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Abstract

Many times, training a large scale deep learning
neural network on a single machine becomes more
and more difficult for a complex network model.
Distributed training provides an efficient solution,
but Byzantine attacks may occur on participating
workers. They may be compromised or suffer from
hardware failures. If they upload poisonous gra-
dients, the training will become unstable or even
converge to a saddle point. In this paper, we pro-
pose FABA, a Fast Aggregation algorithm against
Byzantine Attacks, which removes the outliers in
the uploaded gradients and obtains gradients that
are close to the true gradients. We show the conver-
gence of our algorithm. The experiments demon-
strate that our algorithm can achieve similar perfor-
mance to non-Byzantine case and higher efficiency
as compared to previous algorithms.

1 Introduction
With the rapid development of deep learning, the neural
network model becomes more complicated and deeper [Ba
and Caurana, 2013]. For example, GoogleNet [Chris-
tian Szegedy et al., 2015] contains a 22-layer deep CNN
(Convolutional Neural Network) and 4 million parame-
ters, ResNet152 [Kaiming He et al., 2016] has 152 layers,
which can handle more sophisticated deep learning tasks
and achieve better performance than human beings on Ima-
geNet [Jia Deng et al., 2009]. Recent teams in 2016 even
built a 1207-layer deep neural network on ImageNet to get
better performance. However, deeper neural networks bring
a huge challenge to computation due to the computation of
millions of parameters. In addition, training a neural network
often involves many rounds of computation based on different
hyperparameters to find a better model; this process becomes
even more time consuming. Although people start to use bet-
ter hardware such as GPU and TPU [Norman P. Jouppi et al.,
2017] on tensor computation, which accelerates the training
process, it is very common to take several days or weeks to
train usable neural networks.

Distributed neural network is proposed to solve this prob-
lem [Dean et al., 2012; Abadi et al., 2016]. In neural network

training, stochastic gradient descent algorithm runs on a train-
ing dataset to update a model. The batch size is the number of
training samples to work through before the model’s param-
eters are updated. People usually choose a large batch size
to achieve better stability and faster convergence [Keskar et
al., 2016]. Indeed distributed training is well suited for train-
ing with a large batch size because it is easy to parallelize the
same computation on different workers. In practice, most dis-
tributed training schemes are based on model parallelism, in
which each worker keeps a copy of the model and performs
the computation on their assigned dataset. A parameter server
aggregates the gradients computed by the workers, updates
the weights and sends back the updated weights to the work-
ers in each iteration. When the batch size is large, e.g., 512,
if we have 16 workers, each worker only needs to compute a
batch size of 32. Thus, this approach will significantly reduce
the computation time and the memory usage on each worker.

In a distributed neural network, one severe problem is to
deal with a malicious worker, e.g., if some workers upload
completely wrong gradients, what should we do to resist this
kind of attack? We call networks under this kind of attacks
as Byzantine distributed neural networks. Byzantine prob-
lem was first proposed by [Lamport et al., 1982], and Blan-
chard et al. first solved this problem in a deep learning sce-
nario [Blanchard et al., 2017]. They proposed an original
method called Krum, which selects a gradient from all the
uploaded gradients with the lowest predefined score to resist
Byzantine attacks in synchronous distributed training. They
also proposed a method to resist asynchronous Byzantine at-
tacks [Damaskinos et al., 2018]. There are some other fol-
lowing work using various kinds of medians such as geo-
metric median, marginal median, mean-around-median [Xie
et al., 2018], coordinate-wise median [Yin et al., 2018;
Chen et al., 2017] or more complicated modification of me-
dian methods such as ByzantineSGD [Alistarh et al., 2018].
However, all these methods have a common weakness: they
drop a lot of useful information to keep the convergence and
correctness of the training. For example, Krum selects only
one gradient out of n gradients. Apparently the algorithm
loses lots of information because we simply discard most of
the gradients. Accordingly, it has almost no improvement
compared to training on a single machine even though mul-
tiple machines are used for distributed computation. Further-
more, although Krum gives an excellent convergence proof,
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its assumptions are too strong to satisfy in reality.
In this paper, we proposed an efficient algorithm, FABA,

to resist Byzantine attack in distributed neural networks. In
summary, our contributions are:

• We proposed an efficient and effective algorithm, FABA,
which defends against Byzantine attacks. Our algorithm
is very easy to implement and can be modified in differ-
ent Byzantine settings. More importantly, our algorithm
is fast to converge even in the presence of Byzantine
workers. Our algorithm can adaptively tune the perfor-
mance based on the number of Byzantine workers.

• We proved the convergence and correctness of our algo-
rithm. Mainly, we proved that the aggregation gradients
by our algorithm are close to the true gradients computed
by the honest workers. We also proved that the moments
of aggregation gradients are bounded by the true gra-
dients. This ensures that the aggregation gradients are
in an acceptable range to alleviate the influence of the
Byzantine workers.

• We simulated the distributed environment with Byzan-
tine attacks by adding artificial noise to some of the
uploaded gradients. We trained LeNet [Yann Lecun
et al., 1998] on MNIST dataset and VGG-16 [Si-
monyan and Zisserman, 2014], ResNet-18, ResNet-34,
ResNet-50 [Kaiming He et al., 2016] on CIFAR-10
dataset [Krizhevsky, 2009] in the Byzantine distributed
environment and the normal distributed environment to
compare their results. Experiments showed that our al-
gorithm could reach almost the same convergence rate
as the non-Byzantine cases. Compared with Krum algo-
rithm, our algorithm is much faster and achieves higher
accuracy.

2 Problem Definition and Analysis
In this section, we analyze the Byzantine problem in dis-
tributed deep neural network.

2.1 Problem Definition
In the synchronous distributed neural network, it assumes that
we have n workers, worker1, worker2, · · · , workern and
one parameter server PS, which handles the uploaded gradi-
ents. Each worker keeps a replicated model. In each iteration,
each worker trains on its assigned dataset and uploads the gra-
dients g1, g2, · · · , gn to the PS. The PS aggregates the gra-
dients by average or other methods and then sends back the
updated weights to all the workers as follows:

wt+1 = wt − γtA(g1, g2, · · · , gn) (1)

Here wt and γt are respectively the model weights and learn-
ing rate at time t. A(·) is an aggregation function that is
usually an average function in classic distributed neural net-
works. Lastly, gi is the uploaded gradient. The Byzan-
tine faults may occur when some workers upload their gra-
dients. These Byzantine workers upload poisonous gradients
that could be caused by malicious attacks or hardware com-
putation errors, which means the uploaded gradient gi may
not be the same as the actual gradient gi. The generalized

Byzantine model that is defined in [Blanchard et al., 2017;
Xie et al., 2018] is:
Definition 1 (Generalized Byzantine Model).

(gi)j =

{
(gi)j if j-th dimension of gi is correct
arbitrary otherwise

(2)

We assume that there are at most α·n Byzantine workers in
this distributed system where α < 0.5. We also assume that
the Byzantine attackers have a full knowledge of the entire
system.

2.2 Byzantine Cases
We summarize the cases that Byzantine failures may occur
as: (i) workers are under attacks; (ii) workers are dishonest;
(iii) hardware faults cause computational faults; (iv) network
communication problem. We believe that (i) and (ii) are most
severe cases. Since we assume that the Byzantine workers
have a full knowledge of the entire system, the Byzantine
worker can manipulate the aggregated results to control the
convergence. Theoretically, we have:
Theorem 1. The byzantine worker can control the conver-
gence of the distributed training.

Proof. Because of (1) and that A(·) is an average function,
without loss of generality, we assumeworker1 is a Byzantine
worker. It only needs to upload g1 = n · r− g2 − · · · − gn so
that the aggregation result A(g1, g2, · · · , gn) = r. Therefore,
it can control the training process by choosing the appropriate
uploaded gradient so that the aggregated gradient becomes an
arbitrary r.

Since the Byzantine attack is harmful, we will introduce
FABA to resist Byzantine attacks in the next section.

3 Algorithm Details
In this section, we will discuss how FABA works and the con-
vergence proof.

3.1 FABA Overview
We know that if the Byzantine gradients are very close to the
average of honest gradients, the attack has almost no harm.
Our proposed method is based on the observation that (i) most
of the honest gradients do not differ much, and (ii) attack
gradients must be far away from the true gradients in order
to successfully affect the aggregation results. Note that the
honest gradients are computed by the average of mini batch
dataset in each honest worker. By Central Limit Theorem, as
long as the mini batch size is large enough and the dataset on
each worker is randomly selected, the gradients from differ-
ent workers will not differ much with high probability. We
propose Algorithm 1 based on these observations.

Algorithm 1 shows that in each iteration the parameter
server (PS) discards the outlier gradients from the current
average. Previous methods such as Krum keep only one gra-
dient no matter how many Byzantine workers are present,
which significantly impacts the performance. Our algorithm,
instead, can easily adjust the number of discarded gradients
based on the number of Byzantine workers. That is, the per-
formance will improve when the number of Byzantine work-
ers is small.
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Algorithm 1 FABA (PS Side)

Input:
The gradients computed from worker1, worker2, · · · ,
workern: Gg = {g1, g2, · · · , gn};
The weights at time t: wt;
The learning rate at time t: γt;
The assumed proportion of Byzantine workers: α;
Initialize k = 1.

Output:
The weights at time t+ 1: wt+1.

1: If k < α · n, continue, else go to Step 5;
2: Compute mean of Gg as g0;
3: For every gradient inGg , compute the difference between
g0 and it. Delete the one that has the largest difference
from G;

4: k = k + 1 and go back to Step 1;
5: Compute the mean ofGg as the aggregation result at time
t At;

6: Update wt+1 = wt − γt · At and send back the updated
weights wt+1 to each worker.

Figure 1: Uploaded Gradients Distribution

3.2 Convergence Guarantee
Next we show that Algorithm 1 can ensure that the aggrega-
tion results are close to the true gradients. Mathematically,
we have Lemma 1.

Lemma 1. Denote honest gradients as g1, g2, · · · , gm and
Byzantine gradients as a1, a2, · · · , ak and m + k = n. Let
gtrue = 1

m

∑m
i=1 gi. If we assume that ∃ε > 0, ||gi −

gtrue|| < ε for i = 1, 2, · · · ,m. Then after the process from
Algorithm 1, the distance between the remaining gradients
and gtrue is at most ε

1−2α .

Proof. As Figure 1 shows, the blue stars are honest gradients,
and the red stars are Byzantine gradients. gattack is defined as
the average of the attack gradients, i.e., gattack = 1

k

∑k
i=1 ai.

Here, gmean is the mean of all uploaded gradients from work-
ers, i.e., gmean = 1

n (
∑m
i=1 gi+

∑k
i=1 ai). In Figure 1, all the

blue stars lie in the ball with the center of gtrue and radius of
ε. It is obvious that we can compute gmean, but we do not
know the value of gtrue and gattack.

We first compute the position of gmean. It is apparent that
gmean lies on the line connecting gtrue and gattack. Because

the assumption that the proportion of Byzantine workers is no
more than α, here we assume that the number of Byzantine
workers is exactly α·n, so gmean = (1−α)·gtrue+α·gattack.
Denote the distance between gtrue and gattack is l, then the
distance between gmean and gtrue is α · l and the distance
between gmean and gattack is (1− α) · l.

Let us talk about two cases here:
• If l > ε

1−2α , this is equivalent to

α · l + ε < (1− α) · l (3)

(3) means the gmeangattack is larger than gmeangtrue+ε.
In the description of Algorithm 1, we are going to delete
gradient from one worker which is farthest from gmean.
In this case, because all the gradients in the ball are
closer to gmean than α · l + ε, and as we know, gattack
is the average of all attack gradients, ∃i ∈ {1, 2, · · · , k}
s.t.

||ai − gmean|| ≥ ||gattack − gmean|| > α · l + ε (4)

(4) means in this case, the gradient we delete is from
Byzantine worker.
• If l < ε

1−2α , we cannot ensure whether the gradients
that we delete are from Byzantine workers. However, we
can guarantee that if we delete gradients from the hon-
est workers, the remaining gradients are no more than
ε

1−2α from gtrue, because the gigmean < α · l + ε, if
we delete gradients from an honest worker rather than
from an Byzantine worker, the distance between gra-
dients of Byzantine worker and gmean must be smaller
than α · l + ε. In this case, all the remaining gradients
are within a ball with the center as gtrue and the radius
as l < ε

1−2α .

Combining these two cases, we have the conclusion that the
gradients we delete must (i) come from Byzantine workers or
(ii) come from an honest worker, but all the remaining gradi-
ents are within ε

1−2α distance to gtrue.
As we repeat this process α · n times, if the gradients we

delete are only from Byzantine workers, all the gradients re-
maining are from honest workers. Otherwise, if one of the
gradients we delete is from Byzantine workers, then all the re-
maining gradients are in such a ball as described before.

Lemma 1 ensures that aggregation results from the up-
loaded gradients are close to true gradients; ε

1−2α is similar
to ε when α is not very close to 0.5. This intuitively ensures
the convergence of Algorithm 1. But to prove it, next we also
need to guarantee that the lower order moments of the aggre-
gation results are limited by true gradients. Theoretically, we
have Lemma 2.
Lemma 2. Let the aggregation results that we get from Algo-
rithm 1 at time t areAt and denoteG as the correct gradients
estimator. If we assume ε < C · ||G|| while C is a small con-
stant, for r = 2, 3, 4, E||A||r is bounded above by a linear
combination of terms E||G||r1 , E||G||r2 , · · · , E||G||rl with
r1 + r2 + · · ·+ rl = r and l ≤ n− dα · ne+ 1.

Proof. After we proceed Algorithm 1, we delete α · n gra-
dients; assume that the gradients left are g(1), g(2), · · · , g(p)
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and p = n−dα·ne. From Lemma 1, we have ||g(i)−gtrue|| ≤
ε

1−2α for i ∈ {1, 2, · · · , p}. We know from Algorithm 1 that

||At|| = ||
1

p

p∑
i=1

g(i)|| (5)

There are at most α ·n attack gradients left here. Without loss
of generality, we assume that the last α · n gradients are from
attack workers. By triangle inequality, (5) is bounded By

||At|| ≤||g(1)||+ · · ·+ ||g(p−dα·ne)||+ ||g(p−dα·ne+1)||
+ · · ·+ ||g(p)||

≤||g(1)||+ · · ·+ ||g(p−dα·ne)||+

||gtrue||+
ε

1− 2α
+ · · ·+ ||gtrue||+

ε

1− 2α

≤||g(1)||+ · · ·+ ||g(p−dα·ne)||+
||gtrue|| · dα · ne+ C1 · ||G||

So we have

||At||r ≤ C2

∑
r1+···+rq+1=r

||g(1)||r1 · · · ||g(p−dα·ne)||rp−dα·ne ·

||gtrue||rp−dα·ne+1 · · · ||gtrue||rp ||G||rp+1

We make an expectation on both sides, and get

E||At||r ≤ C2

∑
r1+···+rq+1=r

||G||r1 · · · ||G||rp+1 (6)

Here r = 2, 3, 4 and C1, C2 are two constants.

Now we have the convergence of Algorithm 1.
Theorem 2. We assume that (i) the cost function cost(w)
is three times differentiable with continuous derivatives and
non-negative; (ii) the learning rates satisfy

∑
t γt = ∞ and∑

t γ
2
t < ∞; (iii) the gradients estimator satisfies EG =

∇Cost(w) and ∀r = 2, 3, 4, E||G||r ≤ Ar + BR||w||r
for some constants Ar, Br; (iv) ε < C · ||G|| and C is
a relatively small constant that is less than 1; (v) let θ =
arcsin ε

(1−2α)gtrue , beyond the surface ||w||2 > D, there ex-
ists e > 0 and 0 ≤ ψ < π

2 − θ, s.t.

||∇Cost(w)|| ≥ e > 0

〈w,∇Cost(w)〉
||w|| · ||∇Cost(w)||

≥ cosψ

Then the sequence of gradients∇Cost(wt) converges almost
surely to 0.

Proof. This proof follows Bottou’s proof in [Bottou, 1998]
and the proof of Proposition 2 in the supplementary material
of [Blanchard et al., 2017] with some modifications.

Condition (v) is complicated, so we use Figure 2 to clarify
it. The dotted circle means the ball that all honest gradients
lie in. By Lemma 1, At is in the ball whose center is gtrue
and radius is ε

1−2α . This assumption means that the angle
between wt and gtrue is less than ψ while ψ < π

2 − θ.
We start with showing the global confinement within the

region ||w|| ≤ D.

θ

ψ

Wt

At

gtrue

ε/(1-2α)

ε

Figure 2: Condition (v)

(Global confinement). Let

φ(x) =

{
0 if x < D

(x−D)2 otherwise

We denote ut = φ(||wt||2).
Because φ has the property that

φ(y)− φ(x) ≤ (y − x)φ′(x) + (y − x)2 (7)

We have

ut+1 − ut ≤ (−2γt〈wt, At〉+ γ2t ||At||2) · φ′(||wt||2)
+ 4γ2t 〈wt, At〉2 − 4γ3t 〈wt, At〉||At||2 + γ4t ||At||4

≤ −2γt〈wt, At〉φ′(||wt||2) + γ2t ||At||2φ′(||wt||2)
+ 4γ2t ||wt||2||At||2 + 4γ3t ||wt||||At||3 + γ4t ||At||4

Denote %t as the σ-algebra that represents the information in
time t. We can get the conditional expectation as

E(ut+1 − ut|%t)
≤− 2γt〈wt, EAt〉+ γ2tE(||At||2)φ′(||wt||2)
+4γ2t ||wt||2E(||At||2) + 4γ3t ||wt||E(||At||3) + γ4tE(||At||4)
By Lemma 2, there exist positive constantsX0, Y0, X, Y such
that

E(ut+1 − ut|%t) ≤− 2γt〈wt, EAt〉φ′(||wt||2)
+ γ2t (X0 + Y0||wt||4)
≤− 2γt〈wt, EAt〉φ′(||wt||2)
+ γ2t (X + Y · ut)

The first term in the right is 0 when ||wt||2 < D. When
||wt||2 ≥ D, because of Figure 2, we have

〈wt, EAt〉 ≥ ||wt|| · ||EAt|| · cos(θ + ψ) > 0

So we have

E(ut+1 − ut|%t) ≤ γ2t (X + Y · ut) (8)

For the following proof we define two auxiliary sequences
µt =

∏t−1
i=1

1
1+γ2

i Y
−−−→
t→∞

µ∞ and u′t = µtut.

Because of (8), we can move γ2t Y ·ut to the left and we get

E(u′t+1 − u′t|%t) ≤ γ2t µtX
Define an indicator function χt as

χt =

{
1 E(u′t+1 − u′t|%t) > 0

0 otherwise
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Then we have

E(χt(u
′
t+1 − u′t)) ≤ E(χt(u

′
t+1 − u′t|%t))

≤ γ2t µtX (9)

By the quasi-martingale convergence theorem [Métivier,
2011], (9) implies that the sequence u′t converges almost
surely, which also implies that ut converges almost surely,
that is, ut → u∞.

If we assume u∞ > 0, when t is large enough, we have
||wt||2 > D and ||wt+1||2 > D, so (7) becomes an equality.
This means that

∞∑
t=1

γt〈wt, EAt〉φ′(||wt||2) <∞

Since we have φ′(||wt||2) converge to a positive value and in
the region ||wt||2 > D, by the condition (iv) and (v), we have

〈wt, EAt〉 ≥
√
D||EAt|| cos(θ + ψ)

≥
√
D(||∇Cost(wt)|| −

ε

1− 2α
) cos(θ + ψ)

> 0

This contradicts the condition (ii). So we have the ut con-
verge to 0, which gives the global confinement that ||wt||
is bounded. As a result, any continuous function of wt is
bounded.

(Convergence) Once we proved thatwt is bounded, the rest
convergence part proof is the same as Bottou’s proof in [Bot-
tou, 1998]. Thus we proved Theorem 2.

3.3 Remarks
First, in our assumption, we assume ε < C · ||G|| and C
is a relatively small constant. This condition guarantees that
all the gradients from the honest workers gather together and
their difference is small. This condition is easy to satisfy
when the dataset that each worker get is uniformly chosen
and batch size is not very small. In most cases that distributed
training implements, the dataset is given by the PS and each
worker gets one slice of the entire dataset, thus it is almost
uniformly distributed. However, in other distributed train-
ing scenarios, such as different workers keep their own secret
datasets, the distribution of the datasets is unknown. As a re-
sult of that, each dataset can be biased, and thus condition (iv)
is not necessarily satisfied. We leave this for future work.

Second, we proved that the remaining gradients processed
after Algorithm 1 is within ε

1−2α to the true average gradient
in Lemma 1, so after taking the average, the aggregation re-
sults are also within ε

1−2α to it. Note that each honest worker
is within ε distance and each honest worker can get conver-
gence on their own. This intuitively shows the correctness of
our algorithm. In fact, if the Byzantine worker ratio is less
than 1

4 , this radius becomes 2ε. If the ratio is less than 1
8 , this

radius is 4
3ε. This is very close to ε. In practice, the ratio

of Byzantine workers is usually not high, which means our
algorithm has good performance in these scenarios.

Third, if we combine the first two remarks and θ =
arcsin ε

(1−2α)gtrue , θ must be small here. In Figure 2, we

know that condition (v) ensures that the angle between wt
and gtrue is less than a fixed ψ that ψ < π

2 − θ. Since the
value of α and condition (iv) guarantee that the θ is small,
condition (v) is easy to satisfy. This is different from the as-
sumption of Krum. In fact, their assumptions are difficult to
satisfy because the radius of the circle is too large since it is
related to the number of the dimensions in weights. In our al-
gorithm, condition (v) becomes similar to the condition (iv) in
Section 5.1 in [Bottou, 1998], which guarantees that beyond
a certain horizon, the update terms always moves wt closer to
the origin on average.

In the end, our algorithm keeps (1−α)n gradients to aggre-
gate. This maintains more information than previous meth-
ods. Moreover, in practice, if we do not know the number
of Byzantine workers, we can simply change the number of
iterations adaptively in Algorithm 1 to test whether we have
the right estimate. In the beginning, we can choose a small
number of iterations k for better performance. When it seems
to have more Byzantine workers, correspondingly we can in-
crease k to tolerate more Byzantine attacks. This can be done
during the training process, making it more flexible to balance
the tradeoff between performance and correctness.

4 Experiment
In this section, we are going to run our FABA in a simu-
lated Byzantine environment on MNIST dataset and CIFAR-
10 dataset. We chose the Byzantine proportion as 0.3, which
means 30% of the total workers are under attack and upload
noise as gradients. In the experiment, wo chose uniform and
Gaussian distribution to generate the attack gradients. Be-
cause the results are similar, here we only show the results
with uniform distribution in (−0.25, 0.25). This means each
coordinate in the Byzantine gradients is generated by a uni-
form random number from (−0.25, 0.25). Here, we only
compared FABA with Krum because in [Xie et al., 2018],
it is shown that the median methods and Krum have similar
convergence rate.

4.1 MNIST
We deployed a 32-worker environment on a server with 44
cores Intel E5-4669v4 and 792 GB RAM. Because we only
need to simulate the distributed environment with Byzantine
workers, we did not deploy this distributed environment on
several machines. We used a single machine with multiple
cores to simulate this environment on CPU. Since the Byzan-
tine proportion is 0.3, 9 out of 32 workers are Byzantine
workers.

We respectively implemented our algorithm and Krum on a
LeNet network in this Byzantine environment. Each worker
was trained using a batch size of 4, so the total batch size
is 128. Because MNIST converges quickly, we only trained
10 epochs here. For our algorithm and Krum algorithm, the
results are shown in Table 1.

As shown, our algorithm converges much faster than
Krum. We also plotted the loss change every 100 iterations
in Figure 3. The loss change is much larger in Krum than
our algorithm, which shows our algorithm is more stable than
Krum. Although it finally converges, it is more unstable. This
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Figure 5: Loss change every 100 iterations

Epoch 1 2 3 4 5
FABA 0.9536 0.9736 0.9725 0.9702 0.9649
Krum 0.6814 0.7306 0.7633 0.7684 0.7811
Epoch 6 7 8 9 10
FABA 0.9632 0.9551 0.9536 0.9552 0.9529
Krum 0.7553 0.7896 0.8035 0.8063 0.8112

Table 1: Accuracy of 10 Epoches for FABA and Krum on 32-worker
0.3 proportion Byzantine rate and 0.2 noise distribution
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Figure 3: Loss change every 100 iterations

is easy to understand because it only uses the gradient from
a single machine, whose batch size is 4 while our algorithm
use a batch size of 4× (32− 9) = 92. A large batch size will
lead to a faster and stable convergence.

4.2 CIFAR-10
We trained CIFAR-10 respectively on VGG-16, ResNet-18,
ResNet-34 and ResNet-50 networks. Since these neural net-
works are complicated and really slow to train in CPU envi-
ronment, we redeploy an 8-worker environment on a Google
Cloud instance with 8 vCPUs, 30 GB memory and 8 NVIDIA
Tesla K80 GPUs. Here, we still chose the Byzantine propor-
tion as 0.3. Each worker was trained using a batch size of 32,
so the total batch size was 256. Each GPU kept a same model
and was thought as a worker. We used learning rate 0.01,
momentum alpha 0.9 and weight decay as 5 × 10−4 for 80
epochs. We trained these models on Byzantine environment
respectively using our algorithm and Krum. We also com-
pared these results with the same distributed environment in
the non-Byzantine setting. Because the results for different
networks are similar, we only show the result in ResNet-18.
The results are shown in Figure 4. Here we use top-1 accu-
racy to compare their performance.

0 25 50 75
epoch

0.4

0.6

0.8

ac
cu
ra
cy

FABA
Krum
Non-Byzantine

Figure 4: Accuracy

Figure 4 shows the accuracy change through the epochs.
It is obvious that in this setting, our algorithm is much faster
than Krum and even reaches a higher top-1 accuracy. It also
shows that our algorithm achieves almost the same speed as
the non-Byzantine distributed training without Byzantine at-
tack, while there is only one or two epochs behind and the
final accuracy is almost the same. Figure 5 is the loss change
every 100 iterations. As we can see, our algorithm is almost
the same as the case without Byzantine, while Krum is much
more unstable than our algorithm. This shows that our algo-
rithm is enough to resist Byzantine worker.

5 Conclusion
As distributed neural networks become much more popular
and are being used more widely, people are beginning to en-
joy the efficiency and effectiveness brought by neural net-
works. However, such networks are also subject to Byzantine
attacks. In this paper, we proposed FABA to defend against
Byzantine attacks in distributed neural networks. We proved
the convergence of our algorithm. Experiments demonstrate
that our algorithm can achieve approximately the same speed
and accuracy as in the non-Byzantine settings, and the per-
formance is much better than previously proposed methods.
Additionally, FABA can extract more performance gain (by
retaining more gradients) depending on the number of Byzan-
tine workers compared with the prior work. It is easy to tune
the algorithm based on the number of Byzantine workers.
We believe this elegant algorithm can be widely used in dis-
tributed neural networks to defend against Byzantine attacks.
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