
Int. J. Sensor Networks, Vol. 12, No. 3, 2012 171

Copyright © 2012 Inderscience Enterprises Ltd.

Efficient median estimation for large-scale
sensor RFID systems

Huda El Hag Mustafa
Faculty of Mathematical Sciences,
University of Khartoum,
Khartoum 11115, Sudan
and
Department of Computer Science,
College of William and Mary,
Williamsburg, VA 23187, USA
Email: huda@cs.wm.edu

Xiaojun Zhu
State Key Laboratory for Novel Software Technology,
Nanjing University,
Nanjing, Jiangsu 210093, China
and
Department of Computer Science,
College of William and Mary,
Williamsburg, VA 23187, USA
Email: gxjzhu@gmail.com

Qun Li*
Department of Computer Science,
College of William and Mary,
Williamsburg, VA 23187, USA
Email: liqun@cs.wm.edu
*Corresponding author

Guihai Chen
State Key Laboratory for Novel Software Technology,
Nanjing University,
Nanjing, Jiangsu 210093, China
Email: gchen@nju.edu.cn

Abstract: We consider the median estimation problem in a large-scale sensor augmented RFID
system. The large-scale deployment of RFID technology has opened the door to innovative ways
to integrate RFID and sensor technology. Sensor-tags are tags that can report over 50 types of
physical information to a reader. The traditional way to obtain information from sensor-tags is to
query each tag. When the number of tags is large, however, it is prohibitive to query tags
individually due to the high delay. In this paper, we present a probabilistic algorithm to estimate
the median of a set of sensor-RFID tags without individually querying each tag. The median
estimation problem is solved using binary search. Our evaluation demonstrates that the median
search algorithm exhibits high accuracy and reasonable time latency. Moreover, we also design
an exact algorithm for the continuous median update problem. Our algorithm can incrementally
compute the exact median in less time.

Keywords: sensor; RFID tags; median; binary search; TCS; threshold checking scheme; continuous
median update.

Reference to this paper should be made as follows: Mustafa, H., Zhu, X., Li, Q. and Chen, G.
(2012) ‘Efficient median estimation for large-scale sensor RFID systems’, Int. J. Sensor
Networks, Vol. 12, No. 3, pp.171–183.

172 H. Mustafa et al.

Biographical notes: Huda El Hag Mustafa is currently a Visiting Research Scholar at the
Computer Science Department in the College of William and Mary. She is an Assistant Professor
at the Department of Computer Science in the University of Khartoum. She received her PhD
degree in Electrical Engineering from Khartoum University. Her research interests include RFID,
wireless networks, sensor networks, and security.

Xiaojun Zhu is currently a Visiting Student at the Computer Science Department in the College
of William and Mary. He is currently pursing his PhD degree at Nanjing University, Nanjing,
China. He received the BS in Computer Science from Nanjing University, Nanjing, China, in
2008. His current research interests include wireless sensor networks and vehicular networks.
The first two authors make equal contributions to this paper.

Qun Li is currently an Associate Professor in the Department of Computer Science at the College of
William and Mary. He received the PhD degree in Computer Science from Dartmouth College. He
received the US National Science Foundation (NSF) Career award in 2008. His research interests
include wireless networks, sensor networks, vehicular networks, RFID, pervasive computing
systems, smart grid, social networks, and security and privacy.

Guihai Chen is a Professor in Nanjing University, China. He received the BS degree from Nanjing
University in 1984, the ME degree from Southeast University in 1987, and the PhD degree from the
University of Hong Kong in 1997. He has a wide range of research interests with focus on sensor
networks, peer-to-peer computing, high-performance computer architecture, and combinatorics.

1 Introduction

There are a lot of arguments for integrating RFID tags and
sensors (Liu et al., 2008). RFID tags are unobtrusive,
inexpensive, have a long lifetime and do not consume a lot of
power (Buettner et al., 2008). Sensors on the other hand
have sensing ability, need a source of power on-board and
can communicate using multi-hop communication protocols.
Sensors are also exhibiting more and more accuracy and
sensitivity. We consider an application scenario in which RFID
technology is used for identification and communication while
sensor technology is used for sensing. Both the tag and the
sensor are attached to an object which needs to be monitored.
These sensor-tags have the capabilities of sensing and more
powerful computational capabilities (Smith et al., 2006;
Zhang et al., 2009) than ordinary tags. An example of tags
integrated with sensors is WISP tags (Smith et al., 2006;
Roy et al., 2010). WISP tags can report quantities such as
temperature, liquid level, and light. Inside the WISP tags, the
energy taken from the reader operates a 16-bit programmable,
low power micro-controller unit. The micro-controller can
sample data from the sensors and report that data when
probed by the readers (Smith et al., 2006; Roy et al., 2010).
These sensor readings can be very large in quantity and very
wide in the range of values represented by the readings. The
statistical distributions of the data values can vary according
to deployment scenario and the objects to which the tags are
attached.

In reporting large amounts of data, it is sometimes
important to estimate some order statistics, such as the median,
of the data. Previous work has solved the median estimation
problem in sensor networks (Greenwald and Khanna, 2001). In
the sensor-RFID scenario, there are several challenges which
must be overcome in order to compute the median in-network,
at the reader. First, the communication pattern is very different

because the tags can only communicate with the reader.
Second, the tags are computationally weak compared with
sensors. Another drawback is that if the median is computed
at the reader then all tags must communicate with the reader
simultaneously which will involve a lot of collisions, and be
time consuming due to a lot of retransmissions. So, we
propose a method to aggregate the data without reading all
the tags.

In this paper, we extend the median selection problem to
the sensor-tag context. We assume that there is a warehouse
in which milk cartons are stored, and each milk carton has a
sensor-tag attached to it. The attached sensor-tag is capable
of measuring the milk carton temperature. At any instant,
we are interested in the temperature which gives an
indication of the overall storage conditions at the storage
facility. We are interested in the median temperature of the
milk cartons due to its insensitiveness to outliers. We study
how to infer median values by querying the sensor-tags
without the necessity of actually collecting data values from
these devices. Collecting specific data values from each tag
would be similar to tag identification protocols in terms of
time and power cost. We estimate the median by leveraging
tag cardinality estimation algorithms. We envision that our
technique can be applied to obtain other quantiles. Our
contributions can be summarised as follows:

 We design a median estimation algorithm based on
binary search using a simple Threshold Checking
Scheme (TCS; Sheng et al., 2008). TCS is used to test
whether the number of active sensor-tags is more than a
given threshold. By carefully selecting the relevant
parameters, it is with a high probability that TCS
returns true (Sheng et al., 2008) when the number of
active sensor-tags exceeds a given threshold. To the
best of our knowledge, this paper presents the first
efficient median estimation algorithm for sensor-tags.

 Efficient median estimation for large-scale sensor RFID 173

 We also design an algorithm to incrementally find the
median when the median has to be updated continuously.
Our algorithm merely queries a limited number tags that
are significant to the median change. Our evaluation
shows that the running time of the algorithm can be
drastically lower than the naive scheme.

2 Related work

Numerous protocols to identify tags and estimate tag set
cardinality have been proposed for RFID systems. All these
protocols aim to minimise time and/or power consumption.
Tag identification protocols can be divided into two main
categories: the first category is tree-based protocols, in
which the reader broadcasts an ID prefix and all the tags
with IDs matching the prefix will reply. If there is a
collision the reader will divide the tags into two groups and
then query one group again. The reader continues splitting
and probing until each individual tag is identified (Law
et al., 2000; Micic et al., 2005; Myung and Lee, 2005). The
second category is based on the ALOHA protocol and the
Slotted ALOHA protocol (Madden et al., 2002a; Cha and
Kim, 2005; Bonuccelli et al., 2006; Sheng et al., 2008; Tan
et al., 2008; Sheng et al., 2010; Xie et al., 2010).

Probabilistic estimation algorithms which efficiently
estimate the cardinality of RFID tags have been proposed
in numerous works (Cha and Kim, 2006; Kodialam and
Nandagopal, 2006; Qian et al., 2008; Han et al., 2010). These
estimation algorithms differ in the level of accuracy, speed,
and power consumption. For example, Kodialam and
Nandagopal (2006) obtained an estimate of 50,000 tags
within a confidence interval of 500 tags in 4.5 s. The main
concern with these protocols is that the upper bound on the
number of tags must be known, in order to accurately
estimate the cardinality of the set of tags within the specified
error bound.

In sensor networks a lot of work has been done on data
aggregation techniques. In the work of Madden et al. (2002a),
a declarative query interface was proposed that allowed users
to perform aggregate operations such as MIN, MAX,
MEDIAN, and similar operations. This approach showed
improved performance over centralised techniques, since the
sensors collaborated to obtain an accurate result. In the work
of Patt-Shamir (2004) two algorithms were proposed to
compute the median, a randomised protocol which computed
an approximate median and a deterministic protocol which
computed an exact median. In the work of Singh and
Prasanna (2003) an algorithm is proposed for the selection of
the i-th largest (smallest) element in single hop dense sensor
networks. Finding the median is an example of the selection
problem.

Some research has been done on innovative systems
which leverage both RFID and sensor technology. In an
elderly group home floor mats were embedded with sensors,
and RFID tags were attached to slippers in order monitor
dementia patients in a discrete manner. This enabled

caregivers to distinguish the patients and their movements
(Miura et al., 2009). Some protocols for collecting sensor
produced information from RFID tags are suggested in the
literature (Chen et al., 2010; Qiao et al., 2011). To the best
of our knowledge, no one has proposed a median search
algorithm for sensor-tags. We believe the research in this
paper on RFID sensors can be applied to other sensor
network or security problems (Xuan et al., 2002; Ren et al.,
2005; Xing et al., 2005; Wang et al., 2008).

3 System model and problem statement

3.1 Slotted ALOHA

We consider a system in which there are n RFID tags t1, t2, …,
tn, integrated with sensors, each tag has a unique ID. We
assume that associated with each RFID tag is a data value y,
which represents the quantity measured by the sensor.

Our communication model is built upon the slotted
ALOHA protocol (Lee et al., 2005). In this protocol each
frame is made up of a number of time slots. The reader
broadcasts a frame size and a random seed S. A RFID tag
uses a hash function H(), f, S and its ID to pick a slot to
communicate in. In addition to these parameters, the reader
broadcasts a number y, and only the tags with value less
than y will communicate in the following round.

In the slotted ALOHA protocol, an important parameter
is the size of the frame. In our algorithm, the reader initiates
the communication by sending a probe and zero or more
tags will reply. Each tag chooses a slot to reply. If no tag
replies in a slot it is called an empty slot. If a single tag
replies in a slot it is called a singleton slot and if two or
more tags reply in a slot it is called a collision slot.

Suppose s0, s1, and sc are the number of empty, singleton,
and collision slots, respectively, observed instantaneously by
the reader. Let S0, S1, and Sc be random variable for no tags
transmit in slot j, one tag transmits in slot j and more than two
tags transmit in slot j. The expected values of the number of
empty slots (E[S0]) and the collision slots (E[Sc]) are then
(Kodialam and Nandagopal, 2006):

 
  

 
  

    
    

0

2
0

1

2
1

2 2 3

1 1

1 1

1 1

1 1 2

c

c

E S fe

fe e

E S f e

fe e

E S f e

fe e



 



 



 

 



 



    



 



 



 



  



  

  

     

For proof see Kodialam and Nandagopal (2006).

3.2 Problem definition

Given an RFID reader and a large set of tags, we wish to
accurately estimate the median value of the tags without
probing each tag individually. The algorithm takes several

174 H. Mustafa et al.

parameters as input (see Algorithm 1). Those parameters
can be determined according to user’s accuracy requirement
based on our later analysis. We omit how to determine those
parameters in this paper.

Table 1 Abbreviations

Abbreviation Description

Emax Maximum value

Emin Minimum value

n Number of tags

nc Number of collision slots

n0 Number of zero slots

 Error bound on median estimation

 Load factor t/f

f Number of slots in a frame

We use two performance metrics:

1 We define the accuracy of the median estimation
algorithm as how close the estimated median is to the real
median. The performance of the algorithm is determined
by the parameters specified in the algorithm input.

2 The execution time of the median search algorithm is
the time taken to estimate the median.

4 Median estimation algorithm

In this section, we describe our median estimation
algorithm. We base our approach on binary search using
TCS. The system is modelled as a reader and a set of tags.
The reader probes the tags and gets a result when the
queries terminate. We assume that each tag holds a data
value yj. The set of all data values is given by Y. The
number of data values, which in this case also represents the
tag cardinality, is given by n. The maximum possible data
value is given by Emax and the minimum possible data value
is given by Emin. The binary search algorithm divides the tag
set into two non-overlapping subsets of RFID tags, tags with
values above the median value (M+) and tags with values
below the median value (M–). After any iteration of the
binary search algorithm we test M– to see if it is equal to
half the total number of tags n/2. At this point the algorithm
can carry out one of three actions depending on whether
M– is less than, greater than or equal to n/2. We cannot
provide a deterministic guarantee that the estimated median
has 100% accuracy. We can optimise for accuracy by
increasing the number of rounds in the TCS algorithm and
increasing the number of iterations in the median search
algorithm. We can also optimise for time by decreasing the
accuracy in both algorithms. In summary, this algorithm
gives us the flexibility to capture the trade-off between
accuracy and time.

The details of the algorithm are shown in Algorithm 1,
where the input consists of frame size f, maximum number
of tags n and Emin and Emax.

The reader computes the load factor  = n/(2f) (Line 3)

and calculates tc which is the expected number of

Algorithm 1: Median estimation binary search algorithm

Input: , n, f, Emax, Emin;
(/* error bound, tag number, frame size,
max. and min. values of the tags */)

Output: x; the median
1 begin
2 u = Emax; l = Emin;
3   n/(2f);

4 tc  f(1 – (1 + )e–);

5 while true do
6 x  (l + u)/2;
7 Reader broadcasts f and x;
8 Each tag with value less than x randomly

picks a time slot to reply;
9 Reader gets the number of collision slots nc;

10 if nc > (1 + )tc then

11 u  x;

12 else if nc < (1 – )tc then

13 l  x;
14 else
15 return x;

collision slots (nc), if the number of responding tags is n/2
and the frame size is f.

The basis of the algorithm is a slotted ALOHA scheme
(Lines 7–9). The estimated value for the median x is then
computed. At the beginning, the RFID reader probes the
tags by slotted ALOHA protocol with frame length f and the
value x. Each tag picks a slot randomly and uniformly, and
then transmits in that slot. For any slot in the frame, the
reader can detect three events: no tag transmitting (empty
slot), one tag transmitting (singleton slot), and multiple tags
transmitting (collision slot). The reader will infer the
number of tags based on the number of collision slots nc.
We intentionally choose the number of collision slots
because the number of singleton slots is not monotonic
with respect to the number of tags. On the other hand, the
estimator based on empty slots performs poorly compared to
that based on collision slots in our situation, since we prefer
smaller frame size, which implies a larger load factor.

If the number of collision slots is greater or less than the

t   then the median is set to a new value and the reader

broadcasts this new value, otherwise the value x is the
median (Lines 10–15).

4.1 Threshold checking scheme

In this section, we elaborate on the algorithm underlying our
binary search implementation, the TCS (Sheng et al., 2008).
The basic idea of TCS is to test whether the number of
concerned tags (say an unknown value n) is greater or less

 Efficient median estimation for large-scale sensor RFID 175

than a threshold (n).We can first calculate the expected

number of collision slots (tc) given the number of tags (n) and

frame size (f).We will then count the number of collision
slots (cn) for the concerned tags and frame size f. If

 1cn    t , then TCS asserts that the number of concerned

tags is larger than n. If  1cn    t , TCS asserts that the

number of concerned tags is less than n. The parameter 
determines the confidence level. Intuitively, the number of
the collision slots is an indicator of the number of tags
involved. TCS leverages the relationship between the number
of collision slots and number of involved tags.

The algorithm uses a query-based approach in which all
the tags that have value below x transmit while the others do
not transmit. This can be implemented in the following way:
the reader broadcasts three numbers x, w, and z and each
tag ti will transmit if the following condition holds
H(x, yi) mod w = z (Sheng et al., 2008), where H is the hash
function, and yi is the value held by the tag. The RFID tag
will be active only if yi < x. The TCS algorithm uses the
ALOHA scheme in which frame slots can be zero, singleton
slots, or collision slots. In a typical ALOHA scheme, the
collision and the singleton slots occupy a much larger time
interval than the zero slot because in the non-zero slots the
tags transmit their ID with Cyclic Redundancy Check
(CRC). In the TCS scheme each tag transmits a short bit
string to advertise its presence (< 10) bits (Kodialam and
Nandagopal, 2006), so all the frame slots have a length
which is short and represents one short slot S. The
identification slots occupy a long slot L.

The TCS algorithm can deliver accurate tag counts
within the specified error bound when the parameters are
carefully chosen, it is also very efficient because the frame
is made up of short slots and, and the frame length is chosen
by the user.

TCS is sensitive to signal loss because the threshold is
determined by the observed number of collision slots. So if
any tag signal is lost a collision slot may become a singleton
slot, if more than one tag signal is lost, a collision slot may
become an empty slot (Sheng et al., 2008). This loss can be
compensated for by carefully choosing the error bound
according to the deployment environment.

5 Theoretical analysis

In this section, we provide theoretical guarantee of our
binary search algorithm. Binary search involves several
iterations, each of which gives a range for the median. We
say the algorithm makes a wrong turn in an iteration if that
iteration gives a wrong range of the median. If all iterations
do not make a wrong turn, then the search terminates with a
correct median.

We first review some basic properties about RFID
counting algorithm. For t tags and f time slots, the number
of collision slots is a random variable, which we denote by

nc. As mentioned before, Kodialam and Nandagopal (2006)
shows that nc approximately follows normal distribution with

    1 1cE n f e     (1)

    2 2 31 1 2fe e            (2)

where  = t/f is the load factor.
We denote by F(x) the number of tags with value less

than x. Let (x) be the cumulative distribution function for
standard normal distribution such that

 
21

2
1

.
2

tx
x e dt






  

5.1 Probability of finding exact median

In this subsection, we assume that tag values are integers
(non-integers can be scaled). If all iterations do not make a
wrong turn, then the search terminates within log L iterations
where L is the length of tag value range. Our analysis consists
of three steps. First, we bound the probability that an iteration
makes a wrong turn. Second, we derive the probability that
the current iteration stops if it encounters the median. Third,
we bound the overall probability that the algorithm gives the
median.

We will give a probability guarantee that is irrelevant of
tag value distribution. This is done by using a bound for the
variance of collision slots. Consider equation (2). If we fix

frame length f, then the variance s2 varies with respect to the

number of tags. Note that varying t is equivalent to varying ,
so we consider  as the variable. We plot the function

    2 31 1 2x xy e x x x x e       in Figure 1. This

function is not a monotonic function with respect to load factor.

We find that 2
max 0.1 f  at r = 2.44. In the following, we will

use the term smax without mentioning its value. Note that our

binary search algorithm also relies on equations (1) and (2).

Specifically, tc is set according to equation (1). Its variance is

    2 2 31 1 2
c

fe e           
t

 where r = n/(2f).

Figure 1 Plot for     2 31 1 2x xy e x x x x e       (see online

version for colours)

176 H. Mustafa et al.

Denote the median value as m. We assume that no more
than 1 tag has the value m. Therefore, we have F(m) = n/2
(when n is odd, we can simply take a floor operation).
Consider an iteration of the algorithm, and suppose the
current candidate median is x. In an ideal case, if F(x) < n/2,
then the iteration should turn right (i.e. l  x); if F(x) > n/2,
then the iteration should turn left (i.e. u  x); otherwise, the
iteration should break the loop. We will consider the wrong
cases in the following.

Consider the iteration that takes a wrong turn. We have
the following lemma.

Lemma 1: Suppose all previous iterations of the while loop
give correct range, then the current iteration gives a wrong
range, or terminates prematurely, with probability at most

max

c

 

 
 

t
.

Proof: Let [l, u] be the range of the median value at the
previous iteration of the while loop. By assumption, m  [l,
u]. Let z = (l + u)/2 and nz be the estimated number of
collision slots (nc in the algorithm). Consider the two events
that the algorithm takes a correct turn.

1 F(z) > n/2 and nz > (1 + )tc. Since function (1) is

monotonically increasing with respect to the number of

tags, we have E[nz] > tc. To see this, note that F(z) is

the number of tags in the expression E[nz], while n/2 is

the number of tags corresponding to tc. Therefore,

 
     

   

   
max

Pr 1

1
Pr

1
1

1

z z

z

z

z c

z z c z

n n

c z

n

z c c

n

n

n E n E n

E n

E n




 




 
 

   
   

   
 
  

   
 

    
           

t

t

t

t t

.

2 F(z) < n/2 and nz < (1 – )tc. Similarly, we have E[nz] < tc

and

 
     

   
max

Pr 1

1
Pr

1

z z

z

z c

z z c z

n n

c z c

n

n

n E n E n

E n




 

 
 

   
   

  
  
    

           

t

t

t t

.

Since the two events are mutually exclusive, the proof is
complete.

Lemma 2: Suppose the current iteration of the while loop
has candidate median x such that F(x) = n/2, then the

algorithm terminates at current iteration with probability

2 1
c

c


 
   
 t

t
.

Proof: Note that assumption F(x) = n/2 implies E[nc] = tc.

Therefore,

   Pr 1 1

Pr

2 1

c c c

c c c

c c c c

n n n

c

c

n

n

 

 
  




     
 

    
 
 

   
 

t t

t t t

t
t

-

where the last equality comes from
c cn  t .

Combining the above two lemmas, we have the
following theorem.

Theorem 1: Algorithm 1 finds the median with probability at

least 1 – b log L where L is the length of the tag value range

and

max

max 2 2 ,
c

c c 


 

                 t

t t
.

Proof: Each iteration involves two desired events, a correct
turn, and a correct termination. No matter what the ground-
truth situation is, the undesired event of each iteration
happens with probability at most , according to Lemmas 1
and 2. Since there are at most log L iterations, the undesired
event for the whole procedure happens with probability at
most  log L by union bound. The proof is now complete.

It should be noted that the bound in Theorem 1 is
independent of exact tag value distribution, and it is a loose
bound in some situations. In the next subsection, we provide
a tight performance guarantee that depends on tag value
distribution. For the consumed time, note that there are at
most log L iterations and each iteration takes a time interval
proportional to the frame length f. Thus, the algorithm
finishes within at most f log L time slots.

5.2 Probability of finding approximate median

Assuming that the underlying tag values are known, we can
derive a tight bound. Recall that F(x) is the number of RFID
tags with values less than x, and nx is the random variable
indicating the estimated collision slots for F(x). With a little
abuse of notation, we refer to the expectation and standard

deviation of nx as x and sx, respectively (instead of
xn and

xn). It should be noted that x and sx are not random

variables. They are determined by F(x) and frame length.
With the assumption that tag values are known, we can

compute x and sx for each x.

 Efficient median estimation for large-scale sensor RFID 177

Define  as the event that the algorithm outputs a x with

   1 1c x c     t t . This event is desired, and we

want to bound its probability. It contains the following
special event : the algorithm terminates correctly once the
queried x is within the desired range.

We will compute the probability of . The computation
is still challenging due to the inherent dependency among
consecutive iterations.

Consider the iteration that should not terminate.

Lemma 3: Suppose x is the candidate median. If

x > (1 + )tc, then the current iteration takes a correct turn

with probability
 1x c

x

  

 

 
 

t
.

If x < (1 – )tc, then the current iteration takes a correct

turn with probability
 1 c x

x

 


  
 
 

t
.

Proof: Note that nx follows the normal distribution with

expectation x and variance 2
x . For the case x > (1 + )tc, the

current iteration takes a correct turn if and only if x > (1 + )tc.

We have    1
Pr 1 x c

x c
x

n
  



 

       
 

t
t . For the

case x < (1 – )tc, the current iteration takes a correct turn if

and only if x < (1 – )tc, which happens with probability

 1 c x

x

 


  
 
 

t
.

Consider the iteration that should terminate.

Lemma 4: Suppose x is the candidate median. If  1 c t

 1x c   t , then the current iteration terminates with

probability
   1 1c x c x

x x

   
 

      
    
   

t t
.

Proof: The theorem can be proved by noting that nx follows the
normal distribution with expectation x and variance 2

x .

We now study the property of the event .

Lemma 5: For a given set of RFID values, the event 
happens if and only if (a) every iteration takes a correct
turn if the queried x is not in the desired range, and (b) the
algorithm terminates if the queried x is in the desired range.

Proof: It is straightforward to see the ‘’. We show the
‘’ part. We only consider about (a), since (b) follows
immediately from the definition of . For (a), if at some
iteration, the queried x is not in the desired range and either
the algorithm terminates or the algorithm takes a wrong
turn, then either the algorithm terminates prematurely so
that  does not happen, or the algorithm cannot proceed to
query a x in the desired range since all values in the desired
range are excluded due to a wrong turn.

This lemma implies that, for a given set of RFID values, the
number of iterations involved in event  is fixed and is not a
random variable. More importantly, there is actually a
unique sequence of queried x, as described by the following
corollary.

Corollary 1: Let R be the range    1 , 1c c    t t . For a

given set of RFID values, there is a unique iteration number
t and a unique sequence of queried xi such that (a)

ix R 

for i = 1, …, t – 1 and
ix R  ; (b) at iteration 1i t  , the

algorithm queries xi, and takes a correct turn; at iteration t,
the algorithm terminates.

According to Corollary 1, we may assume without loss of
generality that the number of iterations is t. Let i be the
event that iteration i takes a correct turn, and let  be the
event that iteration t terminates. We can rewrite  in terms
of i and :

1 2 1t         (3)

Note that i are not mutually independent. This is because,
the previous i will inuence the current queried x, which can
in turn influence the probability of the current i. In fact,
this is the only causality link among i.

Theorem 2:

   1
Pr .i

i

x c

i I x

  




 
   

 


t

 1
.i

i

c x

i I x

 


  
  
 


t

   1 1
.t t

t t

c x c x

x x

   
 

       
             

t t

where xi are defined in Corollary 1,   1 1
ix cI i t        t

and   1 1
ix cI i t        t .

Proof: From equation (3), we have

   
    

1 2 1

1 2 1 3 1 2

1 1 2 2 1 2 1

Pr Pr

Pr Pr Pr ,

Pr , , , Pr , , ,

t

t t t

    

     

       



  



     
       





 

   

.

Let Xi be the random variable indicating the queried x at
iteration i. According to Corollary 1, if all j happen for
j < i, then Xi = xi. We can check that the inverse is also true.
Thus, for i  2, we have

1 1Pr , , Pr .i i i i iX x           

Additionally, note that X1 = x1 is always true so that

 1 1 1 1Pr Pr .X x     

178 H. Mustafa et al.

Plugging them into the expression of Pr[] yields

  1 1 1 2 2 2

1 1 1

Pr Pr Pr

Pr Pr .t t t t t

X x X x

X x X x

  

   

          
         



Rearranging the terms and using the results of Lemmas 3
and 4 can prove the theorem.

By Theorem 2, given a set of RFID values and the
parameter settings of the algorithm, we can compute the
probability of . We emphasise that this probability depends on
the distribution of the RFID values. For example, we can easily
construct a problem instance such that I+ = , and I– = ,

resulting in      
1 1

1 1

1 1
Pr c x c x

x x

   


 

      
       

   

t t

Recall that  is the event that the algorithm outputs a x with

   1 1c x c     t t .

Theorem 3: For any parameter setting of the algorithm, it
holds that

   Pr Pr  .

and there exist problem instances such that    Pr Pr  .

Proof: It is easy to see that    Pr Pr  .We show that the

equality holds in some cases, and we construct one such
case. Construct the set of RFID tag values such that  is
equivalent to , i.e. if the algorithm does not terminate for
the first time it encounters a desired x, then it will never
encounter one again. Let the range R correspond to only one
tag value, which can be done by setting enough number of
tags with value equal to the median. In this case, any other
tag value x will result in nx  R. Thus,  is equivalent to .

Let x
 be the inverse function of x, i.e.

x
x 

 . Then  is

equivalent to    1 1c c
x   

  t t where x is the output of

the algorithm.

Theorem 4: Let x be the output of the algorithm. Then

     1 1Pr Pr
c c

x    
 

    t t

where Pr[] can be computed by Theorem 2.
In this theorem, the performance guarantees, both

   1 1c c
x   

  t t and Pr[], depend on tag value

distribution. This follows with intuition in that different
distributions require different number of iterations of binary
search. This fact also motivates our simulation methodology
where we try different tag value distributions.

6 Continuous median update

In this section, we consider the scenario that median value
should be updated continuously. For example, in temperature

monitoring applications, we may request the median every
few minutes. In this case, the straightforward solution is to
treat every median query request separately and for each
request use either a tag identification algorithm or our
previous median estimation algorithm. Here, we show a more
efficient algorithm to solve the problem.

In practice, most of the sensor readings do not change
drastically in a short period of time. Thus, the median does
not change much. We can leverage this observation to
design an algorithm that incrementally searches for the
exact median.

Formally, there are n tags 1, 2, …, n and tag i has value
xij at time slot j. Let Xj be the multi-set (A multi-set is a
generalisation of the notion of set where elements are
allowed to appear more than once.) of tag values at time slot
j, i.e. Xj = {xiji = 1,…, n}. Denote by mj the median value
of Xj. Our task is to compute mj for j  1. In the rest of this
section, unless otherwise specified, we assume the number n
is odd so that the median value mj is from Xj. We defer the
case when n is even to the end of this section.

The basic idea of our algorithm is stated in the following
theorem, which is straightforward to prove.

Theorem 5: Given a real number x and an n-element multi-
set X where n is an odd number, denote by LX(x) the number
of elements in X that are no larger than x, and SX(x) the
number of elements in X that are strictly less than x. Then x
is the median of X if and only if (a) LX(x) > n/2 and (b)
SX(x) < n/2.

Theorem 5 can be used as a statement for median
verification. Whenever we have a candidate median x, we
can check whether both LX(x) > n/2 and SX(x) < n/2 hold. If
not, then we adjust the candidate median until we find a
value x that can satisfy both LX(x) > n/2 and SX(x) < n/2. The
exact adjustment is based on the following theorem.

Theorem 6: Let X be a multi-set with elements x1, x2, …, xn
sorted in ascending order where n is odd. Given a real
number x, let

1 2 1 1t t t nx x x x x x x        .

If LX(x) > n/2, then the first xi in the list xt, xt–1, …, x1 that
satisfies SX(xi) < n/2 is equal to the median; if LX(x) > n/2,
then the first xi in the list xt+1, xt+2, …, xn that satisfies
LX(xi) > n/2 is equal to the median.

Based on Theorem 6, we maintain a variable LX(m) for
each median computation request where m is the computed
median. Whenever a new median computation request
comes, we treat the previous median as a candidate median,
test the condition LX(x) > n/2, and then find the ‘first’
satisfying value by querying tags with values around the
candidate median.

Specifically, suppose in the previous median computation,
the tag value multi-set is X– and the median is m–. For a new
median computation request, suppose the tag value multi-set is
X. First, we treat m– as a candidate median and compute LX(m–).

 Efficient median estimation for large-scale sensor RFID 179

This is done by using tag identification algorithm twice.
At one time, we identify the number of tags whose previous
values (in X–) are  m– but their current values (in X) are >
m–. Let this number be n1. At the second time, we identify
the number of tags whose previous values are > m– but
their current values are  m–. Let this number be n2.

Trivially,     1 2X XL m L m n n 
   . Since  XL m

 has

been computed in last request, the consumed time by this
step is the time to identify n1 + n2 tags.

Second, find median by another round of tag identification.

There are two cases depending on whether   / 2XL m n  .

(a) If   / 2XL m n  , then the current median m is no larger

than m–. Suppose the median change is bounded by 
(we consider the case when  is unknown later), then

,m m m      . Using tag identification algorithm, we

identify the tags with values in this range and collect their
values. Let the collected values be t1, t2, … in descending order,
and let i be the first index such that SX(ti) < n/2, then the median
is equal to ti and    

iX X i tL m S t n  where
it

n is the number

of collected values equal to ti. During this process, note that

   
iX i X tS t L m n   where

it
n is the number of collected

values larger than or equal to ti. (b) If   / 2XL m n  , then the

current median m is strictly larger than m–. Again, suppose the

median change is bounded by , then ,m m m      . We

identify the set of tags with values in this range and collect their
values. Let the collected values be t1, t2,… in ascending order,
and let i be the first index such that   / 2X iL t n , then the

median is equal to ti and    
iX i X tL t L m n   where

it
n is

the number of collected values smaller than or equal to ti.
It should be noted that the tag identification procedures

mentioned above do not need to identify all tags. Instead,
they only need to identify a fraction of tags that have
corresponding property. This is in contrast to the naive
scheme that identifies all tags.

Algorithm 2 describes how we compute a new median
based on information of the last median. The time
consuming steps are at Lines 2, 3, 6, and 16. In situations
where tag values change smoothly, the number of tags
appearing in either of the identification processes is small;
thus only a small fraction of time is necessary.

As mentioned before, there are two issues left for further
discussion. The first issue is that when  is unknown. In this
case, we may set  as any value and iteratively increase 
until we can find desired i. The resulting tag identification
process does not necessarily take longer time than the case
when  is known. The second issue is that when the number
of tags is even. In this case, Algorithm 2 may not output the
exact median. However, since the number of tags in our
situation is large, one tag value bias can barely influence the
value of the median. Additionally, it is possible to find
the exact median by modifying the refining step of the
algorithm (Lines 5–24). We omit the tedious modifications.

Algorithm 2: Continuous Median update
Input: m–, L–, n, ;
(/* the previous median; the previous
number of tags with values no larger than
the median, i.e. LX

–(m–); total number
of tags; the maximum median change */)
Output: m, L; current median and LX(m)
1 begin
2 identify the set of tags whose previous values
are no larger than m– but their current values
are larger than m–, set n1 as the number of
such tags;
3 identify the set of tags whose previous values
 are larger than m– but their current values are
 no larger than m–, set n2 as the number of
 such tags;
4 L  L– – n1 + n2;
5 if L > n/2 then
6 T  the multi-set of tag values who are in
 the range [m– – , m–] (using tag
 identification algorithm);
7 sort T in descending order;
8 i 1;

9 s  n/2;
10 while s  n/2 do
11

it
n  the number of values in T larger

 than or equal to ti;

12 s  L – it
n

;
13 i  i + 1;
14 m  ti;
15

it
n  the number of values in T equal to

 ti;
16 L  s +

it
n ;

17 else
18 T  the multi-set of tag values who are in
 the range (m–, m– + ] (using tag
 identification algorithm);
19 sort T in ascending order;
20 i  1;
21 s  n/2;
22 while s  n/2 do
23

it
n  the number of values in T

 smaller than or equal to ti;
24 s  L +

it
n ;

25 i  i + 1;
26 m  ti;
27 L  s;

7 Performance analysis

We evaluate the performance of the median estimation
algorithm by simulation, and by comparing the algorithm to

180 H. Mustafa et al.

a tag identification algorithm formally introduced below.
The metric used is the time taken to correctly evaluate the
median and the accuracy. We evaluated our algorithms for
different statistical distributions of the tag value data y.

The simulation parameters were set as follows. We set
 = 0.15, we also varied the number of tags n from 1000 to
50,000 tags. We carried out simulations on the uniform,
normal and Weibull tag set distributions. The distribution
parameters were set as follows: (a) uniform distribution:
values drawn from the interval (0,1). (b) Normal distribution:
values drawn from the standard normal distribution. (c)
Weibull distribution: we set the scale parameter as 1 and the
shape parameter as 1. We did not set the maximum and the
minimum values. In Figure 2 we show the effect of load
factor () on the error. We varied the load factor from 1 to 10
in steps of 0.05 and we fixed the number of RFID tags at
5000 tags. To reduce the variance of the experiment we
conducted 100 simulations and then took the average. We
used this simulation to set the load factor to 2.44. The frame
length was then set to n/2.44.

Figure 2 Error versus load factor for 5000 RFID tags (see online
version for colours)

The baseline tag identification method was used for comparison
purposes.

7.1 Baseline median estimation algorithm

The baseline tag median estimation protocol collects all the
tag IDs, and then queries each tag separately for its data
value. This identification-like protocol gives the exact
median value. In tag identification protocols each tag must
be uniquely identified, so if there is a collision a tag will
have to re-transmit its ID several times before the reader can
correctly identify it. In DFSA (Cha and Kim, 2006) and
EDFSA (Lee et al., 2005) each tag transmits its ID 2.72
times. So the protocol execution time is 2.72  M  (L + S)
(Li et al., 2010a; Li et al., 2010b), where L is a slot length
which allows the transmission of a long response slot, S is a
short slot which allows the transmission of only < 10 bits of
information and M is the length of a slot which can transmit
a tag ID.

According to the specifications of the Phillips I-Code
system S = 0.4 ms, L = 2.4 ms and M = 0.8 ms when the gap
between transmissions are included.

7.2 Running time

We evaluate the time efficiency of the median binary search
algorithm. We carried out simulations on the uniform,
normal and Weibull distributions. The required threshold for
the TCS scheme is set based on the total number of tags.
The running time consists of two components: the time
taken to check the threshold and the time (iterations) taken
for binary search. In this paper, we use the fact that a long
slot is equal to five short slots L = 5S (Sheng et al., 2008).

Figures 3–5 show the results. In all the figures the solid line
represents the time needed to converge for our algorithm while
the dotted line represents the time needed by an identification
algorithm for the median selection. We can see that the
running time of our algorithm is significantly less than the
tag identification algorithm. Additionally, for all three
distributions, the running time of our algorithm increases
slowly with the increase of number of tags. We find that the
uniform distribution exhibited the best time performance. This
is due to the fact that the tags are evenly distributed. The
Weibull distribution has less improvement due to its fat tail.

Figure 3 Execution time for the uniform distribution in time
units, the error was set to  = 0:15 and the maximum
and minimum tag values (Emax, Emin) were generated
according to the parameters of the uniform distribution
(see online version for colours)

7.3 Accuracy

In our simulation, the error is in the range of [0, 1]. We
calculated the error as Absolute error = (M – Mest)/(Emax –
 Emin), where M is the real median and Mest is the estimated
median. The closer the error is to one, the larger the error.
The binary median search algorithm was tested with different
tag set distributions via simulation; we observed that all the
tests showed a high level of accuracy with high probability.

In Figures 6–8, we analysed the absolute error for the

different tag set cardinalities and found that the Weibull
distribution exhibited a very large variance in the absolute error.

 Efficient median estimation for large-scale sensor RFID 181

Figure 4 Execution time for the normal distribution in time
units, the error was set to  = 0:15 and the maximum
and minimum tag values (Emax, Emin) were generated
according to the parameters of the normal distribution
(see online version for colours)

Figure 5 Execution time for the Weibull distribution in time
units, the error was set to  = 0:15 and the maximum
and minimum tag values (Emax, Emin) were generated
according to the parameters of the Weibull distribution
(see online version for colours)

Figure 6 Absolute error in median value for the uniform
distribution (see online version for colours)

Figure 7 Absolute error in median value for the normal
distribution (see online version for colours)

Figure 8 Absolute error in median value for the Weibull
distribution (see online version for colours)

7.4 Continuous median update

To study the effectiveness of Algorithm 2, we conduct
trace-driven analysis. We use a temperature data set
collected from 54 sensors, deployed in the Intel Berkeley
Research lab between on 28th February and 5th April 2004
(Intel, 2004). Since the number of sensors in the data set
is small, we emulated virtual sensors by generating
between 12 and 15 sensors spatially around each real sensor.

These emulated sensors have values drawn uniformly
and randomly from the real sensor’s value range. The
resulting data set consists of 813 sensors. Those sensors are
considered as RFID tags. Our goal is to compute the median
at each time slot. The naive tag identification algorithm
requires identifying 813 tags in each time slot. Our
algorithm, on the other hand, only queries all tags in the first
time slot for initialisation, and then adjusts the median in
other time slots by Algorithm 2. We mainly study the
number of tags to be queried by our algorithm.

Figure 9 shows the improvement over the naïve scheme.
We can see that, in most time slots, our algorithm only
needs to query less than 25% of all tags, while the naive
scheme needs to identify all of them. This improvement

182 H. Mustafa et al.

does not sacrifice any accuracy, since both algorithms give
accurate medians. In RFID systems, the number of queried
tags is proportional to the time duration and energy
consumption of identification process. Thus, our algorithm
can save both time and energy.

Figure 9 Required number of queried tags (see online version
for colours)

8 Conclusion

In this paper, we studied the median estimation problem in a
large-scale sensor RFID system. This implementation can
be used with real-time data collected from tags in a system.
We showed that the median can be estimated efficiently
by probing the RFID tags using binary search. We also
proposed an algorithm for continuous median update. Based
on the observation that the sensor readings do not change
rapidly, our algorithm can perform much better than the
naïve algorithm that queries all tags.

Acknowledgements

The authors would like to thank all the reviewers for their
helpful comments. This project was supported in part by US
National Science Foundation grants CAREER Award CNS-
0747108 and CNS-1117412, the Faculty of Mathematical
Sciences, University Of Khartoum, China NSF grants
(60825205, 61073152, and 61133006) and China 973 project
(2012CB316200).

References

Bonuccelli, M., Lonetti, F. and Martelli, F. (2006) ‘Tree slotted
aloha: a new protocol for tag identification in RFID
networks’, Proceedings of the 2006 International Symposium
on World of Wireless, Mobile and Multimedia Networks
(WOWMOM’06), Buffalo-Niagara Falls, NY, USA,
pp.603–608.

Buettner, M., Greenstein, B., Sample, A. and Smith, J. (2008)
‘Revisiting smart dust with RFID sensor networks’,
Proceedings 7th ACM Workshop on Hot Topics in Networks
(HotNets-VII), Alberta, Canada.

Cha, J. and Kim, J. (2005) ‘Novel anti-collision algorithms for fast
object identification in RFID system’, Proceedings of the 11th
International Conference on Parallel and Distributed Systems
- Workshops (ICPADS 05), July, Fuduoka, Japan, pp.63–67.

Cha, J.R. and Kim, J.H. (2006) ‘Dynamic framed slotted ALOHA
algorithms using fast tag estimation method for RFID
systems’, Proceedings of IEEE CCNC, 2006, January,
Las Vegas, Nevada, USA.

Chen, S., Zhang, M. and Xiao, B. (2010) ‘Efficient information
collection protocols for sensor-augmented RFID networks’,
Proceedings of the 29th conference on Information
communications (INFOCOM’10), March, San Diego, CA, USA.

Greenwald, M. and Khanna, S. (2001) ‘Space-efficient online
computation of quantile summaries’, Proceedings of the 2001
ACM SIGMOD International Conference on Management of
Data (SIGMOD’01), ACM, New York, NY, USA, pp.58–66.

Han, H., Sheng, B., Tan, C., Li, Q., Mao, W. and Lu, S. (2010)
‘Counting RFID tags efficiently and anonymously’,
Proceedings of the 29th conference on Information
communications (INFOCOM’10), March, San Diego, CA,
USA, pp.1028–1036.

Intel (2004, April) Intel Lab Data. Available online at:
http://berkeley.intel-research.net/labdata/

Kodialam, M. and Nandagopal, T. (2006) ‘Fast and reliable
estimation schemes in RFID systems’, Proceedings of the
12th Annual International Conference on Mobile Computing
and Networking (MobiCom’06), September, Los Angeles,
CA, USA, pp.23–29.

Law, C., Lee, K. and Siu, K-Y. (2000) ‘Efficient memory less
protocol for tag identification’, Proceedings of the 1st
International Workshop on Discrete Algorithms and Methods
for Mobile Computing and Communications, ACM,
New York, NY, USA, pp.75–84.

Lee, S-R., Joo, S-D. and Lee, C-W. (2005) ‘An enhanced dynamic
framed slotted ALOHA algorithm for RFID tag
identification’, Proceedings of the 2nd Annual International
Conference on Mobile and Ubiquitous Systems: Networking
and Services (MOBIQUITOUS’05), July, San Diego, CA,
USA, pp.166–174.

Li, T., Wu, S., Chen, S. and Yang, M. (2010a) ‘Energy efficient
algorithms for the RFID estimation problem’, Proceedings of
the 29th Conference on Information Communications
(INFOCOM'10), March, San Diego, CA, USA, pp.19.

Li, T., Chen, S. and Ling, Y. (2010b) ‘Identifying the missing tags
in a large RFID system’, Proceedings of the 16th Annual
International Conference on Mobile Computing and Networking
(MobiCom’10), September, Chicago, IL, USA.

Liu, H., Bolic, M., Nayak, A. and Stojmenovic, I. (2008)
‘Taxonomy and challenges of the integration of RFID and
wireless sensor networks’, IEEE Network, Vol. 22, No. 6,
pp.26–32.

Madden, S., Franklin, M., Hellerstein, J. and Hong, W. (2002a)
‘TAG: a tiny aggregation service for ad-hoc sensor networks’,
SIGOPS Operating Systems Review, Vol. 36, pp.131–146.

Madden, S., Szewczyk, R., Franklin, M. and Culler, D. (2002b)
‘Supporting aggregate queries over ad-hoc efficient median
estimation for large scale sensor RFID systems 13 wireless sensor
networks’, Proceedings of the Fourth IEEE Workshop on Mobile
Computing Systems and Applications (WMCSA’02), IEEE
Computer Society, Washington, DC, USA, pp.49–58.

Micic, A., Nayak, A., Simplot-Ryl, D. and Stojmenovic, I. (2005)
‘A hybrid randomized protocol for RFID tag identification’,
The 1st IEEE International Workshop on Next Generation
Wireless Networks, WoNGeN’05, December, Goa, India.

 Efficient median estimation for large-scale sensor RFID 183

Miura, M., Ito, S., Takatsuka, R., Sugihara, T. and Kunifuji, S.
(2009) ‘An empirical study of an RFID mat sensor system in
a group home’, Journal of Networks, Vol. 4, No. 2.

Myung, J. and Lee, W. (2005) ‘Adaptive binary splitting: a RFID tag
collision arbitration protocol for tag identification’, Proceedings
of the IEEE International Conference on Broadband Networks
(BROADNETS 2005), October, Boston, USA, pp.375–383.

Patt-Shamir, B. (2004) ‘A note on efficient aggregate queries in sensor
networks’, Proceedings of the23rd Annual ACM Symposium on
Principles of Distributed Computing (PODC’04), St. John’s,
Newfoundland, Canada, pp.283–289.

Qian, C., Ngan, H. and Liu, Y. (2008) ‘Cardinality estimation for
large-scale RFID systems’, Proceedings of the 2008 Sixth Annual
IEEE International Conference on Pervasive Computing and
Communications (PERCOM’08), March, Hong Kong, China,
pp.30–39.

Qiao, Y., Chen, S., Li, T. and Chen, S. (2011) ‘Energy-efficient polling
protocols in RFID systems’, Proceedings of the 12th ACM
International Symposium on Mobile Ad Hoc Networking and
Computing (MobiHoc’11), May, Paris, France, pp.1–9.

Ren, S., Li, Q., Wang, H., Chen, X. and Zhang, X. (2005)
‘Analyzing object detection quality under probabilistic
coverage in sensor networks’, Proceedings of the 13th
International Conference on Quality of Service (IWQoS'05),
Springer-Verlag, Berlin, Heidelberg, pp.107–122.

Roy, S., Jandhyala, V., Smith, J., Wetherall, D., Otis, B.,
Chakraborty, R., Buettner, M., Yeager, D., Ko, Y. and
Sample, A. (2010) ‘RFID: from supply chains to sensor nets’,
Proceedings of the IEEE, Vol. 98, No. 9, pp.1583–1592.

Sheng, B, Tan, C., Li, Q. and Mao, W. (2008) ‘Finding popular
categories for RFID tags’, Proceedings of the 9th ACM
International Symposium on Mobile ad Hoc Networking and
Computing (MobiHoc’08), May, Hong Kong, China, pp.159–168.

Sheng, B., Li, Q. and Mao, W. (2010) ‘Efficient continuous
scanning in RFID systems’, Proceedings of the 29th
Conference on Information Communications (INFOCOM'10),
March, San Diego, CA, USA, pp.1010–1018.

Singh, M. and Prasanna, V. (2003) ‘Optimal energy balanced
algorithm for selection in single hop sensor network’,
Proceedings of the IEEE International Workshop on Sensor
Network Protocols and Applications (SNPA) ICC, May, IEEE
Computer Society, Washington, DC, USA, pp.9–18.

Smith, J., Sample, A., Powledge, P., Mamishev, A. and Roy, S. (2006)
‘A wirelessly powered platform for sensing and computation’,
Proceedings of Ubicomp 2006: 8th International Conference on
Ubiquitous Computing, September, Orange Country, CA, USA,
pp.495–506.

Tan, C., Sheng, B. and Li, Q. (2008) ‘How to monitor for missing
RFID tags’, Proceedings of the 2008 The 28th International
Conference on Distributed Computing Systems (ICDCS’08),
June, Beijing, China, pp.295–302.

Wang, H., Tan, C-C. and Li, Q. (2008) ‘Snoogle: a search engine
for the physical world’, Proceedings of 27th IEEE
International Conference on Computer Communications,
Joint Conference of the IEEE Computer and Communications
Societies, INFOCOM 2008,, April, Phoenix, AZ, USA,
pp.1382–1390.

Xie, L., Sheng, B., Tan, C., Li, Q. and Chen, D. (2010) ‘Efficient tag
identification in mobile RFID systems’, Proceedings of the 29th
Conference on Information Communications (INFOCOM’10),
March, San Diego, CA, USA, pp.1001–1009.

Xing, K., Cheng, X. and Ding, M. (2005) ‘Safety warning based
on highway sensor networks’, Proceedings of IEEE Wireless
Communication and Networking Conference (WCNC),
March, New Orleans, LA, pp.2355–2361.

Xuan, D., Bettati, R. and Zhao, W. (2002) ‘A gateway-based
defense system for distributed dos attacks in high-speed
networks’, IEEE Transactions on Systems, Man, and
Cybernetics.

Zhang, Y., Yang, L. and Chen, J. (2009) ‘Integrated RFID
and sensor networks: architectures and applications’, RFID
and Sensor Networks: Architectures, Protocols, Security, and
Integrations, CRC Press, p.517.

