
of provable data possession and the technique of private
information retrieval, our protocol allows a third party verifier
to check the data integrity on the edges without violating
users’ data privacy and query pattern privacy. We rigorously
prove the security and privacy guarantees of the protocols.
Furthermore, we have implemented a proof-of-concept system
that runs ICE, and extensive experiments are conducted. The
theoretical analysis and experimental results demonstrate the
proposed protocols are efficient both in computation and
communication.

Keywords-Mobile edge computing, data integrity, privacy-
preserving

I. INTRODUCTION

Cloud computing has made tremendous success in the

past decade, which provides powerful, scalable, and reliable

computing and storage for average users and enterprises.

However, when it comes to the mobile computing, the clouds

cannot meet the requirements of mobility support and low

response time for many mobile applications, due to the large

geographic distances between the clouds and the end devices.

Mobile edge computing (MEC) [1] has been proposed as a

new architecture for dealing with the issue. It pushes the

computation capability and data storage from cloud to the

edge nodes which are at the proximity of the end devices,

such that the end devices can enjoy the computing and data

access services with low latency.

When outsourcing data to the remote servers (e.g., cloud),

the users cannot fully control their data because they no

longer possess these data locally, and the data integrity is a

major concern in this circumstance. For the cloud computing,

the concern has been addressed by lots of previous works

in the last decade, e.g., [2]–[8]. We find that mobile edge

computing also faces the similar problem regarding the data

integrity, and it requires that the integrity verification is not

only performed on the back-end cloud but also the edge

nodes. In the MEC, the edges pre-download a part of the data

and services from the back-end cloud so that it can provide

data access for end devices in time. Though the data stored

in the back-end cloud is intact, the pre-downloaded data on

the edges may also be corrupted. (For example, the edge

services usually belong to individuals or small organizations,

which may have limited IT operation techniques.)

Furthermore, the edges are expected to deploy a delayed

write-back strategy for communication efficiency. Thus, the

edges usually will not write-back the updated data blocks

to the back-end cloud immediately, even though the end

devices may frequently update the data blocks on the edges.

In this case, the back-end cloud has no ability to recover the

updated data for users if the data on the edges is corrupted,

and the users will permanently lose their data. Therefore,

data integrity verification, i.e.,checking whether the data is

removed or tampered, is not only important on back-end

cloud, but also essential for edges.

As mentioned above, many works have been proposed

for integrity verification. However, the previous approaches

may not work well when the data integrity problem comes

to the edge computing. First, previous works implicitly

assume that the verifier knows what data the remote server

should possess. For the edge computing, it is inevitable to

reveal information of which parts of data the edges have

pre-downloaded to the verifier, but this information may

imply users’ query pattern privacy. Second, edge computing

has different trust model compared with other architectures.

Unlike Internet cache, in which the service provider has

the responsibility to protect the data integrity on cache

servers, the remote cloud and edge nodes may belong to

different entities in the edge computing, and the cloud has

no responsibility for verifying the data integrity on edges.

We identify two major challenges in verifying the data

integrity on the edges. The first challenge is that the edge

nodes have pre-downloaded a subset of whole data, and

the user does not know what part of data the edge nodes

have possessed, which is also a unique challenge for edge

computing. The other major challenge is that a user may

access the edges with multiple devices (e.g., laptop, phone,

sensors) at different time. Therefore, the users need a verifier



to maintain the data integrity tags and perform the verifi-

cations [7]. Furthermore, in this process, users’ and edges’

privacy information ought not to be revealed to the verifier.

In this paper, we study the integrity checking problem for

a general-purpose data storage service in edge computing

and proposed protocols for it. The homomorphic verifiable

tags (HVT) [3], [8] is adopted to achieve the integrity

verification without downloading the data stored in the edges.

By incorporating the private information retrieval (PIR) [9],

[10] and the tag repacking technique, the protocols preserve

the data privacy and users’ query pattern against the third

party verifiers. To sum up, the proposed protocols have three

desirable properties. First, it can verify the data integrity on

the edge nodes without downloading the data from them.

Second, both the pre-download strategy of the edge and the

users’ query pattern are preserved against the third party

verifier. Third, the verification is efficient, which meets the

requirement of response time of mobile computing.

In our basic protocol, ICE-basic, we consider the case

where the user connects to a single edge node, and needs

to verify the data integrity on one edge at each time.

Furthermore, we attend to the scenario that a user may want

to verify the integrity of data on multiple edges at the same

time and have proposed an extended protocol, ICE-batch for

efficient batch verification of multiple edges.

Our contributions can be summarized as follows:

• First, to our best knowledge, we are the first to study the

problem of data integrity verification in edge computing.

We consider a case where the users need third party

verifiers to check the integrity of data blocks that have

been pre-downloaded on the edge nodes in a privacy-

preserving manner.

• Second, we propose a remote data integrity checking

protocol for edge storage, and an extended protocol is

also proposed for efficient batch verification of multi-

ple edges. The proposed protocols are privacy-preserving

against semi-honest verifier, secure against untrusted edge

nodes, and efficient in terms of the requirements of edge

computing.

• Third, we analyze the correctness and security of the

proposed protocols, and rigorously prove that it is secure

against the untrusted edges and private against the third-

party verifiers.

• We have implemented a proof-of-concept system and

conducted extensive experiments to evaluate the proposed

protocols. The results show that our protocols are efficient.

The rest of this paper is organized as follows. We present

the technical preliminaries in Sec. II. In Sec. III and Sec. IV,

we present the ICE-basic protocol and the corresponding

analysis, respectively. The ICE-batch protocol is presented

in Sec. V. In Sec. VI, the evaluation results will be presented.

In Sec. VII, we review the related works. Finally, we

conclude in Sec. VIII.

II. PRELIMINARIES

A. Edge computing and System Model

We consider the data-based services that leverage the

architecture of the edge computing (e.g., QoS-based video

access [11], location-based information retrieval, and ma-

chine learning based applications [12], [13]) . In such

applications, when a user wants to fetch some data from the

cloud, it sends the request via the edges. If the edges hold the

data that the user queries, they can directly deliver the data

without downloading from the cloud, and thus the latency

is reduced. For providing better services, the edges will pre-

download a subset of data from the cloud based on the users’

queries. In terms of the data integrity, the uniqueness of the

edge-cloud architecture is two-fold. First, the back-end cloud

and the edges are usually belong to different entities, which

means the cloud has no obligation to ensure the data integrity

on edges, and the users ought to verify. Second, the edges are

deployed at the proximity of the users. Their computation

and storage capabilities are more powerful than end users,

but cannot match the back-end cloud. Therefore, the edges

can only pre-download parts of data from the cloud.

Our work aims to provide general-purpose data integrity

verification in edge computing. Specifically, we consider an

edge-cloud system with several edge nodes and a back-end

cloud that are connected through WAN-based connections.

The edge nodes (e.g., Wi-Fi access points, enterprise servers)

are deployed at the proximity of the end devices (e.g., mobile

phones, sensors, PCs), and the end devices are directly

connected to the edge nodes [1]. The end devices intend to

check the integrity of data in the edge nodes. A third party

auditor is usually required to perform the integrity check,

due to the limit of computing and storage capabilities and

the fragility of the end devices. To sum up, there are four

types of entities in such an edge-cloud system:

• User: A User is an end device, which queries the data and

requests for the data integrity verification on edges.

• Cloud Service Provider (CSP): We assume that the CSP

has unlimited computing and storage capabilities. Denote

by F the file that is stored in the cloud, which includes n

data blocks: b1, b2, . . . , bn, and L the length of the file.

• Edge: A edge node could be an enterprise server, a

base station, and etc. These edges can be reached

by nearby end devices with low latency. For a edge

edgej , it pre-downloads a subset of data blocks Fj =
{mj,1,mj,2, . . . ,mj,nj

} from the back-end cloud, and

denoted by Sj the indexes of these blocks in F .

• Third Party Auditor (TPA): The TPAs have powerful

computing and storage capabilities, which maintain the

data integrity tags and perform the verifications.

B. Trust Model

This work focuses on the data integrity checking in edges.

There are many previous works (e.g., [3], [5], [8]) having



studied the problem of providing data integrity checking in

the cloud, and we assume that the data stored in the back-end

cloud is secure in our work.

We assume that the edge nodes are untrusted. One of the

benefit of edge computing is that the edge nodes are often

deployed at the proximity of the users, and even owned by

the users (e.g., PC or routers). However, a major concern is

that average users and small organizations may have limited

IT operation techniques to maintain the machines. Thus,

these edge nodes may suffer internal failures and are easily

attacked by an external adversary, and data corruption often

happens. Therefore, the user cannot get the correct data even

the data in the cloud is intact.

For the auditor, which is often a cloud service, and we as-

sume that it is semi-honest, who is interested in getting users’

data, query pattern, and edge nodes’ strategies (i.e., which

part of data is pre-downloaded) so that it can pry the users’

sensitive information by analyzing the collected information.

Specifically, the auditor may try to require the subsets of

indexes (i.e., Sj) for performing the verification on edges,

because it seems to be an indispensable prerequisite to

know what the edges have stored before checking them.

However, in a edge-powered data storage application, which

pre-downloads the data based on the users’ queries, such

indexes may reveal users’ query patterns. Query pattern is

an essential type of sensitive information, and it may reveal

a user’s preference, locations, and other privacy in a certain

type of applications (e.g., video applications, location-based

information retrieval).

C. Design Goals

To ensure the security for edge-cloud system under the

aforementioned adversary model, we aim to design mecha-

nism for verifying data with the following goals:

• Edge storage correctness: ensuring that the edge nodes

cannot cheat to pass the audit.

• Public audibility: the user can require a TPA to verify the

integrity of data in the cloud and edges nodes.

• Privacy-preserving: when performing the integrity check-

ing, the TPA cannot get other private information (includ-

ing retrieved data, query patterns, and edges’ strategies)

from both the user and the edge.

• Efficient: allowing the TPA and the user to perform

verification with reasonable overheads.

III. INTEGRITY CHECKING IN EDGE COMPUTING

Our goal is to design a protocol that allows users to verify

data integrity on edge nodes without downloading the data

and knowing which part of data the edge nodes have pre-

downloaded. The proposed approach is based the provable

data possession (PDP) schemes [3], [6], [8] and private

information retrieval (PIR) techniques [9], [10]. Below we

first address the technical challenges in designing a integrity

checking protocol in edge computing. Then we describe the

Setup:

Verification:

User EdgeTPA

Figure 1. Information flow between User, Edge, and TPA.

details of the proposed protocol and the private tag retrieval

that we have adopted within it.

As we have mentioned, the data stored by the edges may

be tampered with or removed due to external attacks or

internal failures. Compared with the traditional cloud archi-

tecture, the difficult of solving the data integrity verification

problem in the edge architecture is twofold. On the one hand,

the computation and storage capacities of the end devices are

limited, and they many need third party auditors to store the

tags and assist in verifying the integrity. One the other hand,

if the integrity verification is performed by the third party

auditors, it seems inevitable to reveal which subset of data

that the edge node has pre-downloaded to the TPA.

A. ICE Protocol

Basically, in the proposed protocol, the user generates a

tag for each data block before storing it to the remote servers

(i.e., back-end cloud or edges), and these tags will be stored

by the TPA. Upon receiving a data integrity checking request

from the user, the TPA generates a challenge randomly

based on user’s public key and sends it to the edge. The

edge node is required to prove that the data is not tampered

or removed by computing a proof based on the received

challenge and the stored data. When receiving the proof ,

the TPA can verify the data integrity on the edge based on

the tags, the challenge, and the proof , and the verification

can be done in a privacy-preserving way by resorting to the

private tag retrieval scheme in Sec. III-B.

The interactions between User, Edge, and TPA in the

protocol are shown in Fig. 1. The protocol consists of 8 com-

ponents: KeyGen, TagGen, UserSetup, TPASetup, Index-
Query, ChallengeEdge, ProofEdge, and VerifyEdge.

KeyGen(1K) → (pk, sk). Given the parameter K , this

probabilistic algorithm generates a public key pk and a secret

key sk for the user. Let pk = (N, g), and sk = (p, q), where

N = pq is a publicly known RSA modulus; g is a generator,

which satisfies g = b2, where gcd(b ± 1, N) = 1; p and

q are two large primes, which satisfies that p = 2p′ + 1,

q = 2q′ + 1, and p′ and q′ are also primes.



TagGen(sk, pk, bi)→ Ti. Given pk, and the data block

bi, this operation generates a verification tag Ti for bi. The

tags will be stored by the TPA for performing integrity ver-

ification. Denote the set of tags by T = {T1,T2, . . . ,Tn}.
For each data block bi, the tag is computed as

Ti = (gbi) mod N.

UserSetup(n) → (γ, φ). Given the number of data

blocks n, this operation returns a parameter γ for private tag

retrieval from the TPA and an embedding φ of the n indexes

of data blocks into points in a Hamming space {0, 1}γ with

weight 3. In the proposed protocol, we set γ = ⌈(6n)1/3⌉+2
base on the private retrieval requirement [10].

TPASetup(n, T ) → (γ, φ,F). Given the n and the

generated tags T , this operation also returns γ and φ as

UserSetup. In addition, it returns a polynomial representa-

tion of the tags for private tag retrieval. The set of tags can

be represented by a bit matrix

T =




t1
...

tn


 =




t11 . . . t1K
...

. . .
...

tn1 . . . tnK


 ,

where ti = (ti1ti2 · · · tiK) is a bit vector that represents

tag Ti. Denoted by t′π = (t1π t2π · · · tnπ), for π =
1, 2, . . . ,K , and the set of polynomials is denoted by F =
{F1, F2, . . . , FK}. For each bit vector t′π, the constructed

polynomial is

Fπ(x0, x1, . . . , xγ−1) =

n∑

i=1

tiπ
∏

j:φ(i)[j]=1

xj . (1)

IndexQuery(edgej)→ Sj . Given the ID of the edgej ,

this operation returns a set of indexes Sj of data blocks that

have been pre-downloaded by edgej . In addition, the set of

data blocks that have been pre-downloaded is denoted by

Fj .

ChallengeEdge(pk) → chal. This operation generates

a challenge chal by the TPA for requesting an integrity proof

of Fj from the edge. The verifier generates a random key

e ∈ [1, 2K − 1] and a random element s ∈ Z
∗
N , and sends

challenge chal = (e, gs), where gs = gs mod N .

ProofEdge(Fj , chal, s̃) → P . The edge computes a

response to prove the integrity based on the challenge. It

first generates a sequence of coefficients for the subset of

blocks that it possesses based on the received random key

e, denoted by a1, a2, . . . , anj
, then computes

P = (gs)
∑nj

k=1 akmj,ks̃ mod N,

where s̃ is a random element in Z
∗
N , which is gener-

ated by the user and shared to the edge,and recall that

{mj,k}k=1,2,...,nj
are the data blocks on the edgej .

VerifyEdge(pk, T , chal, P, Sj) → {0, 1}. This process

consists of the following steps:

1) Based on the set of indexes Sj , the user get the corre-

sponding set of tags Tj from the TPA without revealing

the indexes in Sj . The details of the private tag retrieval

will be described in Sec. III-B.

2) For Tj,k ∈ Tj , the user calculates

T̃j,k = Ts̃
j,k mod N,

where s̃ is a random element in Z
∗
N . The user then sends

the regenerated set of tags T̃j = {T̃j,1, T̃j,2, . . . , T̃j,nj
}

to the TPA. If a data block mj,k is updated by the user

in the current session, the user replace the corresponding

regenerated tag by

T̃′
j,k = gm

′
j,ks̃ mod N,

where m′
j,k is the updated data block.

3) The TPA generates the coefficients a1, a2, . . . , ani
based

on the random key e, and each coefficient has a length

of d bits. Then it computes

R =

nj∏

k=1

(T̃ak

j,k mod N) mod N,

P̃ = Rs mod N.

And then the TPA checks whether P equals to P̃ . If

P = P̃ , return 1; otherwise, return 0.

B. Private Tag Retrieval

In the tag retrieval process, the privacy of users’ access

pattern should be protected, which means that the subset of

indexes cannot be revealed to the TPAs. A trivial approach

to achieve the goal is to retrieve all the tags and save

the desirable tags corresponding to the subset of indexes.

However, such an approach brings large communication

overheads, which makes the verification unpractical.

We find that the private tag retrieval is a kind of private

information retrieval (PIR), and there are two major lines of

studies having been done extensively in the previous works,

information-theoretic PIR (e.g., [9], [10]) and computational

PIR (e.g., [14], [15] ). The computational PIR may require

large computation overheads for users and auditors. We

adopt an geometric approach-based information-theoretic

PIR scheme [9], [10] to realize our design. The private tag

retrieval requires that there are two TPAs, which store the

tags of data blocks separately, and which will not collude

with each other. It is easy to realize for the real-world edge

computing systems. The verification is usually a kind of

cloud service, and the system only needs to rent two distinct

TPAs that are deployed at different clouds.

The overview of the scheme

Basically, based on the PIR scheme [9], the user first encodes

it its query to protect the actual indexes of tags that are

expected to retrieved; then the TPAs response to the received

user queries based on the stored tags (which are encoded by



polynomials); the user decodes the responses sent by the

TPAs and get the retrieved tags. Specifically, the private tag

retrieval consists of the following steps:

◮ Tag Query. The user encodes its query to protect the actual

indexes of tags that are expected to retrieved. Denote by

{Qτ}τ=0,1 is the query by the user. For each index of data

blocks, the user first generates a random element zl ∈ F
γ
4

uniformly, and then appends φ(jl) + tτzl (for τ = 0, 1) to

the query, where φ is the embedding in UserSetup of the

protocol.

◮ Tag Response. The TPAs response to the received user

queries based on the stored tags (which are represented by

polynomials). For query of each tag ql ∈ Qτ , the auditor

generates the response (vl,π,gl,π)π=1,2,...,K , where

vl,π ← eval(Mπ,ql);

gl,π ← (eval(M1
π ,ql) · · · eval(M

γ
π ,ql)),

where Mπ is a matrix representation of the polynomial

Fπ(x0, x1, . . . , xγ−1) that stores the π-th bits of all the

tags in the TPA. M1
π ,M

2
π , . . . ,M

γ
π are matrices represent

the partial derivatives of the polynomial, and eval is an

evaluation that performs query on corresponding matrix. The

details of matrix representation of the polynomials will be

described later.

◮ Tag Decoding. The user decodes the responses sent

by the TPAs and get the retrieved tags. For each queried

index of tag, the user computes the π-th bit of the tag by

corresponding value vτl,π (τ = 0, 1) and partial derivatives

gτ
l,π (τ = 0, 1) responded by TPAs. First of all, the user

computes a vector ul,π ← (v0l,π 〈g
0
l,π, zl〉 v

1
l,π 〈g

1
l,π, zl〉)

T,

where 〈·, ·〉 means the inner product of two vectors. And

then get the π-th bit of the tag by Tjl [π] ← (M−1ul,π)[0],
where M is a decoding matrix introduced by [10].

For more details, a formal description of the private tag

retrieval is shown in Alg. 1.

Matrix representation of the polynomials

When generating the responses, the TPAs calculate the

values and gradients of the stored polynomials based on

the received queries. We find that the TPAs needs execute

(1 + γ) × K × |Sj| times of function evaluation operation

and γ ×K × |Sj | times of partial differentiation operation,

and these operations are considered to be expensive. In our

design, we use matrices to represent the polynomials and

their partial derivatives. Specifically, polynomial

Fπ(x0, x1, . . . , xγ−1) =

n∑

i=1

tiπ
∏

j:φ(i)[j]=1

xj

is represented by matrix Mπ, which satisfies

Mπ[

i−1∑

v

tvπ] = φ(i), if tiπ = 1.

Algorithm 1: Privately fetching tags from TPAs

Input: Sj , γ, φ, F
Output: Tj

t0 ← 1; t1 ← 2;

User: tag query

Qτ ← List(), for τ = 0, 1;

foreach jl ∈ Sj do

Generating zl ∈ F
γ
4 uniformly;

Qτ .append(φ(jl) + tτzl), for τ = 0, 1;

Send(Qτ , Auditorτ ), for τ = 0, 1;
end

Auditor τ : tag response

Rτ ← List();
foreach ql ∈ Qτ do

rl ← List();
foreach π = 1 to K do

vl,π ← eval(Mπ,ql);
gl,π ← (eval(M1

π ,ql) · · · eval(M
γ
π ,ql));

rl.append(tuple(vl,π ,gl,π));
end

Rτ .append(rl);
end

Send(Rτ , User);

User: decoding

Tj ← List();
foreach jl ∈ Sj do

Tjl ← 0K ;

foreach π = 1 to K do
vτl,π,g

τ
l,π ← Rτ [l][π], for τ = 0, 1;

ul,π ← (v0l,π 〈g
0
l,π, zl〉 v

1
l,π 〈g

1
l,π, zl〉)

T;

Tjl [π]← (M−1ul,π)[0]
end

end

For a partial derivative of Fπ on xj , we adopt a matrix M j
π

to represent it. We initially set M j
π = Mπ and the matrix is

generated based on the following rule:

For each Mπ[i] :

{
Remove the row, if Mπ[i, π] = 0;

Set M j
π[i, π] = 0, otherwise,

where Mπ[·] means a row of it with corresponding index,

and Mπ[·, ·] an element in the matrix. We note that the

construction of the matrix representation can be done in the

pre-processing once the tags are generated, and the space

overheads of adopting the matrix representation is O(nK).

As shown in Alg. 1, the TPA computes the values and



gradients by the eval operation, which is defined by

eval(M, q) =

dim(M).r∑

i

γ∏

j,M [i,j]=1

M [i, j]q[j],

where dim(M).r is the number of rows in the matrix M .

IV. ICE: ANALYSIS

A. Correctness

Lemma 1: If the tags are correct, then the outputs of the

protocol are correct.

Proof: Our goal is to show that P = P̃ if the edge holds

the correct data blocks. Tags are generated by Ti = (gbi)
mod N, for bi ∈ F . Then, we have

R =

ni∏

k=1

(T̃ak

i,k mod N) mod N

=

ni∏

k=1

(Tak s̃
i,k mod N) mod N

=

ni∏

k=1

((gmi,k)ak s̃ mod N) mod N

Then,

P̃ = Rs mod N

=

ni∏

k=1

((gmi,k)ak s̃s mod N) mod N

= gss̃
∑nj

k=1 akmj,k mod N

= (gs)
s̃
∑nj

k=1 akmj,k mod N

Recall that the edge generates the proof as

P = (gs)
s̃
∑nj

k=1 akmj,k mod N

We have that P = P̃ , and this completes the proof.

Lemma 2: The tag retrieval process is correct.

Proof: The detailed construction can be found in [9],

[10], and here we provide a proof sketch for the sake of

completeness. To prove the tag retrieval process is correct,

we only need to prove that for each bit in the tags, the

retrieval is correct. Let gπ(t) = Fπ(φ(jl) + tzl), then we

have gπ(0) = Fπ(φ(jl)) = tjlπ. Because φ is a map

from indexes to a Hamming space with weight 3, Fπ is

a polynomial with degree 3, and therefore gπ(t) can be

represented as gπ(t) = c0 + c1t + c2t
2 + c3t

4. Thus, we

have g′π(t) = c1 + 2c2t+ c3t
2.

On the other hand, we have that gπ(t0) = v0l,π and

g′π(t0) = 〈g
0
l,π, zl〉, and similarly for gπ(t1) and g′π(t1). We

set t0 = 1 and t1 = 2, and then we have

ul,π = M(c0 c1 c2 c3)
T,

where ul,π = (v0l,π 〈g
0
l,π, zl〉 v

1
l,π 〈g

1
l,π, zl〉)

T and

M =




1 1 1 1
0 1 2 3
1 2 0 0
0 1 0 0


 .

Then, we have tjlπ = gπ(0) = c0 = M−1ul,π[0], and this

completes the proof.

Theorem 3: If the edge is honest, then it can pass the

checking successfully.

Proof: By Lem. 1 and Lem. 2, we immediately prove

the theorem.

B. Security and Privacy

Before proving the security of the proposed protocol, we

first review the definition of KEA1-r assumption [3], [16].

Definition 4 (KEA1-r (Knowledge of Exponent Assumption)):

For any adversary A taking input (N, g, gs) and returning

(C, Y ) with Y = Cs, there exists an extractor which given

the same inputs as A returns c such that C = gc.

Lemma 5 ( [17]): Denote the prime factorization of n by

pv11 · · · p
vt
t . Let g be any function such that 1) lcm(p1 −

1, · · · , pt − 1)|g(n); 2) |g(n)| = O(|n|k) for some constant

k. Then there exists a polynomial reduction from prime

factorization to g. The prime factorization of n is solved

with the cost of O(|n|k+4M(|n|)), where M(|n|) denotes

the cost of multiplying two integers of binary length |n|.
Theorem 6: The proposed protocol is secure against the

untrusted edge nodes under the KEA1-r and the large integer

factorization assumptions.

Proof: Due to the limit of space, we omit the details of

the proof here and leave them to the journal version.

Theorem 7: Under the semi-honest model, a third party

verifier cannot compute any information about the user’s

data from our protocol’s execution.

Proof: From our protocol, we can see that the verifier

has the input (N, g, r, s, {Ti}i∈[1,n]) and receives {T̃i}i∈S

from the user and P̃ from the edge. So we construct a

simulator S to imitate the verifier’s view.

• S randomly choose a subset S
′

of [1, n] such that

|S
′

| = |S|, and s̃
′

∈ ZN\{0}. Then S computes

T̃
′

i = T s̃
′

i , i ∈ S
′

.

• S choose (r1, s1) as in our protocol, sends (r1, g
s1) to

the edge and gets P̃
′

.

We get S’s view (N, g, r1, s1, {Ti}i∈[1,n], {T̃
′

i }i∈S′ , P̃
′

) and

the verifier’s view (N, g, r, s, {Ti}i∈[1,n], {T̃i}i∈S , P̃ ). We

can easily find these two distributions are identical.

Then, we show that the tag retrieval process is private in

terms of the query pattern.

Theorem 8: The auditor cannot infer which tag the user

queries by using Alg. 1.

Proof: For each jl ∈ Sj , zl is uniformly randomly

generated from F
γ
4 . Thus, we have φ(jl)+ tτzl is uniformly



distributed in F
γ
4 for any tτ 6= 0. Therefore, for any tag

query q = φ(·) + tτzl, for any indexes j, j′, we have

Pr[q|j] = Pr[q|j′].

Thus, the auditor cannot infer user’s queried index of tag

based on the user’s query.

C. Complexity

We analyze the computation and communication complex-

ity of the proposed protocol. The computation cost on the

user side is njTexp + Tprng +O(n1/3 + njK), where Texp

is the time of modular exponentiation over large numbers,

Tprng is the time of generating a pseudo-random number. For

the edge, the computation cost is nj(Tprng + Tadd) + Texp,

where Tadd is the time of addition over large numbers. The

computation cost is (nj + 1)(Tprng + Texp) + njTmul +
O(n5/3) on the TPA, where Tmul is the time of multiplica-

tion over large numbers. The communication cost is shown

in Tab. I, in which |N | is the bit length of module N .

Table I
COMMUNICATION COST (BITS)

from
to

User Edge TPA

User - O(1) nj |N |+ O(n1/3)
Edge - - O(1)

TPA O(njKn1/3) O(1) -

V. EXTENDED PROTOCOL FOR BATCH VERIFICATION

In the edge computing, an end device may get connected

with multiple edges at the same time, and there is a need

to verify data integrity on these edges at the same time.

A straightforward solution is to verify each edge node

separately by applying ICE-basic protocol. However, there

are two major issues for apply ICE-basic protocol in this

scenario: 1) the individual verification of these edges can be

tedious and inefficient for the TPA; 2) more importantly, if

the user uses the same secret in these individual verification,

the overlapping information of subsets that have been pre-

downloaded to the edges may be inferred by the TPA.

We extend the integrity checking for batch verification and

propose ICE-batch protocol. Our construction is also based

on HVT [3] and PIR [9], [10]. The protocol consists of 8

components, which is similar as the basic protocol. The first

5 components KeyGen, TagGen, UserSetup, TPASetup,

and IndexQuery are the same as the basic protocol, except

that in IndexQuery, the user query the data block indexes

of a set of edges, and get a set S = {S1, S2, . . . , SJ}. Then,

we describe other components of ICE-batch as follows:

ChallengeEdge(sk, pk) → C. This operation gener-

ates a set of challenges C = {chal1, chal2, . . . , chalJ} by

the TPA and the user for requesting integrity proofs of

F1, F2, . . . , FJ from the edges. The verifier generates a

random element s ∈ Z
∗
N , and the user generates a set of

random keys {e1, e2, . . . , eJ}, where ej ∈ [1, 2K − 1], for

j = 1, 2, . . . , J . They send each challenge chalj = (ej, gs)
to edgej , where gs = gs mod N .

ProofEdge(Fj , chalj) → P . Each edge also needs to

compute a response to prove the integrity based on the

challenge. It first generates a sequence of coefficients for

the subset of blocks that it possesses based on the received

random key ej , denoted by a
(j)
1 , a

(j)
2 , . . . , a

(j)
nj , then the edge

computes

Pj = (gs)
∑nj

k=1 a
(j)
k

mj,k mod N.

VerifyEdge(pk, T , C,P ,S)→ {0, 1}. This process con-

sists of the following steps:

• The user computes the union of sets in S, which is denoted

by U =
⋃J

j=1 Sj . Based on the set of indexes U , the

user gets the corresponding set of tags TU from the TPA

based on the private tag retrieval that we have proposed

in Sec. III-B.

• Based on each random key ej , the user generates the

coefficients a
(j)
1 , a

(j)
2 , . . . , a

(j)
ni . For k ∈ U , denote by

Λk = {edgek1
, edgek2

, . . . , edgek|Λk|
} the set of edges

that satisfy k ∈ Sj , and its the corresponding index in Sj

is τ(j). For tag TU,k ∈ TU , the user calculates

T̃U,k = T

∑|Λk|

λ=1 a
(kλ)

τ(j)

U,k .

And next, the user sends the regenerated set of tags T̃U =
{T̃U,1, T̃U,2, . . . , T̃U,|U|} to the TPA.

• The TPA computes

R =

|U|∏

k=1

(T̃U,k) mod N, P̃ = Rs mod N,

and P =
∏J

j=1 Pj mod N . Then it checks whether P =

P̃ . If true, return 1; otherwise, return 0.

Compared with the basic protocol, the major improvement

of the extended protocol is in the VerifyEdge phase. The

rationale behind the design is twofold. First of all, we have

observed that the same data block may be pre-downloaded

by multiple edges for the QoS awareness. However, when

performing the integrity verification, the overlaps between

data blocks on different edges brings unnecessary burdens

for the TPA. The extended protocol only considers the

union of indexes of these edges, and the TPA need not

have a knowledge of which blocks a certain edge has pre-

downloaded. The other idea of ICE-batch is that the com-

munication between edges and TPAs and communication

between users and TPAs are reduced at the cost of increasing

the communication between users and edges. Such a tradeoff

benefits from the architecture of edge computing, in which

the links between user and edges are faster, and those

connected to TPAs (which are usually deployed at remote

servers) are slower.



Below we present the correctness of ICE-batch. The

security and privacy analysis of the extended protocol is

similar to the basic protocol, and we omit it here.

Theorem 9: If the edges are honest, then they can pass

the checking successfully.

Proof: The proof is similar to Thm. 3, and our goal

is to show that P = P̃ if the edges hold the correct data

blocks. Due to the limit of space, we omit the details of the

proof here.

Table II
CONFIGURATIONS OF THE EXPERIMENT ENVIRONMENTS

Entity
Experiment environments

Device CPU RAM #thread

CSP Server
Intel Xeon E5-2650
@ 2.00GHz × 32

64GB Single

TPA Server
Intel Xeon E5-2650
@ 2.00GHz × 32

64GB Multiple

Edge Laptop
Intel Core i7-7500U

@ 2.70GHz × 4
8GB Single

User
RasPi

ARM A53 @
1.2GHz × 2

1GB Single

Laptop
Intel Core i5-5200U

@ 2.20GHz × 2
8GB Single

VI. EXPERIMENTS

A. Setup

There are four types of entities involved in the proposed

protocol: CSP, TPA, edges, and users. We have implemented

a prototype to evaluate the proposed protocols, and dif-

ferent entities are emulated by three types of machines

with different capabilities and configurations in our exper-

iments. Specifically, the CSP and TPA are deployed on Dell

PowerEdge E720 servers, the edge node is deployed on a

ThinkPad T470 laptop, and the users are deployed on two

types of end devices: Thinkpad T450s laptop and Raspberry

Pi 3 Model B development kit. More details of the the

experiment environments of these four types of entities are

shown in Tab. II.

In the experiments, all the codes are written in the Python

and the cryptographical operations are implemented by using

the PyCrypto library [18] and gmpy2 library [19]. We choose

the length of RSA module N to be 1,024 bits; the key size

of the pseudo-random function f to be 1,024 bits. We set

the size of data blocks ranging from 256KB (221 bits) to

1024KB (223 bits) in our experiments. All the results of

evaluation are average results over 100 runs.

B. Computation Cost on the TPA

We first present the experiment results of the computation

cost on the TPA. In the proposed protocol, the major com-

putation cost is contributed by the tag response and integrity

checking parts. In addition, we find that the execution time of

the protocol mainly depends on the size of the subset of the

data blocks that need to be checked and the total number of
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Figure 2. Computation cost on the TPA: Tag Response
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Figure 3. Computation cost on the TPA: Integrity Checking

data blocks in a file. In this set of experiments, we evaluate

the tag response time and integrity checking time by varying

the size of Sj and the number of data blocks, respectively.

Fig. 2 shows the computation cost of the tag response on

the TPA. We compare our protocol with a micro benchmark,

which is a tag response process without the matrix represen-

tation of the polynomials. We can find that the proposed

matrix representation can significantly reduce the computa-

tion cost in the tag response process. Fig. 2a shows that the

computation time increases with the size of Sj increasing,

and due to the adoption of multi-thread optimization on the

TPA, the time does not increase linearly. In our protocol,

the time is about 1 to 3 seconds for the cases where the

size of Sj ranging from 1 to 10. We can also find that the

computation time increases with the number of data blocks

in Fig. 2b.

Fig. 3 shows the integrity checking time on the TPA,

which mainly consists of two parts: 1) the TPA generates

a challenge for the edge; 2) the TPA verifies the proof gen-

erated by the edge. We can find that the time of challenging

the edge varies very little, and the time of verifying the proof

increases with the size of Sj . The protocol is very efficient

for the integrity checking, and the time is no more than 0.05

seconds (50ms) in our experiments.

We also evaluate the effect of the number of users on the

TPA’s performance. From Fig. 4a, we can observe that, the

computation time increases slowly with the number of users

increasing. An interesting finding is that the fluctuation of

the time gets larger with there are more users, and there is
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Figure 4. Computation cost on the TPA: multi-user scenario
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Figure 5. Computation cost on the end-user devices

a long tail of the time distribution when the number of user

is large (as shown in Fig. 4b). The phenomenon may be

caused by the parallel optimization, and we suppose it can

be mitigated by a multi-user-aware design, which might be

an interesting direction of the future works.

C. Computation Cost on the End Devices

The experiments are conducted on two types of devices:

laptop and Raspberry Pi. Fig. 5a and Fig. 5b show the

results with varying the size of Sj and the number of blocks,

respectively.

We can find that the time increases with the size of Sj

and varies very little with the number of data blocks. For the

laptop, the protocol is very efficient. The tag query process

takes at most 0.26 seconds, and the verification process

takes about 0.10 seconds when the size Sj is less than 10.

Therefore, the total computation cost on the user side is less

than 0.40 seconds on the laptops in our experiments.

For the Raspberry Pi, which has much lower computation

capability, the tag query process takes from 0.17 to 1.53

seconds when the size of Sj varies from 1 to 10 for encoding

the tag queries and decoding the tag responses. It takes

from 0.01 to 0.11 seconds with varying the size of Sj for

verification. In total, the computation cost is at most 1.63

seconds on the Raspberry Pi devices when the size of Sj is

less than 10.

D. Computation Cost on Edges

The major computation cost on the edge node is con-

tributed by the process of generating proofs that show it

1 2 3 4 5 6 7 8 9 10

Size of Sj

0

1

2

3

4

5

T
im

e
 (

s
)

256KB-Blocks

512KB-Blocks

1024KB-Blocks

Figure 6. Computational cost on the edges

holds the correct data. By the analysis, we suppose that

the execution time mainly depends on the size of Sj and

the size of each data block. In the experiments, we vary

the size of Sj from 1 to 10, and evaluate the computation

cost on data blocks with 256KB, 512KB, and 1024KB,

respectively. In Fig. 6, we can find that the computation

time varies very little with the change of Sj’s size. We

think the reason is that the costs of the modular addition and

modular multiplication are negligible to the cost of modular

exponentiation operations, and when generating a proof,

only one modular exponentiation operation is performed,

regardless the size of Sj .

Another observation is that the computation cost increases

with the increase of data block size. For 256KB blocks,

the computation time varies from 0.74 to 0.76 seconds;

for 512KB blocks, the edge takes about 2x time, varying

from 1.43 to 1.45 seconds; and for 1024KB blocks, the

computation time varies from 2.91 to 2.96 seconds (about

4x comparing with the 256KB blocks). Roughly, the compu-

tation time increases linearly with the size of data blocks.

E. Evaluation on the Extended Protocol

We want to find out to what degree the extended protocol

reduces the computation cost on both TPAs and end devices.

In this set of experiments, we set n = 100 and assume that

each edge pre-downloads 3 data blocks from a set of 10 data

blocks. In Fig. 7, we can find that the computation time on

the TPA and the Raspberry Pi increases moderately with the

number of edges increasing.

We also adopt the ratio
time(ICE-batch)

time(ICE-basic)×|S| to evaluate the

protocol, where |S| is the number of edges, and obviously

time(ICE-basic)×|S| is the time that ICE-basic performs

verification on S. We can observe that the ratio (red line

in Fig. 7) decreases with the number of edges increasing,

because the overlapping data blocks get more when there

more edges pre-download from a certain set of data blocks.

Fig. 8 also shows the communication cost of the extended

protocol, in which we can see a similar decrease of ratio.

F. Preprocess Time

Tab. III shows the time for setting up the protocol. The

preprocess on the end device side consists of three parts: key
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Figure 8. Communication cost of the extended protocol.

generation, tag generation, and setup of the tag query. We

can find that the key generation time is about 3.10 and 0.03

seconds for the Raspberry Pi and laptop, respectively. The

time of generating tags ranges from 0.38 to 3.82 seconds

for the Raspberry Pi in our experiments, and the laptop is

about 15x faster than it. In our experiments, we find that the

time of setting up the tag query is less than 10−3 seconds for

these two types of end devices, which is negligible to others.

For the TPAs, the major preprocess is for the tag response

process, which costs less than 3 seconds when n ≤ 200.

VII. RELATED WORKS

A. Mobile Edge Computing

Mobile edge computing and similar concepts,e.g., fog

computing [20], cloudlet [20], have drawn many attentions

in the recent years. A bunch of surveys or position papers,

e.g., [21], [22] , have pointed out that edge computing is

a promising technology that can dramatically facilitate the

internet of things (IoT) and mobile cloud computing (MCC).

Previous works on the mobile edge computing mainly focus

Table III
PREPROCESS TIME (S)

n 40 80 120 160 200

User
RasPi

KeyGen 3.10
TagGen 0.76 1.53 2.30 3.06 3.82

User
Laptop

KeyGen 0.03
TagGen 0.05 0.10 0.16 0.20 0.26

TPA TPASetup 1.25 1.59 1.86 2.08 2.32

on the architecture design of the mobile edge computing

(e.g., [23], [24]), the applications on it (e.g., [25], [26]), and

the resource configuration for it (e.g., [27]–[29]).

Recently, the security problems in the mobile edge com-

puting have also drawn some attention, e.g., [30], [31].

In [31], Bhardwaj et al. present a scheme for protecting

the integrity of programs on the edges by adopting trusted

execution environments.

B. Integrity Verification

Integrity is one of the most important properties for data

security. The most related works of our paper is the integrity

verification of remote stored data, which has drawn much

attention in the last decade with the rapid development and

popularization of cloud technology.

The problem of checking integrity of remote data is

first introduced by in [32], which proposes a RSA-based

method for this problem. Proof of retrievability (POR) [2]

and provable data possession (PDP) [3] are two most famous

definitions of remote data integrity checking. Based on

these two definitions, lots of works have been conducted

for remote data integrity checking with various features,

e.g., data dynamics [7], [33], public verifiability [6], [7],

and privacy preservation [6], [7], [34]. Previous works on

remote data integrity checking may not apply well for mobile

edge computing, because the architecture has significantly

changed and a new type of entities, i.e., edge, is intro-

duced to the system. In this work, we address the data

integrity checking problem in the mobile edge computing,

and propose practical solutions for it based on the concept

of PDP [3], [6].

VIII. CONCLUDING REMARKS

In this paper, we study the data integrity verification

problem in mobile edge computing. We have proposed two

protocols, which are suitable for the cases where the users

want to verify the data integrity on a single edge or multiple

edges, respectively. The proposed protocols are rigorously

proved to be correct, secure against the untrusted edges, and

privacy-preserving against the their-party auditors. A proof-

of-the-concept system is implemented for evaluating the

protocols, and experimental results show that the proposed

protocols are efficient.
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