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Abstract: We consider the median estimation problem in a large-scale sensor augmented RFID 
system. The large-scale deployment of RFID technology has opened the door to innovative ways 
to integrate RFID and sensor technology. Sensor-tags are tags that can report over 50 types of 
physical information to a reader. The traditional way to obtain information from sensor-tags is to 
query each tag. When the number of tags is large, however, it is prohibitive to query tags 
individually due to the high delay. In this paper, we present a probabilistic algorithm to estimate 
the median of a set of sensor-RFID tags without individually querying each tag. The median 
estimation problem is solved using binary search. Our evaluation demonstrates that the median 
search algorithm exhibits high accuracy and reasonable time latency. Moreover, we also design 
an exact algorithm for the continuous median update problem. Our algorithm can incrementally 
compute the exact median in less time. 
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1 Introduction 

There are a lot of arguments for integrating RFID tags and 
sensors (Liu et al., 2008). RFID tags are unobtrusive, 
inexpensive, have a long lifetime and do not consume a lot of 
power (Buettner et al., 2008). Sensors on the other hand  
have sensing ability, need a source of power on-board and  
can communicate using multi-hop communication protocols. 
Sensors are also exhibiting more and more accuracy and 
sensitivity. We consider an application scenario in which RFID 
technology is used for identification and communication while 
sensor technology is used for sensing. Both the tag and the 
sensor are attached to an object which needs to be monitored. 
These sensor-tags have the capabilities of sensing and more 
powerful computational capabilities (Smith et al., 2006; 
Zhang et al., 2009) than ordinary tags. An example of tags 
integrated with sensors is WISP tags (Smith et al., 2006;  
Roy et al., 2010). WISP tags can report quantities such as 
temperature, liquid level, and light. Inside the WISP tags, the 
energy taken from the reader operates a 16-bit programmable, 
low power micro-controller unit. The micro-controller can 
sample data from the sensors and report that data when 
probed by the readers (Smith et al., 2006; Roy et al., 2010). 
These sensor readings can be very large in quantity and very 
wide in the range of values represented by the readings. The 
statistical distributions of the data values can vary according 
to deployment scenario and the objects to which the tags are 
attached. 

In reporting large amounts of data, it is sometimes 
important to estimate some order statistics, such as the median, 
of the data. Previous work has solved the median estimation 
problem in sensor networks (Greenwald and Khanna, 2001). In 
the sensor-RFID scenario, there are several challenges which 
must be overcome in order to compute the median in-network, 
at the reader. First, the communication pattern is very different 

because the tags can only communicate with the reader. 
Second, the tags are computationally weak compared with 
sensors. Another drawback is that if the median is computed 
at the reader then all tags must communicate with the reader 
simultaneously which will involve a lot of collisions, and be 
time consuming due to a lot of retransmissions. So, we 
propose a method to aggregate the data without reading all 
the tags. 

In this paper, we extend the median selection problem to 
the sensor-tag context. We assume that there is a warehouse 
in which milk cartons are stored, and each milk carton has a 
sensor-tag attached to it. The attached sensor-tag is capable 
of measuring the milk carton temperature. At any instant, 
we are interested in the temperature which gives an 
indication of the overall storage conditions at the storage 
facility. We are interested in the median temperature of the 
milk cartons due to its insensitiveness to outliers. We study 
how to infer median values by querying the sensor-tags 
without the necessity of actually collecting data values from 
these devices. Collecting specific data values from each tag 
would be similar to tag identification protocols in terms of 
time and power cost. We estimate the median by leveraging 
tag cardinality estimation algorithms. We envision that our 
technique can be applied to obtain other quantiles. Our 
contributions can be summarised as follows: 

 We design a median estimation algorithm based on 
binary search using a simple Threshold Checking 
Scheme (TCS; Sheng et al., 2008). TCS is used to test 
whether the number of active sensor-tags is more than a 
given threshold. By carefully selecting the relevant 
parameters, it is with a high probability that TCS 
returns true (Sheng et al., 2008) when the number of 
active sensor-tags exceeds a given threshold. To the 
best of our knowledge, this paper presents the first 
efficient median estimation algorithm for sensor-tags. 
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 We also design an algorithm to incrementally find the 
median when the median has to be updated continuously. 
Our algorithm merely queries a limited number tags that 
are significant to the median change. Our evaluation 
shows that the running time of the algorithm can be 
drastically lower than the naive scheme. 

2 Related work 

Numerous protocols to identify tags and estimate tag set 
cardinality have been proposed for RFID systems. All these 
protocols aim to minimise time and/or power consumption. 
Tag identification protocols can be divided into two main 
categories: the first category is tree-based protocols, in 
which the reader broadcasts an ID prefix and all the tags 
with IDs matching the prefix will reply. If there is a 
collision the reader will divide the tags into two groups and 
then query one group again. The reader continues splitting 
and probing until each individual tag is identified (Law  
et al., 2000; Micic et al., 2005; Myung and Lee, 2005). The 
second category is based on the ALOHA protocol and the 
Slotted ALOHA protocol (Madden et al., 2002a; Cha and 
Kim, 2005; Bonuccelli et al., 2006; Sheng et al., 2008; Tan 
et al., 2008; Sheng et al., 2010; Xie et al., 2010). 

Probabilistic estimation algorithms which efficiently 
estimate the cardinality of RFID tags have been proposed  
in numerous works (Cha and Kim, 2006; Kodialam and 
Nandagopal, 2006; Qian et al., 2008; Han et al., 2010). These 
estimation algorithms differ in the level of accuracy, speed, 
and power consumption. For example, Kodialam and 
Nandagopal (2006) obtained an estimate of 50,000 tags 
within a confidence interval of 500 tags in 4.5 s. The main 
concern with these protocols is that the upper bound on the 
number of tags must be known, in order to accurately 
estimate the cardinality of the set of tags within the specified 
error bound. 

In sensor networks a lot of work has been done on data 
aggregation techniques. In the work of Madden et al. (2002a), 
a declarative query interface was proposed that allowed users 
to perform aggregate operations such as MIN, MAX, 
MEDIAN, and similar operations. This approach showed 
improved performance over centralised techniques, since the 
sensors collaborated to obtain an accurate result. In the work 
of Patt-Shamir (2004) two algorithms were proposed to 
compute the median, a randomised protocol which computed 
an approximate median and a deterministic protocol which 
computed an exact median. In the work of Singh and 
Prasanna (2003) an algorithm is proposed for the selection of 
the i-th largest (smallest) element in single hop dense sensor 
networks. Finding the median is an example of the selection 
problem. 

Some research has been done on innovative systems 
which leverage both RFID and sensor technology. In an 
elderly group home floor mats were embedded with sensors, 
and RFID tags were attached to slippers in order monitor 
dementia patients in a discrete manner. This enabled 

caregivers to distinguish the patients and their movements 
(Miura et al., 2009). Some protocols for collecting sensor 
produced information from RFID tags are suggested in the 
literature (Chen et al., 2010; Qiao et al., 2011). To the best 
of our knowledge, no one has proposed a median search 
algorithm for sensor-tags. We believe the research in this 
paper on RFID sensors can be applied to other sensor 
network or security problems (Xuan et al., 2002; Ren et al., 
2005; Xing et al., 2005; Wang et al., 2008). 

3 System model and problem statement 

3.1 Slotted ALOHA 

We consider a system in which there are n RFID tags t1, t2, …, 
tn, integrated with sensors, each tag has a unique ID. We 
assume that associated with each RFID tag is a data value y, 
which represents the quantity measured by the sensor. 

Our communication model is built upon the slotted 
ALOHA protocol (Lee et al., 2005). In this protocol each 
frame is made up of a number of time slots. The reader 
broadcasts a frame size and a random seed S. A RFID tag 
uses a hash function H(), f, S and its ID to pick a slot to 
communicate in. In addition to these parameters, the reader 
broadcasts a number y, and only the tags with value less 
than y will communicate in the following round. 

In the slotted ALOHA protocol, an important parameter 
is the size of the frame. In our algorithm, the reader initiates 
the communication by sending a probe and zero or more 
tags will reply. Each tag chooses a slot to reply. If no tag 
replies in a slot it is called an empty slot. If a single tag 
replies in a slot it is called a singleton slot and if two or 
more tags reply in a slot it is called a collision slot. 

Suppose s0, s1, and sc are the number of empty, singleton, 
and collision slots, respectively, observed instantaneously by 
the reader. Let S0, S1, and Sc be random variable for no tags 
transmit in slot j, one tag transmits in slot j and more than two 
tags transmit in slot j. The expected values of the number of 
empty slots (E[S0]) and the collision slots (E[Sc]) are then 
(Kodialam and Nandagopal, 2006): 
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For proof see Kodialam and Nandagopal (2006). 

3.2 Problem definition 

Given an RFID reader and a large set of tags, we wish to 
accurately estimate the median value of the tags without  
probing each tag individually. The algorithm takes several 
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parameters as input (see Algorithm 1). Those parameters 
can be determined according to user’s accuracy requirement 
based on our later analysis. We omit how to determine those 
parameters in this paper. 

Table 1 Abbreviations 

Abbreviation Description 

Emax Maximum value 

Emin Minimum value 

n Number of tags 

nc Number of collision slots 

n0 Number of zero slots 

 Error bound on median estimation 

 Load factor t/f 

f Number of slots in a frame 

We use two performance metrics: 

1 We define the accuracy of the median estimation 
algorithm as how close the estimated median is to the real 
median. The performance of the algorithm is determined 
by the parameters specified in the algorithm input. 

2 The execution time of the median search algorithm is 
the time taken to estimate the median. 

4 Median estimation algorithm 

In this section, we describe our median estimation 
algorithm. We base our approach on binary search using 
TCS. The system is modelled as a reader and a set of tags. 
The reader probes the tags and gets a result when the 
queries terminate. We assume that each tag holds a data 
value yj. The set of all data values is given by Y. The 
number of data values, which in this case also represents the 
tag cardinality, is given by n. The maximum possible data 
value is given by Emax and the minimum possible data value 
is given by Emin. The binary search algorithm divides the tag 
set into two non-overlapping subsets of RFID tags, tags with 
values above the median value (M+) and tags with values 
below the median value (M–). After any iteration of the 
binary search algorithm we test M– to see if it is equal to 
half the total number of tags n/2. At this point the algorithm 
can carry out one of three actions depending on whether  
M– is less than, greater than or equal to n/2. We cannot 
provide a deterministic guarantee that the estimated median 
has 100% accuracy. We can optimise for accuracy by 
increasing the number of rounds in the TCS algorithm and 
increasing the number of iterations in the median search 
algorithm. We can also optimise for time by decreasing the 
accuracy in both algorithms. In summary, this algorithm 
gives us the flexibility to capture the trade-off between 
accuracy and time. 

The details of the algorithm are shown in Algorithm 1, 
where the input consists of frame size f, maximum number 
of tags n and Emin and Emax. 

The reader computes the load factor  = n/(2f) (Line 3) 

and calculates tc which is the expected number of  

Algorithm 1: Median estimation binary search algorithm

Input: , n, f, Emax, Emin; 
(/* error bound, tag number, frame size, 
max. and min. values of the tags */) 

Output: x; the median 
1 begin 
2      u = Emax; l = Emin; 
3        n/(2f); 

4      tc  f(1 – (1 + )e–); 

5      while true do 
6        x  (l + u)/2; 
7        Reader broadcasts f and x; 
8        Each tag with value less than x randomly 

picks a time slot to reply; 
9        Reader gets the number of collision slots nc; 

10      if nc > (1 + )tc then 

11        u  x; 

12      else if nc < (1 – )tc then 

13         l  x; 
14      else 
15         return x; 

collision slots (nc), if the number of responding tags is n/2 
and the frame size is f. 

The basis of the algorithm is a slotted ALOHA scheme 
(Lines 7–9). The estimated value for the median x is then 
computed. At the beginning, the RFID reader probes the 
tags by slotted ALOHA protocol with frame length f and the 
value x. Each tag picks a slot randomly and uniformly, and 
then transmits in that slot. For any slot in the frame, the 
reader can detect three events: no tag transmitting (empty 
slot), one tag transmitting (singleton slot), and multiple tags 
transmitting (collision slot). The reader will infer the 
number of tags based on the number of collision slots nc. 
We intentionally choose the number of collision slots 
because the number of singleton slots is not monotonic  
with respect to the number of tags. On the other hand, the 
estimator based on empty slots performs poorly compared to 
that based on collision slots in our situation, since we prefer 
smaller frame size, which implies a larger load factor. 

If the number of collision slots is greater or less than the 

t   then the median is set to a new value and the reader 

broadcasts this new value, otherwise the value x is the 
median (Lines 10–15). 

4.1 Threshold checking scheme 

In this section, we elaborate on the algorithm underlying our 
binary search implementation, the TCS (Sheng et al., 2008). 
The basic idea of TCS is to test whether the number of 
concerned tags (say an unknown value n) is greater or less 
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than a threshold (n).We can first calculate the expected 

number of collision slots (tc) given the number of tags (n) and 

frame size (f).We will then count the number of collision  
slots ( cn ) for the concerned tags and frame size f. If 

 1cn    t , then TCS asserts that the number of concerned 

tags is larger than n. If  1cn    t , TCS asserts that the 

number of concerned tags is less than n. The parameter  
determines the confidence level. Intuitively, the number of 
the collision slots is an indicator of the number of tags 
involved. TCS leverages the relationship between the number 
of collision slots and number of involved tags. 

The algorithm uses a query-based approach in which all 
the tags that have value below x transmit while the others do 
not transmit. This can be implemented in the following way: 
the reader broadcasts three numbers x, w, and z and each  
tag ti will transmit if the following condition holds 
H(x, yi) mod w = z (Sheng et al., 2008), where H is the hash 
function, and yi is the value held by the tag. The RFID tag 
will be active only if yi < x. The TCS algorithm uses the 
ALOHA scheme in which frame slots can be zero, singleton 
slots, or collision slots. In a typical ALOHA scheme, the 
collision and the singleton slots occupy a much larger time 
interval than the zero slot because in the non-zero slots the 
tags transmit their ID with Cyclic Redundancy Check 
(CRC). In the TCS scheme each tag transmits a short bit 
string to advertise its presence (< 10) bits (Kodialam and 
Nandagopal, 2006), so all the frame slots have a length 
which is short and represents one short slot S. The 
identification slots occupy a long slot L. 

The TCS algorithm can deliver accurate tag counts 
within the specified error bound when the parameters are 
carefully chosen, it is also very efficient because the frame 
is made up of short slots and, and the frame length is chosen 
by the user. 

TCS is sensitive to signal loss because the threshold is 
determined by the observed number of collision slots. So if 
any tag signal is lost a collision slot may become a singleton 
slot, if more than one tag signal is lost, a collision slot may 
become an empty slot (Sheng et al., 2008). This loss can be 
compensated for by carefully choosing the error bound 
according to the deployment environment. 

5 Theoretical analysis 

In this section, we provide theoretical guarantee of our 
binary search algorithm. Binary search involves several 
iterations, each of which gives a range for the median. We 
say the algorithm makes a wrong turn in an iteration if that 
iteration gives a wrong range of the median. If all iterations 
do not make a wrong turn, then the search terminates with a 
correct median. 

We first review some basic properties about RFID 
counting algorithm. For t tags and f time slots, the number 
of collision slots is a random variable, which we denote by  
 

nc. As mentioned before, Kodialam and Nandagopal (2006) 
shows that nc approximately follows normal distribution with 

    1 1cE n f e      (1) 
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where  = t/f is the load factor. 
We denote by F(x) the number of tags with value less 

than x. Let (x) be the cumulative distribution function for 
standard normal distribution such that 
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5.1 Probability of finding exact median 

In this subsection, we assume that tag values are integers 
(non-integers can be scaled). If all iterations do not make a 
wrong turn, then the search terminates within log L iterations 
where L is the length of tag value range. Our analysis consists 
of three steps. First, we bound the probability that an iteration 
makes a wrong turn. Second, we derive the probability that 
the current iteration stops if it encounters the median. Third, 
we bound the overall probability that the algorithm gives the 
median. 

We will give a probability guarantee that is irrelevant of 
tag value distribution. This is done by using a bound for the 
variance of collision slots. Consider equation (2). If we fix 

frame length f, then the variance s2 varies with respect to the 

number of tags. Note that varying t is equivalent to varying , 
so we consider  as the variable. We plot the function 

    2 31 1 2x xy e x x x x e        in Figure 1. This 

function is not a monotonic function with respect to load factor. 

We find that 2
max 0.1 f   at r = 2.44. In the following, we will 

use the term smax without mentioning its value. Note that our 

binary search algorithm also relies on equations (1) and (2). 

Specifically, tc is set according to equation (1). Its variance is 

    2 2 31 1 2
c

fe e           
t

 where r = n/(2f). 

Figure 1 Plot for     2 31 1 2x xy e x x x x e        (see online 

version for colours) 
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Denote the median value as m. We assume that no more 
than 1 tag has the value m. Therefore, we have F(m) = n/2 
(when n is odd, we can simply take a floor operation). 
Consider an iteration of the algorithm, and suppose the 
current candidate median is x. In an ideal case, if F(x) < n/2, 
then the iteration should turn right (i.e. l  x); if F(x) > n/2, 
then the iteration should turn left (i.e. u  x); otherwise, the 
iteration should break the loop. We will consider the wrong 
cases in the following. 

Consider the iteration that takes a wrong turn. We have 
the following lemma. 

Lemma 1: Suppose all previous iterations of the while loop 
give correct range, then the current iteration gives a wrong 
range, or terminates prematurely, with probability at most 

max

c

 

 
 

t
. 

Proof: Let [l, u] be the range of the median value at the 
previous iteration of the while loop. By assumption, m  [l, 
u]. Let z = (l + u)/2 and nz be the estimated number of 
collision slots (nc in the algorithm). Consider the two events 
that the algorithm takes a correct turn. 

1 F(z) > n/2 and nz > (1 + )tc. Since function (1) is 

monotonically increasing with respect to the number of 

tags, we have E[nz] > tc. To see this, note that F(z) is 

the number of tags in the expression E[nz], while n/2 is 

the number of tags corresponding to tc. Therefore, 
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2 F(z) < n/2 and nz < (1 – )tc. Similarly, we have E[nz] < tc 
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Since the two events are mutually exclusive, the proof is 
complete. 

Lemma 2: Suppose the current iteration of the while loop 
has candidate median x such that F(x) = n/2, then the 

algorithm terminates at current iteration with probability 
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Proof: Note that assumption F(x) = n/2 implies E[nc] = tc. 
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where the last equality comes from 
c cn  t . 

Combining the above two lemmas, we have the 
following theorem. 

Theorem 1: Algorithm 1 finds the median with probability at 

least 1 – b log L where L is the length of the tag value range 

and 

max

max 2 2 ,
c

c c 


 

                 t

t t
. 

Proof: Each iteration involves two desired events, a correct 
turn, and a correct termination. No matter what the ground-
truth situation is, the undesired event of each iteration 
happens with probability at most , according to Lemmas 1 
and 2. Since there are at most log L iterations, the undesired 
event for the whole procedure happens with probability at 
most  log L by union bound. The proof is now complete. 

It should be noted that the bound in Theorem 1 is 
independent of exact tag value distribution, and it is a loose 
bound in some situations. In the next subsection, we provide 
a tight performance guarantee that depends on tag value 
distribution. For the consumed time, note that there are at 
most log L iterations and each iteration takes a time interval 
proportional to the frame length f. Thus, the algorithm 
finishes within at most f log L time slots. 

5.2 Probability of finding approximate median 

Assuming that the underlying tag values are known, we can 
derive a tight bound. Recall that F(x) is the number of RFID 
tags with values less than x, and nx is the random variable 
indicating the estimated collision slots for F(x). With a little 
abuse of notation, we refer to the expectation and standard 

deviation of nx as x and sx, respectively (instead of 
xn  and 

xn ). It should be noted that x and sx are not random 

variables. They are determined by F(x) and frame length. 
With the assumption that tag values are known, we can 

compute x and sx for each x. 
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Define  as the event that the algorithm outputs a x with 

   1 1c x c     t t . This event is desired, and we 

want to bound its probability. It contains the following 
special event : the algorithm terminates correctly once the 
queried x is within the desired range. 

We will compute the probability of . The computation 
is still challenging due to the inherent dependency among 
consecutive iterations. 

Consider the iteration that should not terminate. 

Lemma 3: Suppose x is the candidate median. If 

x > (1 + )tc, then the current iteration takes a correct turn 

with probability 
 1x c

x

  

 

 
 

t
.  

If x < (1 – )tc, then the current iteration takes a correct 

turn with probability 
 1 c x

x

 


  
 
 

t
. 

Proof: Note that nx follows the normal distribution with 

expectation x and variance 2
x . For the case x > (1 + )tc, the 

current iteration takes a correct turn if and only if x > (1 + )tc. 

We have    1
Pr 1 x c

x c
x

n
  



 

       
 

t
t . For the 

case x < (1 – )tc, the current iteration takes a correct turn if 

and only if x < (1 – )tc, which happens with probability 

 1 c x

x

 


  
 
 

t
. 

Consider the iteration that should terminate. 

Lemma 4: Suppose x is the candidate median. If  1 c t  

 1x c   t , then the current iteration terminates with 

probability 
   1 1c x c x

x x

   
 

      
    
   

t t
. 

Proof: The theorem can be proved by noting that nx follows the 
normal distribution with expectation x and variance 2

x . 

We now study the property of the event . 

Lemma 5: For a given set of RFID values, the event  
happens if and only if (a) every iteration takes a correct 
turn if the queried x is not in the desired range, and (b) the 
algorithm terminates if the queried x is in the desired range. 

Proof: It is straightforward to see the ‘’. We show the 
‘’ part. We only consider about (a), since (b) follows 
immediately from the definition of . For (a), if at some 
iteration, the queried x is not in the desired range and either 
the algorithm terminates or the algorithm takes a wrong 
turn, then either the algorithm terminates prematurely so 
that  does not happen, or the algorithm cannot proceed to 
query a x in the desired range since all values in the desired 
range are excluded due to a wrong turn. 

This lemma implies that, for a given set of RFID values, the 
number of iterations involved in event  is fixed and is not a 
random variable. More importantly, there is actually a 
unique sequence of queried x, as described by the following 
corollary. 

Corollary 1: Let R be the range    1 , 1c c    t t . For a 

given set of RFID values, there is a unique iteration number 
t and a unique sequence of queried xi such that (a) 

ix R   

for i = 1, …, t – 1 and 
ix R  ; (b) at iteration 1i t  , the 

algorithm queries xi, and takes a correct turn; at iteration t, 
the algorithm terminates. 

According to Corollary 1, we may assume without loss of 
generality that the number of iterations is t. Let i be the 
event that iteration i takes a correct turn, and let  be the 
event that iteration t terminates. We can rewrite  in terms 
of i and : 

1 2 1t          (3) 

Note that i are not mutually independent. This is because, 
the previous i will inuence the current queried x, which can 
in turn influence the probability of the current i. In fact, 
this is the only causality link among i. 

Theorem 2: 

   1
Pr .i

i

x c

i I x

  




 
   

 


t
 

 1
.i

i

c x

i I x

 


  
  
 


t

 

   1 1
.t t

t t

c x c x

x x

   
 

       
             

t t
 

where xi are defined in Corollary 1,   1 1
ix cI i t        t  

and   1 1
ix cI i t        t . 

Proof: From equation (3), we have 

   
    

1 2 1

1 2 1 3 1 2

1 1 2 2 1 2 1

Pr Pr

Pr Pr Pr ,

Pr , , , Pr , , ,

t

t t t

    

     

       



  



     
       





 

   

. 

Let Xi be the random variable indicating the queried x at 
iteration i. According to Corollary 1, if all j happen for 
j < i, then Xi = xi. We can check that the inverse is also true. 
Thus, for i  2, we have 

1 1Pr , , Pr .i i i i iX x             

Additionally, note that X1 = x1 is always true so that 

 1 1 1 1Pr Pr .X x       
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Plugging them into the expression of Pr[] yields 

  1 1 1 2 2 2

1 1 1

Pr Pr Pr

Pr Pr .t t t t t

X x X x

X x X x

  

   

          
         


 

Rearranging the terms and using the results of Lemmas 3 
and 4 can prove the theorem. 

By Theorem 2, given a set of RFID values and the 
parameter settings of the algorithm, we can compute the 
probability of . We emphasise that this probability depends on 
the distribution of the RFID values. For example, we can easily 
construct a problem instance such that I+ = , and I– = , 

resulting in      
1 1

1 1

1 1
Pr c x c x

x x

   


 

      
       

   

t t
 

Recall that  is the event that the algorithm outputs a x with 

   1 1c x c     t t . 

Theorem 3: For any parameter setting of the algorithm, it 
holds that 

   Pr Pr  . 

and there exist problem instances such that    Pr Pr  . 

Proof: It is easy to see that    Pr Pr  .We show that the 

equality holds in some cases, and we construct one such 
case. Construct the set of RFID tag values such that  is 
equivalent to , i.e. if the algorithm does not terminate for 
the first time it encounters a desired x, then it will never 
encounter one again. Let the range R correspond to only one 
tag value, which can be done by setting enough number of 
tags with value equal to the median. In this case, any other 
tag value x will result in nx  R. Thus,  is equivalent to . 

Let x
 be the inverse function of x, i.e. 

x
x 

 . Then  is 

equivalent to    1 1c c
x   

  t t  where x is the output of 

the algorithm. 

Theorem 4: Let x be the output of the algorithm. Then 

     1 1Pr Pr
c c

x    
 

    t t  

where Pr[] can be computed by Theorem 2. 
In this theorem, the performance guarantees, both 

   1 1c c
x   

  t t and Pr[], depend on tag value 

distribution. This follows with intuition in that different 
distributions require different number of iterations of binary 
search. This fact also motivates our simulation methodology 
where we try different tag value distributions. 

6 Continuous median update 

In this section, we consider the scenario that median value 
should be updated continuously. For example, in temperature  
 
 

monitoring applications, we may request the median every 
few minutes. In this case, the straightforward solution is to 
treat every median query request separately and for each 
request use either a tag identification algorithm or our 
previous median estimation algorithm. Here, we show a more 
efficient algorithm to solve the problem. 

In practice, most of the sensor readings do not change 
drastically in a short period of time. Thus, the median does 
not change much. We can leverage this observation to 
design an algorithm that incrementally searches for the 
exact median. 

Formally, there are n tags 1, 2, …, n and tag i has value 
xij at time slot j. Let Xj be the multi-set (A multi-set is a 
generalisation of the notion of set where elements are 
allowed to appear more than once.) of tag values at time slot 
j, i.e. Xj = {xiji = 1,…, n}. Denote by mj the median value 
of Xj. Our task is to compute mj for j  1. In the rest of this 
section, unless otherwise specified, we assume the number n 
is odd so that the median value mj is from Xj. We defer the 
case when n is even to the end of this section. 

The basic idea of our algorithm is stated in the following 
theorem, which is straightforward to prove. 

Theorem 5: Given a real number x and an n-element multi-
set X where n is an odd number, denote by LX(x) the number 
of elements in X that are no larger than x, and SX(x) the 
number of elements in X that are strictly less than x. Then x 
is the median of X if and only if (a) LX(x) > n/2 and (b) 
SX(x) < n/2. 

Theorem 5 can be used as a statement for median 
verification. Whenever we have a candidate median x, we 
can check whether both LX(x) > n/2 and SX(x) < n/2 hold. If 
not, then we adjust the candidate median until we find a 
value x that can satisfy both LX(x) > n/2 and SX(x) < n/2. The 
exact adjustment is based on the following theorem. 

Theorem 6: Let X be a multi-set with elements x1, x2, …, xn 
sorted in ascending order where n is odd. Given a real 
number x, let 

1 2 1 1t t t nx x x x x x x        . 

If LX(x) > n/2, then the first xi in the list xt, xt–1, …, x1 that 
satisfies SX(xi) < n/2 is equal to the median; if LX(x) > n/2, 
then the first xi in the list xt+1, xt+2, …, xn that satisfies 
LX(xi) > n/2 is equal to the median. 

Based on Theorem 6, we maintain a variable LX(m) for 
each median computation request where m is the computed 
median. Whenever a new median computation request 
comes, we treat the previous median as a candidate median, 
test the condition LX(x) > n/2, and then find the ‘first’ 
satisfying value by querying tags with values around the 
candidate median. 

Specifically, suppose in the previous median computation, 
the tag value multi-set is X– and the median is m–. For a new 
median computation request, suppose the tag value multi-set is 
X. First, we treat m– as a candidate median and compute LX(m–). 
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This is done by using tag identification algorithm twice. 
At one time, we identify the number of tags whose previous 
values (in X–) are  m– but their current values (in X) are > 
m–. Let this number be n1. At the second time, we identify 
the number of tags whose previous values are > m– but  
their current values are  m–. Let this number be n2. 

Trivially,     1 2X XL m L m n n 
   . Since  XL m

  has 

been computed in last request, the consumed time by this 
step is the time to identify n1 + n2 tags. 

Second, find median by another round of tag identification. 

There are two cases depending on whether   / 2XL m n  . 

(a) If   / 2XL m n  , then the current median m is no larger 

than m–. Suppose the median change is bounded by   
(we consider the case when  is unknown later), then 

,m m m      . Using tag identification algorithm, we 

identify the tags with values in this range and collect their 
values. Let the collected values be t1, t2, … in descending order, 
and let i be the first index such that SX(ti) < n/2, then the median 
is equal to ti and        

iX X i tL m S t n   where 
it

n  is the number 

of collected values equal to ti. During this process, note that 

    
iX i X tS t L m n    where 

it
n  is the number of collected 

values larger than or equal to ti. (b) If   / 2XL m n  , then the 

current median m is strictly larger than m–. Again, suppose the 

median change is bounded by , then ,m m m      . We 

identify the set of tags with values in this range and collect their 
values. Let the collected values be t1, t2,… in ascending order, 
and let i be the first index such that   / 2X iL t n , then the 

median is equal to ti and    
iX i X tL t L m n    where 

it
n  is 

the number of collected values smaller than or equal to ti. 
It should be noted that the tag identification procedures 

mentioned above do not need to identify all tags. Instead, 
they only need to identify a fraction of tags that have 
corresponding property. This is in contrast to the naive 
scheme that identifies all tags. 

Algorithm 2 describes how we compute a new median 
based on information of the last median. The time 
consuming steps are at Lines 2, 3, 6, and 16. In situations 
where tag values change smoothly, the number of tags 
appearing in either of the identification processes is small; 
thus only a small fraction of time is necessary. 

As mentioned before, there are two issues left for further 
discussion. The first issue is that when  is unknown. In this 
case, we may set  as any value and iteratively increase  
until we can find desired i. The resulting tag identification 
process does not necessarily take longer time than the case 
when  is known. The second issue is that when the number 
of tags is even. In this case, Algorithm 2 may not output the 
exact median. However, since the number of tags in our 
situation is large, one tag value bias can barely influence the 
value of the median. Additionally, it is possible to find  
the exact median by modifying the refining step of the 
algorithm (Lines 5–24). We omit the tedious modifications. 

Algorithm 2: Continuous Median update 
Input: m–, L–, n, ; 
(/* the previous median; the previous 
number of tags with values no larger than 
the median, i.e. LX

–(m–); total number 
of tags; the maximum median change */) 
Output: m, L; current median and LX(m) 
1 begin 
2 identify the set of tags whose previous values 
are no larger than m– but their current values 
are larger than m–, set n1 as the number of 
such tags; 
3     identify the set of tags whose previous values 
     are larger than m– but their current values are 
     no larger than m–, set n2 as the number of 
     such tags; 
4      L  L– – n1 + n2; 
5      if L > n/2 then 
6        T  the multi-set of tag values who are in 
        the range [m– – , m–] (using tag 
        identification algorithm); 
7         sort T in descending order; 
8         i 1; 

9         s  n/2; 
10       while s  n/2 do 
11          

it
n   the number of values in T larger 

              than or equal to ti; 

12           s  L – it
n

; 
13          i  i + 1; 
14       m  ti; 
15       

it
n   the number of values in T equal to 

            ti; 
16         L  s + 

it
n ; 

17 else 
18        T  the multi-set of tag values who are in 
            the range (m–, m– + ] (using tag 
            identification algorithm); 
19        sort T in ascending order; 
20         i  1; 
21         s  n/2; 
22         while s  n/2 do 
23             

it
n   the number of values in T 

                  smaller than or equal to ti; 
24              s  L + 

it
n ; 

25              i  i + 1; 
26         m  ti; 
27         L  s; 

7 Performance analysis 

We evaluate the performance of the median estimation 
algorithm by simulation, and by comparing the algorithm to 
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a tag identification algorithm formally introduced below. 
The metric used is the time taken to correctly evaluate the 
median and the accuracy. We evaluated our algorithms for 
different statistical distributions of the tag value data y. 

The simulation parameters were set as follows. We set 
 = 0.15, we also varied the number of tags n from 1000 to 
50,000 tags. We carried out simulations on the uniform, 
normal and Weibull tag set distributions. The distribution 
parameters were set as follows: (a) uniform distribution: 
values drawn from the interval (0,1). (b) Normal distribution: 
values drawn from the standard normal distribution. (c) 
Weibull distribution: we set the scale parameter as 1 and the 
shape parameter as 1. We did not set the maximum and the 
minimum values. In Figure 2 we show the effect of load 
factor () on the error. We varied the load factor from 1 to 10 
in steps of 0.05 and we fixed the number of RFID tags at 
5000 tags. To reduce the variance of the experiment we 
conducted 100 simulations and then took the average. We 
used this simulation to set the load factor to 2.44. The frame 
length was then set to n/2.44. 

Figure 2 Error versus load factor for 5000 RFID tags (see online 
version for colours) 

 

The baseline tag identification method was used for comparison 
purposes. 

7.1 Baseline median estimation algorithm 

The baseline tag median estimation protocol collects all the 
tag IDs, and then queries each tag separately for its data 
value. This identification-like protocol gives the exact 
median value. In tag identification protocols each tag must 
be uniquely identified, so if there is a collision a tag will 
have to re-transmit its ID several times before the reader can 
correctly identify it. In DFSA (Cha and Kim, 2006) and 
EDFSA (Lee et al., 2005) each tag transmits its ID 2.72 
times. So the protocol execution time is 2.72  M  (L + S) 
(Li et al., 2010a; Li et al., 2010b), where L is a slot length 
which allows the transmission of a long response slot, S is a 
short slot which allows the transmission of only < 10 bits of 
information and M is the length of a slot which can transmit 
a tag ID. 

According to the specifications of the Phillips I-Code 
system S = 0.4 ms, L = 2.4 ms and M = 0.8 ms when the gap 
between transmissions are included. 

7.2 Running time 

We evaluate the time efficiency of the median binary search 
algorithm. We carried out simulations on the uniform, 
normal and Weibull distributions. The required threshold for 
the TCS scheme is set based on the total number of tags. 
The running time consists of two components: the time 
taken to check the threshold and the time (iterations) taken 
for binary search. In this paper, we use the fact that a long 
slot is equal to five short slots L = 5S (Sheng et al., 2008). 

Figures 3–5 show the results. In all the figures the solid line 
represents the time needed to converge for our algorithm while 
the dotted line represents the time needed by an identification 
algorithm for the median selection. We can see that the  
running time of our algorithm is significantly less than the  
tag identification algorithm. Additionally, for all three 
distributions, the running time of our algorithm increases 
slowly with the increase of number of tags. We find that the 
uniform distribution exhibited the best time performance. This 
is due to the fact that the tags are evenly distributed. The 
Weibull distribution has less improvement due to its fat tail. 

Figure 3 Execution time for the uniform distribution in time 
units, the error was set to  = 0:15 and the maximum 
and minimum tag values (Emax, Emin) were generated 
according to the parameters of the uniform distribution 
(see online version for colours) 

 

7.3 Accuracy 

In our simulation, the error is in the range of [0, 1]. We 
calculated the error as Absolute error = (M – Mest)/(Emax –
 Emin), where M is the real median and Mest is the estimated 
median. The closer the error is to one, the larger the error. 
The binary median search algorithm was tested with different 
tag set distributions via simulation; we observed that all the 
tests showed a high level of accuracy with high probability. 

In Figures 6–8, we analysed the absolute error for the 

different tag set cardinalities and found that the Weibull 
distribution exhibited a very large variance in the absolute error. 
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Figure 4 Execution time for the normal distribution in time 
units, the error was set to  = 0:15 and the maximum 
and minimum tag values (Emax, Emin) were generated 
according to the parameters of the normal distribution 
(see online version for colours) 

 

Figure 5 Execution time for the Weibull distribution in time 
units, the error was set to  = 0:15 and the maximum 
and minimum tag values (Emax, Emin) were generated 
according to the parameters of the Weibull distribution 
(see online version for colours) 

 

Figure 6 Absolute error in median value for the uniform 
distribution (see online version for colours) 

 

 

Figure 7 Absolute error in median value for the normal 
distribution (see online version for colours) 

 

Figure 8 Absolute error in median value for the Weibull 
distribution (see online version for colours) 

 

7.4 Continuous median update 

To study the effectiveness of Algorithm 2, we conduct 
trace-driven analysis. We use a temperature data set 
collected from 54 sensors, deployed in the Intel Berkeley 
Research lab between on 28th February and 5th April 2004 
(Intel, 2004). Since the number of sensors in the data set  
is small, we emulated virtual sensors by generating  
between 12 and 15 sensors spatially around each real sensor. 

These emulated sensors have values drawn uniformly 
and randomly from the real sensor’s value range. The 
resulting data set consists of 813 sensors. Those sensors are 
considered as RFID tags. Our goal is to compute the median 
at each time slot. The naive tag identification algorithm 
requires identifying 813 tags in each time slot. Our 
algorithm, on the other hand, only queries all tags in the first 
time slot for initialisation, and then adjusts the median in 
other time slots by Algorithm 2. We mainly study the 
number of tags to be queried by our algorithm. 

Figure 9 shows the improvement over the naïve scheme. 
We can see that, in most time slots, our algorithm only 
needs to query less than 25% of all tags, while the naive 
scheme needs to identify all of them. This improvement  
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does not sacrifice any accuracy, since both algorithms give 
accurate medians. In RFID systems, the number of queried 
tags is proportional to the time duration and energy 
consumption of identification process. Thus, our algorithm 
can save both time and energy. 

Figure 9 Required number of queried tags (see online version 
for colours) 

 

8 Conclusion 

In this paper, we studied the median estimation problem in a 
large-scale sensor RFID system. This implementation can 
be used with real-time data collected from tags in a system. 
We showed that the median can be estimated efficiently  
by probing the RFID tags using binary search. We also 
proposed an algorithm for continuous median update. Based 
on the observation that the sensor readings do not change 
rapidly, our algorithm can perform much better than the 
naïve algorithm that queries all tags. 
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