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Abstract—Location-based services have significantly affected
mobile users’ everyday life, and location privacy is also an
essential issue in these services. In some applications (e.g.,
location-based recommendation, mobility analytic), the raw data
is not required, and the service providers adopt aggregation to
protect users’ location traces. However, some works show that
even these aggregation data may disclose users’ location privacy
when other prior knowledge is available to an adversary. We
consider the location privacy problem in the presence of Location
Uniqueness, which is a property that some geographical locations
can be re-identified based on the aggregated point-of-interest
(POI) information. We first study whether previous protection
mechanisms are effective for defending against this novel type
of attack. Then we present two practical attacks for inferring
users’ actual locations based on the POI aggregates. Furthermore,
we propose a secure POI aggregate release mechanism that can
defend against this type of re-identification attack and achieve
differential privacy at the same time. We conduct extensive exper-
iments on real-world datasets. The results show that the existing
protection mechanisms cannot provide sufficient protection. The
proposed enhanced attacks can significantly improve the inference
performance, and the proposed protection mechanism achieves
satisfactory performance.

Keywords—Location privacy, POI aggregate, location unique-
ness, location re-identification

I. INTRODUCTION

Nowadays, our life has been flooded by Location-based
Services (LBSs), and location privacy has also been extensively
studied in the past dozen years. Some LBSs do not require
users’ geographic locations but only leverage the knowledge
of Points-of-Interest (POIs) near a user, e.g., recommendation
and advertising. These systems only require the aggregation
information of the POIs near a user, instead of the geographic
locations of these POIs or the user’s actual location, which
seems privacy-friendly for users’ locations in the view of
previous location privacy studies that aim to protect users’
geographic locations directly.

However, a recent study shows that only providing the
types of POIs near a user in a city may also reveal the
user’s actual location[1]. They propose a notion of location
uniqueness, which implies that many locations in a city are
unique regarding the combinations of POIs around them. Based
on the property of location uniqueness, they find that users’
geographic locations can be inferred based on the nearby POIs
regarding the distribution of their types and successfully show
that many locations in a city have the property of location
uniqueness. Their work reveals this vital phenomenon and
shows that the property of location uniqueness can significantly

affect users’ location privacy. Nevertheless, there is still a gap
that we need to mind to perform a practical attack based on
the property of location uniqueness. Furthermore, protecting
location privacy when publishing aggregate POI data in the
presence of location uniqueness is also an urgent problem that
has not been well studied.

In this paper, we study the practical attacks and defense
for location privacy in the presence of location uniqueness.
Specifically, we first consider the scenario in which the users
may initiate multiple successive LBS requests and extend the
concept of location uniqueness to trajectory uniqueness in this
context. Then, we try to design a practical attack that can
significantly improve the precision of the inferred locations
compared with the existing re-identification attacks. We want to
explore whether we can construct fine-grained attacks on users’
locations by exploiting the property of location uniqueness.
Our goal is to re-identify users’ locations into significantly
smaller areas, which allows the attacker to locate the target user
practically in the real world. Furthermore, based on the studies
of the practical attacks, we also investigate how to protect users’
location privacy in the presence of location uniqueness without
much sacrificing the performance of POI-based services.

We advance the location inference attack from three aspects:
1) we develop a re-identification attack which can infer users’
location when they initiate multiple successive LBS requests
and find that the success rate of the re-identification can
be significantly improved when users continuously use the
services by leveraging the knowledge of trajectory uniqueness;
2) we propose an iterative positioning scheme for location
re-identification, which can significantly shrink the area where
the users are in; 3) we also show that the POIs with some
certain types have the property of uniqueness as well, and
we resort to machine learning methods to learn these POIs
even though they have been sanitized in the results for privacy-
preserving consideration. This observation also reveals that
some straightforward ways, e.g., merely sanitizing the POI
frequency list, may not be able to protect the location privacy
effectively.

An experimental study has been conducted to investigate
whether previous methods like geo-indistinguishability, spatial
k-cloaking, and sanitization can successfully protect the location
privacy of aggregated POI data in the presence of location
uniqueness attacks. The study is performed on the datasets of
two representative metropolises: New York City and Beijing.
Our results show that these methods can hardly mitigate the
re-identification attacks or could be easily broken by more
advanced attack techniques.
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To protect the location privacy in the presence of location
uniqueness, we employ the notion of differential privacy and
have designed an optimization-based POI type distribution
publishing mechanism that can protect the location privacy
under differentially private guarantee and significantly defend
against the location re-identification attacks.

The contributions of this paper can be summarized as:

• First, we revisit the concept of location uniqueness
and have conducted experimental studies to evaluate
the existing protection mechanisms (sanitization, geo-
indistinguishability, and spatial k-cloaking) against
the existing location re-identification attack. For the
sanitization method, we also show that the learning-
based model can easily break the protection.

• Second, we present two practical variants of the
location re-identification attack. We advance the exist-
ing location re-identification attack from two aspects:
extending it to a more general case where users
may initiate multiple successive LBS requests and
significantly improving the success rate of the attacks
by leveraging the information of subsequent queries,
being able to locate a specific user in a more precise
area.

• Third, we have proposed a differentially private defense
mechanism for releasing the POI type frequency
vectors, which provides a provable privacy guarantee
of the location privacy and satisfactory performance
in defending against the re-identification attack.

• Fourth, extensive evaluation has been conducted
on real-world data traces, which are extracted for
the publicly available geo-information service Open-
StreetMap [2], T-drive dataset [3], and Foursquare
dataset [4]. The results show that the proposed practical
attacks provide better attack performance. The results
also show that our proposed differentially private
mechanism can effectively defend the re-identification
attacks with a reasonable cost of utility.

The rest of this paper is organized as follows. The next
section presents the preliminaries, and we evaluate the existing
defense mechanisms in Section III. Then present our practical
variants of location re-identification attack in Section IV
and present our differentially private POI aggregate release
mechanism in Section V. The evaluation of the proposed attacks
and defense is presented in Section VI. In Section VII, we
review the related works, and we conclude this paper in Section
VIII.

II. PRELIMINARIES

A. Location Re-identification based on POI type aggregates

We consider a typical LBS architecture in which there
are three types of entities: mobile users, the geo-information
service provider (GSP), and LBS applications. A mobile user
reports its geographic location to the geo-information service
provider and gets the geographic information (e.g., POIs, road
networks), then it sends the geographic information to the LBS
application service providers and enjoys the LBS services. The
geo-information service provider stores the geographic data and

shares it with the mobile users and LBS applications via a set
of query interfaces. The LBS applications provide LBS services
and perform various analytic based on the user-location-based
geographic data.

Same as many previous works[5], we assume that the LBS
applications cannot access mobile users’ geographic locations
directly. Instead, when a mobile user wants to use the LBS
applications, it sends its location to the geo-information service
provider and gets the geographic data, and then reports the
geographic data aggregates to the LBS applications (e.g.,
POI-based services). Furthermore, we assume that the geo-
information service provider only provides one query interface:
retrieving the POIs within a specific range of a location. The
LBS architecture adopted in this paper is illustrated in Fig. 1.
Note that the POI aggregates may be generated by the users
or the GSP and sent to the LBS applications.

GSPGSP

LBS AppLBS AppUserUser

POIs

LocationLocation

3
2
4

POI aggregates

3
2
4

POI aggregates

3
2
4

POI aggregates

3
2
4

POI aggregates

Figure 1: POI-based LBS architecture

Formally, the user reports its location l and a given query
range r to a GSP; then the GSP generates the set of POIs in
the queried range, denoted by Pl,r, and return it to the user.
This process can be achieved by the operation:

Pl,r ← Query(l, r).

In the context of POI type aggregates, the user or GSP do
not directly reveal the actual location l or set of POIs Pl,r to
the LBS application service provider. Instead, the POI type
distribution Fl,r = (n1, n2, . . . , nM ) is aggregated by users
and released to the POI-based services (e.g., recommendation),
where ni is the frequency of POI type ti in the result, M is
the number of different types of POIs in the city. The POI type
distribution can be generated by operation:

Fl,r ← Freq(l, r).

As it has been stated in [1], the location re-identification
problem is to re-identify the location l based on the distribution
Fl,r. What makes this possible is the property of location
uniqueness in the city [1]: given the query range, a location
could be re-identified because it has a unique combination
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of POIs compared to other locations in a city. Formally, the
re-identification can be formulated as:

Φ(l) ← Infer(Fl,r,P), (1)

where P is the prior knowledge of an adversary, Φ(l) =
{φ1(l), φ2(l), . . . , φ|Φ|(l)} is a set of re-identified areas where
location l could be in.

B. Threat Model

We assume that the adversary is semi-honest, which means it
is interested in inferring users’ locations based on the informed
information but does not deviate from the protocol specification.

Abilities. The adversary could be a third-party entity that uses
the POI type aggregates involved in the POI-based services. We
assume that the adversary can access a set of prior knowledge
P , which includes public geo-information of a city and the
operation Freq to get POI type frequency of any location with
required query range. Such prior knowledge can be obtained
from some publicly available geo-information service providers,
e.g., OpenStreetMap [2]. Besides, same to [1], we also assume
that the adversary can obtain: 1) the user’s identification
corresponding to the reported Fl,r, which make it possible for
the adversary to link the re-identified location to a particular
user; 2) user’s query range r. These two types of information
are essential information for any location-based services and
are usually included in the meta-data with queries.

Goals. The adversary tries to re-identify a user’s location based
on Fl,r and the prior knowledge by implementing an inference
mentioned in (1). Ideally, |Φ| should be 1, and the size of the
only element φ∗(l) in the set should be as small as possible.
Particularly, same to [1], we define the case where |Φ| = 1
as a successful attack, and |Φ| �= 1 means that the attack
fails. Therefore, we adopt two metrics to evaluate the inference
method Infer: 1) success rate of attacks, which equals to the
ratio between the number of successful attacks to the number
of all attacks; 2) when an attack is successful, the area of φ∗(l)
is used to measure the precision of the inference.

C. Privacy Model

Differential privacy (DP) has become an very important
standard for data privacy protection in recent years. For the
sake of completeness, below we first review the definition of
DP [6].

Definition 1: A randomized mechanism M : X d → Y is
(ε, δ)-differentially private if and only if any two neighboring
datasets D1, D2 ∈ X d, and all S ⊂ Y ,

Pr[M(D1) ∈ S] ≤ exp(ε) Pr[M(D2) ∈ S] + δ, (2)

where ε and δ are privacy parameters.

Then, we review the Gaussian mechanism, which we will
adopt as a component in our private defense mechanism.

Definition 2: Guassian mechanism adds a noise N (0, σ2)
to f(D), where f is a function with sensitivity Δ. If

σ ≥
√

2 ln(1.25/δ)Δ/ε, (3)

then, the mechanism achieves (ε, δ)-differential privacy.

Lemma 3 (Post-processing[6]): Let M : X d → Y be a
randomized mechanism satisfying (ε, δ)-differential privacy.
Let A : Y → Y ′ be an arbitrary deterministic or randomized
mechanism. If M′ : X d → Y ′ is sequential apply of M and
A, then M′ is (ε, δ)-differentially private.

D. Region Re-identification

For the sake of completeness, we review the location re-
identification method in [1] in this part. Specifically, the attack
runs by the following steps:

1 Counting the overall POI frequency in the entire city,
denoted by F ;

2 Sorting Fl,r by F , and denoted by tl the most
infrequent POI type in F which satisfies nl > 0;

3 Finding all POIs with type tl in the city, and denoted
by Ptl the resulted set of POIs;

4 Pruning the set of locations Ptl with following rule:

◦ For each ptl ∈ Ptl , get

Fptl
,2r ← Freq(ptl , 2r);

◦ For i = 1, 2, . . . ,M , if exist any i such
that Fptl

,2r[i] < Fl,r[i], remove ptl from the
candidate set Ptl .

5 After the above pruning process, if there is only
remaining one location p∗tl in the set Ptl , the location
l has the property of uniqueness. The adversary can
infer that location l is in the range of p∗tl with radius
r.

Their method is based on the property that the circle that is
centered at l with radius r is completed covered by the circle
centered at ptl with radius 2r if ptl is a POI in the distance r of
location l. By using this method, the adversary can re-identify
a location by POI type distribution with no false negative, but
the success rate is affected due to the gap between Fptl

,2r and
Fl,r. Also, the adversary can only determine that location l is
in the range with distance r of p∗tl , which means the size of
φ∗(l) is πr2, which seems to be an infeasible range for attacks
on location privacy. For convenience, we refer to this attack as
region re-identification or Cao et al.’s attack in the following
parts of this paper.

E. POI Datasets

The POI datasets are extracted from a publicly available geo-
information service, OpenStreetMap [2]. We choose New York
City and Beijing as the targets of our analysis. Beijing dataset
contains 10,249 POIs with 177 different types; New York City
(NYC) dataset contains 30,056 POIs with 272 different types.

III. EVALUATING THE EXISTING PROTECTION AGAINST

REGION RE-IDENTIFICAITON

We now measure the region re-identification attack
against three protection mechanisms: sanitization and geo-
indistinguishability, and spatial k-cloaking.
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Figure 2: The accuracy of prediction models.
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Figure 3: Performance of the sanitization.

A. Sanitization

A straightforward solution that seems can be applied to
protect location privacy in the presence of location uniqueness is
to sanitize the frequencies of the POI types, especially for those
infrequent POI types. Below we describe a sanitization strategy
for the protection, which removes the information of frequencies
of POI types that are infrequent in the city. Our results show
that the aggressive sanitization strategy can significantly reduce
the success rate of the region re-identification attack in some
cases, but we propose a learning-based inference method to
show that the defense can be easily compromised.

Defense strategy. Based on the overall POI frequency in the
entire city, F , the sanitizer chooses a set of POI types TS which
satisfies that any POI type ti ∈ TS , F [i] <= S. When trying to
report the POI type distribution Fl,r of the location l in range
r, the user sets Fl,r[i] = 0 if ti ∈ TS . When implementing the
strategy, we adopt a very aggressive sanitization behavior, i.e.,
sanitizing 138 (90, resp.) POI types whose frequencies are no
more than 10 in New York City (Beijing, resp.).

Prediction against sanitization. We assume that the adversary
knows whether a specific POI type is sanitized or not sanitized.
For example, the attacker may collect the historically reported
frequencies for inferring such information. For each sanitized
POI type tS , we train a prediction model based on the reported
frequencies of POI types. Formally, the prediction model is
formulated as

Pred(x−S) → nS .

where x−S = (n1n2 . . . n|T−S |) is the feature vector of
prediction sample, in which ni is the corresponding frequency
of POI type ti. We should clarify that ti is a type in the set

T−S , which is the set of POI types that are not sanitized; nS

is the target of the prediction model, which is the frequency
of sanitized POI type tS .

We adopt the support vector machine (SVM) classifica-
tion [7] with radial basis function (RBF) kernel as an installation
of the prediction model. Our experiments are implemented by
using Scikit-learn machine learning package [8]. In the training
process, random locations are generated in the corresponding
city, and by adopting Freq operation, the POI type distributions
are generated from these locations. We compose a training
dataset with 10,000 samples and a validation dataset with
2,000 samples for training based on the generated POI type
distributions. All samples in the prediction model are normal-
ized by being centered to mean and scaled with unit standard
deviation.

Results. Fig. 2 shows the classifiers’ performance for different
query range (r). In this set of experiments, we evaluate the
defense strategy with user locations that are randomly generated
in corresponding cities. We can observe that for both Beijing
and New York City, in the cases of typical query ranges
with 0.5km, 1.0km, 2.0km, and 4.0km, the average validation
accuracy of trained classifiers for all targets is larger than
95%. Specifically, for the Beijing, the means of accuracies
are 0.998 (±0.002), 0.996 (±0.004), 0.995 (0.005), and 0.991
(±0.010) for the above four query ranges, respectively. For
New York City, the means of accuracies are 0.998 (±0.002),
0.996 (±0.003), 0.995 (0.005), and 0.990 (±0.008) for the
above four query ranges, respectively.

Fig. 3 shows that the sanitization can mitigate a major
part of the attacks, and reduces the success rate from 0.184,
0.306, 0.440, and 0.642 to 0.126, 0.153, 0.126, and 0.016,
respectively. For New York City, the success rates decrease
from 0.192, 0.333, 0.501, and 0.678 to less than 0.2 for four
cases, respectively, when the defense is applied. However, we
observe that the prediction models can recover the sanitized
types, and achieve an almost success rate compared with the
original attacks without protection.

B. Geo-indistinguishability

Geo-indistinguishability [9] is a variant of differential
privacy, which provides provable guarantees of location privacy.
Its main idea is to bound the difference between distributions
of observations that are produced by two close locations by
probabilistic perturbation. Formally, a mechanism M is geo-
indistinguishable if and only if for any l, l′ which satisfy
dist(l, l′) ≤ R:

| ln M(l)

M(l′)
| ≤ εR. (4)

Planar Laplacian [9] is a canonical way to achieve geo-
indistinguishability, which runs in the following way: given
user’s location l and the privacy parameter ε, for any other
location l′ in the considered area, the mechanism chooses l′
as the reported location by the following probability:

Mε(l)(l
′) =

ε2

2π
expε×dist(l,l′) . (5)

Results. In this set of experiments, we evaluate the defense
strategy with four datasets:(a) T-drive [3] user locations in
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Figure 4: Performance of Planar Laplacian

Beijing; (b) randomly generated user locations in Beijing; (c)
Foursquare check-ins [4] in NYC; (d) randomly generated
user locations in NYC. In our experiments, we also note that
the unit of distance is set to 100 meters, which will affect
the privacy level and the utility of the perturbation given the
specific privacy parameter. For each dataset, 1000 locations are
randomly selected for the experiments.

Fig. 4 shows the performance of Planar Laplacian for
defending against location re-identification. We can find that
when the privacy budget is larger (e.g., ε = 1.0), the mechanism
can barely mitigate the inference attack. When we set ε =
0.1 and r = 0.5, 1.0, 2.0, and 4.0, respectively, the Planar
Laplacian can mitigates about 81.01%, 42.30%, 18.34%, and
12.00% of attacks for T-drive dataset in Beijing, about 75.00%,
43.28%, 24.65%, and 12.15% for random locations in Beijing,
about 80.53%, 33.89%, 19.38%, and 10.96% for Foursquare
dataset in NYC, and about 81.48%, 46.64%, 20.29%, and 9.48%
for random locations in NYC. The defense can mitigate most of
the attacks when the query range is small, but the performance
is limited when the query range is large.

C. Spatial k-cloaking

Spatial k-cloaking is a type of location privacy protection
mechanism, which aims to hide a location into a larger area
containing the requester and at least k-1 other users. In our
evaluation, we have adopted the adaptive-interval cloaking
algorithm [10] as the protection scheme. For the sake of
completeness, we briefly review the adaptive-interval cloaking
algorithm below:

1 The algorithm first sets the whole city area as the initial
current area for cloaking.

2 It partitions the current area into four non-overlapping
sub-regions with equal size, and test whether the sub-
region which contains the targeted location satisfies the
k-anonymous property, i.e., there are at least k users
in this sub-region.

3 If the sub-region satisfies the k-anonymous property, it
repeats 2 and 3 ; otherwise, it chooses the generated
region in the last iteration as the cloaking area.

Results. In this set of experiments, we evaluate the defense
strategy with four datasets that are the same as we have adopted
in the Section III-B. We assume that there are 10,000 users who

are uniformly distributed all over the city for each city. Fig. 5
shows the performance of spatial k-cloaking for defending
against location re-identification. We can find that the success
rate decreases with k increasing, but its performance is still
not satisfactory when k is sufficiently large (e.g., k = 50).

D. Takeaways

We have the following three major observations from the
above experiments study:

• Location-level protection (e.g., Geo-indistinguishability,
Spatial k-cloaking) achieves better performance when
the query range is small. From Fig. 4 and Fig. 5, we
can find that when the query range is small, both the
Geo-indistinguishability and the Spatial k-cloaking can
reduce the success rate of the attacks more significantly
compared with the cases where the query ranges are
larger.

• Frequency-level protection (e.g., sanitization) can pro-
vide better protection when the query range is large.
From Fig. 3, we can find that the sanitization can
significantly reduce the success rate when the query
range is large. Unfortunately, it cannot provide suffi-
cient protection when the query range is low or more
powerful attacks exist.

• The attack could be more powerful when the user
traces in real-world applications. From these three sets
of experimental studies, we can observe that the re-
identification attack can achieve higher success rates
for the real-world data traces.

IV. UNDERSTANDING THE LOCATION UNIQUENESS VIA

PRACTICAL ATTACKS

An important direction for location privacy research has
been pointed out by Cao et al.’s work [1] by introducing the
concept of location uniqueness. They also provide a feasible
method for re-identifying regions that may contain the target
user based on POI type distribution. However, as we have
mentioned above, their approach is mainly used for exploring
the existence of location uniqueness, and an adversary who is
interested in users’ location privacy may need more powerful
tools for launching the attacks.

For the practical attacks, we identify two major goals:
1) the re-identified location should be more precise, which
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Figure 5: Performance of spatial k-cloaking.

means the adversary can determine the user’s location in a
sufficiently small area; 2) the success rate should be further
improved, which means the adversary has a high probability to
determine the user’s location in only one area successfully. In
this section, we introduce two practical variants of the region
re-identification based on POI type distribution to pursue the
above two goals, respectively.

A. Fine-grained Attack

After applying the Cao et al.’s attack, an adversary can re-
identify those locations with the property of location uniqueness
and narrow each successfully re-identified location in a circle
with radius r, but cannot determine where the locations exactly
are. We find that the basic re-identification method uses the
relationship between Fl,r (i.e., POI type distribution around
actual location l with radius r) and Fptl

,2r (i.e., POI type
distribution around found POI ptl with radius 2r) to prune the
candidate set of re-identified POIs. Their method only uses
the POI type distribution information of POIs with the most
infrequent type. Nevertheless, we find that other POIs with
other types can also be exploited to locate the user.

The basic idea of the proposed fine-grained inference
method is to shrinkage the area the user is in by iteratively
applying the candidate pruning strategy for other types of POIs,
and find POIs in Pl∗q ,2r that are also in Pl,r. After finding these
POIs, the adversary can further locate l because l is definitely
within r of the selected POIs. Specifically, we present the
following scheme to find a significantly smaller area l should
be in, which consists of three steps:

• The first step is to re-identify the location l by Cao et
al.’s region re-identification method, which can infer
that location l is in the range of p∗tl with radius r. We
refer to the found POI p∗tl as the major anchor for the
location inference.

• Once the anchor POI p∗tl is found, we can further
improve the accuracy of the re-identification of location
l by leveraging other types of POIs in the surrounding
area. Though the queried POIs Pl,r based on location
l are unknown to the attacker, it can obtain the set of
POIs Pp∗

tl
,2r, which is a superset of Pl,r. Based on this

knowledge, the attacker can carefully filter the points
in Pp∗

tl
,2r, and find some auxiliary anchors to position

the location l. An algorithm to find these auxiliary
anchors is presented in Algorithm 1.

• After generating the set of auxiliary anchors, which
are all in the range of r of the location l, and thus the
location l can be positioned into a very fine-grained
area by computing the feasible area that satisfied the
requirements of these anchors.

Algorithm 1: Iteratively Shrink the Region.

Input: Fl,r: the frequency vector of POI types;
tl: most infrequent POI type;
p∗tl : correponding POI for re-identifying l;
MAXaux: maximum size of set of anchors.

Output: Aux: set of POI for positioning l
Aux ← ∅;
Pl∗q ,2r ← Query(l∗q , 2r);
Fl∗q ,2r ← Freq(l∗q , 2r);
Fdiff ← Fl∗q ,2r − Fl,r;
Sort Fdiff based on the corresponding frequencies of
POI types.

foreach ti ∈ Fdiff do
if Fdiff [ti] = 0 then

Aux ← Aux ∪ {p ∈ Pl∗q ,2r|p.type = ti}
else

foreach p ∈ Pl∗q ,2r and p.type = ti do
flag ← True;
Fp,2r ← Freq(p, 2r);
foreach tp, vp ∈ P (p, 2r) do

if vp < p(l, r)[tp] then
flag ← False;

if flag then
Aux ← Aux ∪ {p}

if |Aux| >= MAXaux then
break;

In Algorithm 1, we first compute the difference between
POI type distributions of the actual location and major anchor
and get a differential vector Fdiff . The algorithm traverses all
types of POI based on the sorted type in Fdiff . This operation is
adopted to speed up the iterative shrinkage process because the
algorithm can first consider the types that need fewer efforts
to prune the POIs. For example, if for a type ti such that
Fdiff [i] = 0, then all POIs with type ti in Pl∗q ,2r are in Pl,r.
Therefore, we can directly use these POIs with type ti to shrink
the target area without additional efforts.
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B. Attack with Trajectory Uniqueness

When users are using location-based services, they often
query the service multiple times. Several successive queries
may further reveal users’ location based on the inference on the
aggregated POI frequencies. We call this property as trajectory
uniqueness and demonstrate that it can be leveraged for location
re-identification with a better success rate.

For the cases that the adversary can leverage multiple
releases of POI type frequencies, the location re-identification
problem is extended to the following form:

{Φ(l1),Φ(l2), . . .} ← Infer({Fl1,r, Fl2,r, . . .},P). (6)

By repeatedly applying the single location version of re-
identification attack, the adversary can get a series of inference
candidates: {Φ̂(l1), Φ̂(l2), . . .}. Our goal is to figure out which
subset contains the areas that the user is possible in for a given
candidate set Φ̂(lt). An ideal case is that the adversary has
the knowledge about the distance between two locations, i.e.,
dist(φ∗(lt), φ∗(lt+1)). Thus, the adversary can filter pair of
candidate areas in the candidate sets and find the possible pair
of locations based on their distance. However, this assumption
seems unrealistic for most cases, and we need a practical way
to estimate the distance between two successive locations.

We consider the distance estimation as a regression problem.
We find that the crucial part of this extended re-identification
problem is that the prior knowledge P is also extended. The
adversary also captures the duration between two successive
releases. Therefore, we try to build a regression model mainly
based on the duration and other auxiliary information to predict
the distance between two locations of corresponding releases.
Specifically, we construct the feature vector with the following
information:

• The duration between two successive releases:
time(lt, lt+1);

• The L1-distance between Flt,r and Flt+1,r;

• In which hour of a day the first POI type frequency
is released, and which day of a week for this release.
These two types of information are encoded by one
hot encoding in the feature vector.

Based on the constructed feature vectors, we adopt support
vector regression [11] that is provided Scikit-learn machine
learning package [8] to train the regressor.

V. OPTIMIZATION-BASED DEFENSE WITH DIFFERENTIAL

PRIVACY

In this section, we will describe a differentially private mech-
anism to protect users’ locations against the re-identification
attacks in the sharing of POI frequencies.

By revisiting the Cao et al.’s attack [1], we can find that
the region re-identification attack succeeds so long as the
adversaries can locate the targeted users in areas with radius r.
Instead of finding the target user’s exact location, the attack
tries to figure out to which POI the target is close. Under
this setting, it is hard to achieve good defense performance
with the location-level methods, i.e., only perturbing an actual
location to a noise location seems not a right choice, and

the evaluation of geo-indistinguishability also supports this
argument. On the other hand, the aggregate-level methods
can provide effective protection to some extent, but it is
vulnerable to advanced attacks when the adversary obtains other
background information, as it has been shown in the evaluation
of the sanitization. Besides, the aggregate-level protection may
yield the POI type frequencies with poor utility because it will
remove some essential information from the reported aggregate
if we take an aggressive defense strategy.

We resort to aggregate-level protection, which could perturb
the POI type frequencies of users and make two improvements
over the naı̈ve sanitization method in Section III-A:

• The naı̈ve sanitization method does not take the utility
into account, but it is crucial for services that need
the POI type frequencies. We show that the proposed
defense can provide the comparable utility of the
perturbed frequencies.

• It has been shown that the naı̈ve sanitization is vulnera-
ble to advanced attacks with auxiliary information. The
proposed defense provides a plausible guarantee of the
perturbed frequencies against the auxiliary information-
based attacks by introducing the notion of differential
privacy.

A. Non-private Formulation

We first formulate the perturbation objective in a non-private
way. Given the original POI type frequency vector Fl,r, we

adopt the following optimization to find a proper release F̃ :

max
F̃

M∑

i=1

1

R(i)
|F̃i − Fl,r[i]|,

s.t.
1

M

M∑

i=1

1

Fl,r[i] + 1
|F̃i − Fl,r[i]| ≤ β, (7)

F̃i ∈ N
+, i = 1, 2, . . . ,M.

We want to maximize the weighted perturbation to the released
frequencies while constraining the total distortion to the
frequencies under a certain level, β. In the above formulation,
R(i) is the infrequent rank of each POI type (the most
infrequent POI type ranks 1, and so forth).

B. Differentially Private Release

The indistinguishability provided by the definition of DP
guarantees that the released POI type frequency vector is
insensitive to each POI type’s frequency in the original
frequency vector. To further illustrate the guarantee provided by
DP, we specify the neighboring datasets in the release of POI
type frequencies. We refer to a pair of datasets D1, D2 ∈ X d

as neighbors if they are two POI frequency vectors and D2 can
be obtained from D1 by only modifying one dimension of POI
type frequency.

The main idea is to generate a privacy-preserving alternative
to Fl,r in Eq. (7), such that we can find a proper release F̃ ∗
which can defend against the re-identification attack and achieve
differential privacy at the same time.
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Figure 6: Performance of the fine-grained attack: the CDF of search area. The search area of Cao et al’s attack is always πr2km2.

Specifically, the defense mechanism consists of the follow-
ing steps:

• It first adopts the spatial k-cloaking mechanism [10]
to generate the a group of dummy locations as we
have reviewed in Section III-C, and the generated k
locations (including l) are denoted by d1, d2, . . . , dk;

• For locations d1, d2, . . . , dk, get their POI type frequen-
cies Fd1,r, Fd2,r, . . . , Fdk,r, and compute the mean
with noise of these frequencies by applying Guassian
mechanism for i = 1, 2, . . . ,M :

F ∗
D,r[i] = (

k∑

j=1

Fdj ,r[i] +N (0, σ2))/k, (8)

where the variance σ is set to Δ
√

2 ln(1.25/δ)/ε ac-
cording to Definition 2. ε and δ are privacy parameters.

• It replaces Fl,r in Eq. (7) by F ∗
D,r, and then optimizes

the following problem and gets F̃ ∗:

max
F̃∗

M∑

i=1

1

R(i)
|F̃ ∗

i − F ∗
D,r[i]|,

s.t.
1

M

M∑

i=1

1

F ∗
D,r[i] + 1

|F̃ ∗
i − F ∗

D,r[i]| ≤ β, (9)

F̃ ∗
i ∈ N

+, i = 1, 2, . . . ,M.

Theorem 4: The above defense mechanism achieves (ε, δ)-
differential privacy.

Proof: First we analyze the sensitivity of sum
of the POI type frequencies. Consider a pair of
neighboring databases Fd1,r, Fd2,r, . . . , Fdj ,r, . . . , Fdk,r

and Fd1,r, Fd2,r, . . . , F
′
dj ,r

, . . . , Fdk,r, which differ in one
POI frequency vector at one dimension. For any dimension i,∑k

j=1 Fdj ,r[i] will change at most maxd Fd,r[i], such that we

can set the sensitivity at this dimension as maxd Fd,r[i].

Then we show that the publish of F ∗
D,r[i] is differentially

private. We set the variance σ = Δ
√

2 ln(1.25/δ)/ε. By Def-
inition 2, we have that Eq. (8) achieves (ε, δ)-differential
privacy. In the optimization (Eq. (9)), we do not need to
access the original POI frequency vector. The proposed defense
mechanism is a sequentially apply of Eq. (8) and Eq. (9).
By Lemma 3, it is (ε, δ)-differentially private.

VI. EXPERIMENTAL EVALUATION

We have implemented the proposed methods and evaluated
them based on real-world user data traces. Specifically, we
have carried out two sets of experiments:

• One set of experiments is on the performance of the
attacks. Our results show that the proposed attack needs
less than 25% of the search area compared with the
existing attack in most cases. The attack leveraging
trajectory uniqueness can increase the attack’s success
rate up to about 20% when r = 0.5.

• The other set of experiments is on the performance
of the differentially private defense. Our results show
that the proposed defense can mitigate the location
re-identification attacks to less than 20% success rate
in most settings while well preserving the utility of
the POI aggregates.

A. Settings

The evaluation of fine-grained attack is conducted on four
datasets: :(a) T-drive [3] user locations in Beijing, which
contains trajectory data of 10,357 taxis in Beijing. We extract
the trajectories which are within the given area of the city. (b)
randomly generated user locations in Beijing; (c) Foursquare
check-ins [4] in New York City, which contains 227,428 check-
ins from 824 users; (d) randomly generated user locations
in New York City. The evaluation of trajectory uniqueness
is carried out on trajectories that are extracted from T-drive
dataset. The evaluation of the proposed defense mechanism is
performed on T-drive dataset and Foursquare NYC dataset. For
each set of experiments, we randomly choose 1,000 locations
or segments from the datasets for evaluation.

When evaluating the utility of the defense mechanism, we
adopt the Top-K function as the target application and use the
Jaccard Index [12] to measure the similarity between original
POI type frequencies and protected POI type frequencies.
Specifically, for the original POI type frequency vector Fl,r and

the protected POI type frequency vector F̃ ∗, we find the set
of K types with highest frequencies in the vectors and denote
them by TopK(Fl,r) and TopK(F̃ ∗), respectively. Then we
use the Jaccard Index to measure the utility of the protection
mechanism:

|TopK(Fl,r) ∩ TopK(F̃ ∗)|/|TopK(Fl,r) ∪ TopK(F̃ ∗)|.
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Figure 7: Search area with changing the number of
auxiliary anchors (r = 2.0km; the search area of
Cao et al’s attack is always 4πkm2 in this setting).

B. The Attacks

Fig. 6 shows the performance of fine-grained attack that
we have proposed in Section IV-A when MAXaux = 20. We
can find that this attack dramatically reduces the area’s size
that needs to search for the user’s actual location. In about
80% cases, the proposed attack can reduce the search area to
no more than a quarter of the search area required by Cao
et al’s attack. Furthermore, we can find that with the query
range increasing, the fine-grained attack performs better on the
search area reduction.

Figure 8: Exploiting the power of two
successive queries.

In Fig. 7, we can see that, with the number of auxiliary
anchors increasing, the attack achieves better performance for
all the four datasets. On average, for these four datasets, the
fine-grained attack can reduce the size of the search area
from 1.70km2 to 0.60km2, 2.38km2 to 1.35km2, 1.92km2

to 0.26km2, and 2.63km2 to 1.07km2, respectively, when the
number of auxiliary anchors increases from 5 to 40. We can
also find that the reduction brought by more auxiliary anchors
decreases with the number of auxiliary anchors increasing.
Therefore, it may not be the best choice to use all the auxiliary
anchors because time cost will increase when more auxiliary
anchors involve. In our experiments, let MAXaux = 20 could
be a reasonable choice. We note that the search area of Cao et
al’s attack is always about 16.56km2 when r = 2km.
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Figure 9: The performance of the non-private defense mechanism
(a lower success rate means better defense performance).
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Figure 10: Jaccard index achieved by the non-private defense
mechanism.

Fig. 8 shows the performance of the re-identification attack
when two successive releases are leverages in Beijing with
T-drive datasets. In our experiments, we extract the points in
the trajectories satisfying the requirements: 1) the released
POI type frequencies are changed because the adversary can
be aware that if the POI type frequency is the same as the
previous release, this release is useless; 2) the duration of two
successive releases is less than 10 minutes, because when the
duration is large, the user may start another new session of
using the location-based services. We can observe from the
results that the success rate is improved by using the knowledge
of two successive queries. For r = 0.5km, 1.0km, 2.0km,
and 4.0km, the enhanced attack has 0.203, 0.146, 0.09, 0.001
gains on success rate, respectively. We can find that the gain is
minimal when r = 4.0km because the performance of location
re-identification is good enough with a large query range.

C. The Defense

In this set of experiments, we adopt Top-10 as the target
application. Fig. 9 and Fig. 10 shows the defense performance
and the utility achieved by the non-private defense that is
formulated in Eq. (7). We change the parameter β, which is
used to balance the utility and defense performance in the
formulation. We can find that with the larger β, the mechanism
performs better on the defense while the utility only decreases
slightly.

Fig. 11 and Fig. 12 shows the defense performance and the
utility achieved by the differentially private defense mechanism
that we have proposed in Section V-B. We set the spatial
cloaking parameter k = 20, privacy parameter δ = 0.2, and
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change ε from 0.2 to 2.0. We can observe that for various
choices of β, the defense performence gets worse and the
utility increases when the privacy budget increases, and the
utility is merely affected by the parameter β.
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Figure 11: The performance of the differentially private defense
mechanism (r = 2.0km; a lower success rate means better
defense performance).
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Figure 12: Jaccard index achieved by the differentially private
defense mechanism (r = 2.0km).

VII. RELATED WORKS

The related works of this paper fall into two categories:
POI-based data analysis and location privacy.

A. POI-based Analysis and Applications

POI data have been widely used in the applications of
spatial-based analysis and recommendations. Some works, e.g.,
[13], [14] have been done for identifying the place with special
meanings by leveraging POI data. Nishida et al. [14] propose
a probabilistic identification method for personalized check-in
in LBSs by analyzing users‘ past visited POIs. In [13], and
a clustering-based algorithm is proposed for analyzing the
attractive areas by using crowdsourced data.

POI-based recommendation also has been extensively
studied, e.g., [15], [16], [17], [18], [19]. In [17], [18], the
authors study the problem of time-aware POI recommendation
to recommend POIs for a user to visit at a given time. Bin et
al. [15] propose a personalized recommendation framework by
leveraging users’ multi-aspect behavior and preferences. POI
data have also been used for human behavior analysis, e.g., [20],
[21], [22], [23], [19], [24] Liu et al. [19] developed a systematic
POI demand modeling framework to model POI demands by

exploiting the daily needs of people identified from their large-
scale mobility data. [24] revealed the collective intelligence of
the spatial choices expressed in the mobility patterns of the
people that live in a city.

B. Location privacy

A lot of research has been carried out on protecting location
privacy, e.g., [25], [26], [27], [28], [29], [30], [31]. Previous
works on location privacy protection mainly focus on protecting
users’ physical locations. The most related work to our work
is Cao et al. [1], which finds that even the actual locations are
not revealed, the adversary can still re-identify users’ location
by the aggregated POI type distribution. They observe the
phenomenon of location uniqueness, which is ubiquitous in
many metropolises. A computationally efficient location re-
identification method is also proposed by [1]. However, as we
have mentioned above, their attack may not apply to launch
practical attacks.

POI type frequency can be viewed as a type of location
aggregate data. Therefore, studies on aggregate data privacy are
also related to our work. The aggregate data are often considered
a way to hinder the exposure of individuals’ data [32]. However,
a recent work [33] shows that an adversary with some prior
knowledge can exploit aggregate information to improve his
knowledge or even localize specific individuals that are part of
the aggregates. Xu et al. [34] even extracted users’ “trajectories”
from aggregate mobility data without prior knowledge. In [35],
a generic methodology is proposed for studying membership
privacy in aggregated location data.

VIII. CONCLUSION

In this paper, we conducted an in-depth study of the location
privacy problem in the presence of location uniqueness. We
have also conducted a study to evaluate whether the existing
protection methods can adequately defend against the location
re-identification attack. Then results show that methods like
sanitization, geo-indistinguishability, and spatial k-cloaking
can hardly provide adequate location privacy protection in the
presence of location uniqueness. Based on the existing location
re-identification method, we present two practical variants,
which achieve higher precision of locating a user and better
re-identification performance, respectively. Furthermore, we
propose a differentially private POI type frequency release
mechanism, and the evaluation shows that it can provide
adequate location privacy protection with acceptable utility
loss.
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