
Efficient Implementation of Public Key
Cryptosystems on Mote Sensors (Short Paper)

Haodong Wang and Qun Li

Department of Computer Science
College of William and Mary
{wanghd, liqun}@cs.wm.edu

Abstract. We report our implementation of the RSA and ECC public-
key cryptosystem on Berkeley Motes. We detail the implementation of
1024-bit RSA and 160-bit ECC cryptosystems on MICA mote sensors.
We have achieved the performance of 0.79s for RSA public key operation
and 21.5s for private operation, and 1.3s for ECC signature generation
and 2.8s for verification. For comparison, we also show our new ECC
implementation on TelosB motes with a signature time 1.60s and a ver-
ification time 3.30s. For the detailed description of the implementation,
we refer to our technical report[13].

1 Introduction

Public-key cryptography has been used extensively in data encryption, digital
signature, user authentication, access control[12,14], etc. Compared with the
symmetric key based schemes proposed for sensor networks, public-key cryptog-
raphy is more flexible requiring no complicated key pre-distribution and no pair-
wise key sharing negotiation. It is a popular belief, however, in sensor network re-
search community that public-key cryptography, such as RSA and Elliptic Curve
Cryptography (ECC), is not practical because the required computational inten-
sity is prohibitive for sensors with limited computation capability and extremely
constrained memory space. The nascent exploration has already disabused of
this misconception. The recent progress in ECC and RSA implementation on
Atmel ATmega128[3], a CPU of 8Hz and 8 bits, shows that public-key cryp-
tography is feasible for sensor network security related applications. This paper
describes our implementation of 1024-bit RSA cryptosystem and 160-bit ECC
cryptosystem on Motes of MICA2 family with a comparison of our new ECC
implementation on TelosB motes.

The major operations in RSA and ECC cryptosystems are large integer arith-
metics over the finite field. To efficiently perform RSA and ECC exponentiations
on the low-power CPU of sensor motes, it is essential to optimize the expen-
sive large integer operations, especially multiplication and reduction. Since most
CPU cycles are consumed in these two integer operations, the efficiency of these
two integer operation modules directly determines the performance of the en-
cryption and decryption. Low-power sensor microcontroller usually has a very
limited number of registers (32 8-bit registers in ATmega 128). Thus the time

P. Ning, S. Qing, and N. Li (Eds.): ICICS 2006, LNCS 4307, pp. 519–528, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

520 H. Wang and Q. Li

for long integers to be loaded from or stored to memory is not negligible and
the memory accesses have to be optimized for better performance. In this paper,
we adopt the hybrid multiplication method [4], which is a very effective way
to reduce the number of memory accesses. To precisely control the register and
memory operations, we implement this module in assembly language. Our ex-
periments demonstrate that the hybrid multiplication is at least 7 times faster
than the conventional multi-precision multiplication programmed in C language.
The modular reduction can also be optimized under certain conditions. For ex-
ample, when the modulus is a pseudo-Mersenne number, the reduction can be
greatly optimized and be finished more than 10 times faster than the classic long
division method.

In addition to the optimization of the big integer operations, RSA and ECC
can be further optimized. In RSA, Montgomery reduction can be applied to
efficiently calculate the RSA exponentiation, and Chinese Remainder Theorem
(CRT) can be used to reduce the exponent sizes and speed up the RSA exponen-
tiation for up to 4 times. In ECC, we apply a mixed coordinate, the combination
of Affine coordinate and Jacobian coordinate, to accelerate ECC exponentiation
by avoiding operations such as inversions or reducing the amount of operations
such as multiplication and squaring.

Our experiments show that both RSA and ECC can efficiently run on MICAz
motes. For RSA, it takes 0.79 second to do a public key operation, and 21.5
seconds to perform a private key operation. For ECC, it takes 1.3 seconds to
generate a signature, and 2.8 seconds to perform a signature verification. For
our new ECC implementation on TelosB, the signature time and verification
time are 1.60s and 3.30s respectively. It is possible to further reduce the com-
putation time by using extended instruction set adopted in [4]. Our experiment
results demonstrate that most operations in RSA and ECC are feasible for sensor
network security applications.

2 Implementation

We have implemented RSA and ECC cryptosystems on MICAz motes, pow-
ered by ATmega128 microcontroller. The ATmega128 incorporates an 8MHz,
8-bit RISC CPU, 128K bytes programmable flash memory (ROM) and 4K bytes
SRAM. This architecture provides 133 powerful instructions and 32 × 8 gen-
eral purpose registers. Besides, ATmega128 also features an on-chip multiplier.
In this section, we first describe the optimized large integer operation modules,
which can be used for both RSA and ECC cryptosystems. Then we focus on
the protocol related optimizations specifically for RSA and ECC, respectively.
For ECC implementation, without further clarification, we concentrate on SECG
recommended 160-bit elliptic curve: secp160r1.

2.1 Large Integer Operations

We have implemented a suite of large integer arithmetic operations, including
addition, subtraction, shift, multiplication, division and modular reduction.

Efficient Implementation of Public Key Cryptosystems on Mote Sensors 521

Among three different multiplication implementations [4,8,7], we have cho-
sen to use Hybrid Multiplication proposed in [4]. We have implemented Hybrid
multiplication in assembly language with column width d = 4, which requires
9 accumulator registers, 5 operand registers, 6 pointer registers, and others for
temporary storage and loop control. For the comparison purpose, we also im-
plement a standard multi-precision multiplication program in C language. Our
experiments show the standard C program needs 122.2ms to finish the multipli-
cation between two 128-byte integers, while it only takes 17.6ms for our Hybrid
multiplication to do the same computation, which is more than 7 times faster.

Squaring is a special case of the multiplication, which has the same the mul-
tiplicand and the multiplier. Given an m-bit large integer A = (A1, A0), where
A1, A0 are two halves, A2 = A1A1 × 2m + 2A1A0 × 2m/2 + A0A0. Therefore,
we can take advantage of the fact that A1A0 only needs to be calculated once.
Compared with the multiplication, the optimized squaring can reduce the com-
putational complexity up to 25%.

For Modular Reduction, We choose the classic long division method to imple-
ment this operation. Fortunately, the number of this type of modular reduction is
very limited, it does not affect the overall performance much. The long division
producer reduces the remainder by one byte in each iteration. In ECC cryp-
tosystem, we choose to use pseudo-Mersenne primes as specified in NIST/SECG
curves, the modular reduction can be optimized by conducting a fixed number
of integer additions.

Modular inversion is used in both ECC and RSA. For ECC operation, we
adopt an efficient Great Divide scheme [11]. For RSA operation, we use the
classic Extended Euclidean Algorithm.

2.2 RSA Operations

In our first RSA implementation, it takes 4.6 seconds to finish the public key
operation and 389 seconds to do a private key operation. To reduce the compu-
tational time, we have implemented the following two optimizations.

Montgomery Reduction. Montgomery reduction [9] is a method to efficiently
perform the modular reduction without doing expensive division. For example,
suppose we want to compute T modulo N , the algorithm says it is easy to
compute TR−1 (mod N) (without any division), where R is a radix (R > N) and
co-prime to N . We do not validate this algorithm in this paper. Interested reader
may refer to [9] for details. Having implemented the Montgomery reduction
module, the performance of RSA public key and private key operations have
been improved significantly to 1.2s and 82.2s, respectively.

Chinese Remainder Theorem (CRT). The complexity of the exponentia-
tion in RSA largely depends on the the size of modulus n and the exponent
(either public key or private key). Chinese Remainder Theorem (CRT) can be
used to effectively reduce the computational complexity of exponentiation by
reducing the size of both n and the exponent. With CRT implemented, the

522 H. Wang and Q. Li

public key operation has been reduce to 0.79s. Correspondingly, the private key
operation is reduced to 21.5s, approximately 1/4 of the time before doing CRT.

2.3 ECC Operations

Here we briefly discuss our optimizations for ECC operations.

ECC Addition and Doubling. The fundamental ECC operation is point
addition and point doubling. The point multiplication can be decomposed to
a series of addition and doubling operations. As discussed in previous section,
point addition and doubling in Affine coordinate require integer inversion, which
is considered much slower than integer multiplication. Cohen et al. showed that
these operations in Projective coordinate and Jacobian coordinate yield better
performance [1]. They further found addition and doubling in mixed coordinate,
with the combination of Modified Jacobian coordinate and Affine coordinate,
lead to the best performance [2]. As the result, point doubling operation reduces
to 4 multiplications and 4 squaring, and the computational complexity of the
point addition reduces to 8 multiplications and 3 squaring. Our experiments show
that the performance of point multiplication improves around 6% compared with
our previous implementation in Jacobian coordinate.

Modular Reduction on ECC Curve. Recall that modular reduction has
to be applied after every large integer multiplication, it is also a performance
critical operation. By taking advantage of pseudo-Mersenne primes specified in
SECG curves, the complexity of the modular reduction operation can be reduced
to a negligible amount.

Further Optimization. Examining the computational complexity, we notice
that point addition is more expensive than point doubling. We adopt Non-
adjacent forms (NAFs) [10] and sliding window method [5] in our implementa-
tion. According to our experiments, point multiplication with NAFs contributes
at least 5% performance improvement. For sliding window, we select window
size s = 4. Correspondingly, there are 16 entries in the partial result table. Our
experiments show sliding window method is more effective than NAFs for fixed
point multiplication, the performance of sliding window method is more than
10% better than that of NAFs.

3 Experiments and Performance Evaluation

We have implemented the 1024-bit RSA and the 160-bit ECC security primitive
on MICAz motes, the latest sensor motes of the MICA family from Crossbow.
Our experiments show that the public key operation (17-bit public key) only
takes 0.79s and private key operation takes 21.5s. For the ECC operations, it
takes 1.3 seconds to generate a signature and 2.8 second to do a signature verifi-
cation. Considering that RSA verification normally happens at sensor side, and
expensive signature generation is done by powerful devices, such as PDAs, we
conclude both RSA and ECC are practical for small sensor nodes.

Efficient Implementation of Public Key Cryptosystems on Mote Sensors 523

3.1 RSA Evaluation

In this subsection, we describe the experimental performance of 1024-bit RSA on
our MICAz motes. We first present our experimental results and related issues
during the implementation. We then give the performance analysis to quantify
the computational complexity.

Experimental Results and Implementation Challenge. In the experi-
ment, we randomly select two 512-bit prime number as p and q. For the public
key operation, we choose a small exponent of e = 216 + 1, which is commonly
used value for e. Our program uses 15,832 byte code size and 3,224 byte data
size. Compared with RSA implementation in [4], our code size is much larger
because of the assignments of precomputation values during initialization stage.
Our implementation spends 0.79s to finish a publick key operation and 21.5s to
do a private key operation.

The biggest challenge in implementing 1024-bit RSA on MICAz motes is the
memory constraint. MICAz mote only has 4KB RAM, which is the total space
for data and program stack. Since the operands in 1024-bit RSA are mostly
128 integers, the subroutines, such as modular reduction, Extended Euclidean
Algorithm and Montgomery reduction, have to reserve considerable amount of
memory space for storing temporary results. In addition, for optimization pur-
pose, a number of pre-computations are required. In our program, 1152 bytes
of memory are used for storing system parameters, such as p, q and n, and pre-
computation results, such as Rp, Rq in CRT. Therefore, attentions need to be
paid not to waste any memory usage. In practice, we have adopted two methods
to save the memory space. First, we declare more global variables. The idea is
to share the memory space among different subroutines in each module. Note
this method is only good for those subroutines do not call each other. Oth-
erwise the intermediate data will be lost. Second, we conduct every possible
precomputation so that some modules may not be required during the RSA
operation in the real time. For example, the Extended Euclidean algorithm is
only used to find the public/private key pairs and to precompute the parame-
ters used in Montgomery reduction. Removing this module saves us 1K data
space.

Performance Analysis. To analyze the computational complexity distribution
among the components in RSA exponentiation, we profile the execution time of
multiplication, squaring, and modular reduction modules, the three most time
consuming operations in RSA exponentiation. The profiling information is shown
in Table 1.

Our analysis assumes that all optimization schemes have been applied in RSA
exponentiation. To simplify the presentation, we denote “MUL” as, large integer
multiplication, and let “SQR” be large integer squaring, and let “MOD” be large
integer modular reduction. An ”m/n” MOD means a MOD operation for a m-
byte integer over a modulus with n-bytes. For example, 128/64 MOD denotes a
modular reduction of a 128 byte integer with a 64 byte modulus.

524 H. Wang and Q. Li

Table 1. Execution time profiles of some important modules

Module Operand Sizes (bytes) Execution Time (ms)
MUL. 128 by 128 17.1
MUL. 64 by 64 4.48
SQR. 128 by 128 14.1
SQR. 64 by 64 3.87
MOD. 256/128 132
MOD. 192/128 74
MOD. 128/64 40

Let us consider an example of RSA operation to calculate M = Cx (mod n),
where x can be either public key or private key. Following the CRT algorithm, we
first do two MODs to calculate Cp and Cq. Then, we conduct two Montgomery
reductions to get Mp and Mq. Finally, two MULs, one MODs and one addition
are required to compute M . Note the last two steps in CRT, which requires 2
MODs, can be simplified by doing addition first and then only one MOD. Except
the Montgomery reduction, both public key and private key operation need to
do two 128/64 MODs, two 128 × 128 MULs, one 192/128 MODs operations,
which totally account for 2 × 40 + 2 × 17.1 + 74 = 188.2ms.

The difference of execution time between public key and private key operations
is at exponentiation part. Each Montgomery reduction requires two 64 × 64
MULs, one 128-byte addition and possible another 128-byte subtraction. The
cost of addition and subtraction can be ignored. Therefore, the execution time
of each Montgomery reduction is 2 × 4.48 = 8.96ms. Since we choose the public
key to be 216 + 1, there are totally 16 64 × 64 SQRs and 1 64 × 64 MUL in
the exponentiation. According to Table 1, the total time for SQRs and MUL
with Montgomery reduction should be 16×3.87+4.48+17×8.96 = 218.7ms. In
addition, two 128/64 MODs are needed to convert operands between integer and
N -residue before and after each exponentiation. For CRT optimization, we need
to do two 512-bit exponentiations. Therefore, the exponentiation execution time
for public key operation is 2×(218.7+2×40) = 597.4ms. Combined with the rest
operations in CRT, the public key operation consumes 594.4+188.2 = 782.6ms,
which matches our test result very well.

For the private key operation, the number of SQRs is 511 (after CRT) in
each reduced exponentiation. The number of MULs depends on the Hamming
weight of the exponent. Our experiment shows the average Hamming weight
of Dp and Dq of our private key is 278. Hence, there are 277 MULs required
in each exponentiation. Therefore, the execution time for each exponentiation is
511×3.87+277×4.48+788×8.96 = 10279ms. Since the exponentiation execution
time in private key operation overwhelmingly dominates other operations, we
only need to consider the execution time of exponentiations only. Two such
exponentiations consumes 20.5 seconds, closely matching our experiment result
of 21.5s.

Efficient Implementation of Public Key Cryptosystems on Mote Sensors 525

3.2 ECC Evaluation

In this subsection, we first present the performance of our implementation. Then
we give an overall analysis to quantify the computation complexity.

The Performance of ECC Implementation. In experiments, we measure
execution time and code size of our implementation. We choose secp160r1 as the
elliptic curve in all experiments. We use the embedded system timer (921.6kHz)
to measure the execution time of major operations in ECC, such as point mul-
tiplication, point addition and point doubling.

We first test point multiplication operation, which is comprised of point ad-
dition and doubling. We consider two cases in point multiplication. One is mul-
tiplying large integer with a fixed point(base point), and the other one is with
a random point. Fixed point multiplication allows for optimization by precom-
puting. We apply sliding window technique[6] and set window size to 4, i.e.,
precomputing 24 − 1 = 15 points. In experiments, we randomly generate 20
large integers to multiply with the point and take the average execution time as
the result.

Since ECC point multiplication consists of addition and doubling operations,
we further evaluate these two operations separately. We generate random points
and large integers for tests. Since a single operation takes very little time, to
reduce the error of clock inaccuracy, we measure 100 operations every round
and take the average value.

Table 3 shows the experimental results of execution time. Point addition and
doubling of our implementation is superior to the other two implementations,
which results in a faster point multiplication.

Next, we implement ECDSA signature scheme. The experimental results are
shown in Table 3. In fact, signing a message is mainly a fixed point multiplication.
As we can see, the signature time is very close to the time consumed in fixed
point multiplication. On the other hand, verification of ECDSA consists of one
fixed point multiplication and one random point multiplication. Therefore, the
performance of the verification is roughly the summation of one fixed point
multiplication and one random point multiplication.

Table 2 presents the code size of the ECC implementation. The ECC library
itself only uses 18.8KB ROM and 1.36KB RAM. However, ECDSA consumes
56.4KB ROM and 1.7KB RAM. The reason is that we add SHA1 hash func-
tion and radio communication module in the ECDSA package, where SHA-1,
occupying more than 30KB memory space, takes a large portion of the code
size.

Table 2. ECC implementation code sizes

ECC library ECDSA
ROM RAM ROM RAM

ECC 18.8k 1.36k 56.4k 1.7k

526 H. Wang and Q. Li

A Performance Anatomy of ECC Point Multiplication on MICAz.
Since ECC point multiplication dominates the computational complexity in ECC
signature and verification, we are curious to learn the performance anatomy in
ECC point multiplication.

This analysis is based on 160-bit ECC curves. We use secp160r1 as the exam-
ple. We also assume 4-bit sliding window method is used, and partial results are
precomputed. The computational cost for each window unit is 4 point doubling
and 1 point addition. Given a 161 bit private key, there are 41 window units.
Totally , 164 point doubling and 41 point additions are required to finish 1 point
multiplication.

Large (160-bit) integer multiplication, squaring and reduction are the most ex-
pensive operations in point doubling and point addition. To learn the amount of
time contributed by the above three operations in a fix point multiplication. We
first individually test the performance of large integer multiplication, squaring
and reduction. Our results show that it takes 0.47ms, 0.44ms and 0.07ms to per-
form a 160 × 160 multiplication, squaring and reduction, respectively. Next, we
count the the number of each operation required in a point multiplication. Since
we adopt the mixed coordination (the combination of Jacobian coordinate and
Affine coordinate), each point addition requires 8 large integer multiplications
and 3 large integer squaring, and each point doubling requires 4 large integer
multiplications and 4 large integer squaring. In addition, each multiplication,
squaring or shifting operation has to be followed by a modular reduction. Our
program shows the point addition requires 12 modular reductions, and the point
doubling requires 11 modular reductions. In total, each point multiplication costs
164× 4+41× 8 = 984 large integer multiplications, 164× 4+41× 3 = 779 large
integer squaring and 164 × 11 + 41 × 12 = 2, 296 large integer modular reduc-
tions. Plugging in the results of the individual tests, we get the total amount
of time consumed on the three operations is 0.97s, roughly 78.2% of the total
time to do a fix point multiplication. The rest of 21.8% of the time is spent on
various operations, including inversion operation (to convert the Jacobian coor-
dinate to Affine), addition, subtraction, shifting and memory copy, etc. Based
on above analysis, we believe the performance of ECC operations on MICAz can
be further improved by more refined and careful programming.

Performance Comparison. In the last part of the evaluation, we first investi-
gate the performance difference of our cryptosystem implementation on different
sensor platforms. Then we compare the performance of our implementation with
existing research result [4] and give the possible explanation of the performance
gap.

To learn the performance of the public key cryptosystems on different sen-
sor platforms, we have revamped our previous ECC implementation on TelosB
mote[14]. We summarize the performance comparison in Table 3. It clearly shows
that the performance of ECC operation on MICAz is slightly better than that on
TelosB, even though TelosB is equipped with a 8MHz, 16-bit CPU. After a care-
ful and tedious investigation, we found the performance degradation on TelosB
is due to the following two reasons. First, the 8MHz CPU (MSP430) frequency

Efficient Implementation of Public Key Cryptosystems on Mote Sensors 527

Table 3. The comparison of ECC execution Time on both mote platform operations,
including fixed point multiplication (FPM), random point multiplication (RPM), point
addition (PAdd) and point doubling (PDbl) and ECDSA signature generation (SIGN),
verification (VERIFY) time

FPM RPM PAdd PDbl SIGN VERIFY
MICAz 1.24s 1.35s 6.2ms 5.8ms 1.35s 2.85s
TelosB 1.44s 1.60s 7.3ms 7.0ms 1.60s 3.32s

on TelosB is just a nominal value. In reality, the maximum CPU clock rate is
actually 4MHz. Second, the hardware multiplier in MSP430 CPU uses a group
of special peripheral registers which are located outside of MSP430 CPU. As the
result, it takes MSP430 eight CPU cycles to perform an unsigned multiplication,
while it at most takes four cycles to do the same operation in Atmega CPU. The
above two reasons explain why TelosB cannot perform better than MICAz.

We also compare our ECC performance with the result in [4]. Gura et al.
implemented the ECC (the same curve) on Atmega128 CPU, which is the same
CPU used on MICAz mote. Their result, 0.81s for a random point multiplica-
tion, is about 40% faster than 1.35s of our result. We notice that the time for
their 160× 160 multiplication is 0.39ms, roughly 17% faster than our 0.47ms. In
general, we believe their code is more polished and optimized in many aspects
than our code. Furthermore, Our code is implemented in TinyOS, and mostly
written with NesC (except several critical large integer operations), which could
introduce additional CPU cycles.

4 Conclusion

In this paper, we present a number of optimization schemes to efficiently im-
plement the public key cryptosystems in small, less-powerful sensor devices. We
implement 1024-bit RSA and 160-bit ECC on Mica motes. Our experiments
demonstrate that the public key cryptography is promising for sensors. Our ex-
periments show that the times for ECC signature generation and verification
are 1.3s and 2.8s respective for Mica motes, and 1.6s and 3.3s for TelosB motes.
For RSA implementation, we have achieved 0.79s for public key operation and
21.5s for private operation on Mica motes. We believe the performance can be
improved by more careful programming or using more powerful sensors.

References

1. H. Cohen, A. Miyaji, and T. Ono. Efficient elliptic curve exponentiation. In
ICICS’97, pages 282–290, Springer-Verlag, 1997.

2. H. Cohen, A. Miyaji, and T. Ono. Efficient elliptic curve exponentiation using
mixed coordinates. In ASIACRYPT, 1998.

3. V. Gupta, M. Millard, S. Fung, Y. Zhu, N. Gura, H. Eberle, and S. Shantz. Sizzle:
A standards-based end-to-end security architecture for the embedded internet. In
PerCom, Kauai, Mar. 2005.

528 H. Wang and Q. Li

4. N. Gura, A .Patel, A. Wander, H. Eberle, and S. C. Shantz. Comparing elliptic
curve cryptography and rsa on 8-bit cpus. In CHES, Boston, Aug. 2004.

5. C. K. Koc. High-speed rsa implementation, rsa laboratories technical report tr-201,
version 2.0. Nov 22 1994.

6. C. K. Koc. High-speed rsa implementation. In RSA Lab TR201, Nov. 1994.
7. A. Liu and P. Ning. Tinyecc: Elliptic curve cryptography for sensor networks. Sept

15 2005.
8. D.J. Malan, M. Welsh, and M.D. Smith. A public-key infrastructure for key dis-

tribution in tinyos based on elliptic curve cryptography. In SECON, Santa Clara,
CA, October 2004.

9. P. Montgomery. Modular multiplication without trial division. Mathematics of
Communication, 44(170):519–521, April 1985.

10. F. Morain and J. Olivos. Speeding up the computations on an elliptic curve using
addition-subtraction chains. Theoretical Informatics and Applications, 24:531–543,
1990.

11. S. Chang Shantz. From euclid’s gcd to montgomery multiplication to the great
divide. In Technical report, Sun Lab TR-2001-95, June 2001.

12. Haodong Wang and Qun Li. Distributed user access control in sensor networks. In
IEEE DCOSS, pages 305–320, San Francisco, CA, June 2006.

13. Haodong Wang and Qun Li. Efficient Implementation of Public Key Cryptosystems
on MicaZ and TelosB Motes. Technical Report WM-CS-2006, College of William
and Mary, October 2006.

14. Haodong Wang, Bo Sheng, and Qun Li. Elliptic curve cryptography based access
control in sensor networks. Int. Journal of Security and Networks, 1(2), 2006.

	Introduction
	Implementation
	Large Integer Operations
	RSA Operations
	ECC Operations

	Experiments and Performance Evaluation
	RSA Evaluation
	ECC Evaluation

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

