
Snoogle: A Search Engine for the Physical World
Haodong Wang, Chiu C. Tan, and Qun Li

Department of Computer Science
College of William and Mary

Email:{wanghd,cct,liqun}@cs.wm.edu

Abstract—Hardware advances will allow us to embed small
devices into everyday objects such as toasters and coffee mugs,
thus naturally form a wireless object network that connectsthe
object with each other. This paper presents Snoogle, a search
engine for such a network. Snoogle uses information retrieval
techniques to index information and process user queries, and
compression schemes such as Bloom filters to reduce commu-
nication overhead. Snoogle also considers security and privacy
protections for sensitive data. We have implemented the system
prototype on off-the-shelf sensor motes, and conducted extensive
experiments to evaluate the system performance.

I. I NTRODUCTION

A pervasive computing environment entails embedding
small computing devices into everyday objects such as tables
and shelves. These small devices allow us to store and retrieve
information regarding the underlying physical object. Forin-
stance, consider a collection of document binders. Each binder
is embedded with a device containing a short description of
the contents of that binder. This description can be created
through input devices such as a digital pen which can translate
a person’s handwriting onto text, or by a miniature RFID
reader that scans every RFID enabled document place into
the folder. A user wanting to find a particular document can
query each binder’s embedded device to learn of the contents,
and then retrieve the appropriate binder.

In this paper we present Snoogle, a search engine that
allows users to efficiently search for information in a pervasive
computing environment. We assume that these small devices
are already embedded in everyday objects, and each device
has limited processing, storage and communication ability. We
use the terms “sensor” or “mote” to describe such a resource
limited device. We also assume that an effective data input
mechanism is used to store the necessary data into the device.

Snoogle adheres to the design principal thatinformation
pertaining to an object on the object itself. In other words,
information describing a binder should be stored on the binder
itself, and not on a remote server. This improves robustness
since a wireless connection to a remote server may not be
available but information stored on the binder can be always
be accessed via short range wireless protocols like Blue-tooth.
However, adhering to this principal requires novel data storage
and management techniques to be implemented on the mote.
Furthermore, this principal also require security and privacy
protections be tailored for the resource constrained motes.

We make the following contributions in this paper. (1)
We designed a complete search system using information
retrieval (IR) techniques on a resource constrained platform.

We are unaware of any previous efforts in designing IR
systems on sensor hardware. (2) We investigated the use of
bloom filters and compressed bloom filters to reduce overall
communication costs. (3) A distributed top-k query algorithm
is presented for efficient querying. (4) Our system design
provides distributed security and privacy protections, and this
module is implemented in our system prototype for evaluation.
(5) A combination of a working prototype and simulation is
used for evaluation.

The rest of the paper is presented as follows. Sections
II and III describe the Snoogle system architecture and
query resolution algorithms respectively. Section IV examines
how Snoogle provides mobility, security and privacy support.
Section V contains the evaluation of our system, Section
VI discusses some limitations, and Section VII presents the
related work. Finally, Section VIII concludes.

II. SYSTEM DESIGN

A. System Components

Snoogle consists of three components: object sensors, Index
Points (IPs) and Key Index Points (KeyIPs). An object
sensor is a mote attached to a physical object, and contains a
textual description of the physical object. This description is
determined by the object owner. The object sensor can be ei-
ther static or mobile, depending on whether the corresponding
physical object is stationary or mobile.

An IP is a static sensor that is associated with a physical
location, for example, a particular room in an office building.
IPs are responsible for collecting and maintaining the data
from the object sensors in their vicinity. TheIP hardware is
similar to an object sensor, but with larger storage capacity. A
collection ofIPs forms a homogenous mesh network.

TheKeyIP collects data from differentIPs in the network.
The KeyIP is assumed to have access to a constant power
source, powerful processing capacity, and possess considerable
storage and processing capacity.

B. System Architecture

Snoogle adopts a two-tier hierarchical architecture depicted
in Fig. 1. The lower tier involves object sensors andIPs.
EachIP manages a certain area within its transmission range.
Object sensors register themselves and transmit the object
description metadata to the specificIP . IPs are responsible
for building the inverted indexes for local search.

On the upper tier,IPs have their dual roles. First,IPs
forward the aggregated object information to theKeyIP so



Query

Query

Q
uery

IP1 IP2 IP3

IP4 IP5 IP6

KEYIP USER1

USER2

USER3
Object Sensors

Fig. 1. Overview of Sensors,IP andKeyIP Architecture

that theKeyIP can return a list ofIPs that are most relevant
to a certain user query. Second,IPs also provide the message
routing for the traffic betweenIPs, KeyIP , and users. The
KeyIP , considered as the sink of theIP mesh network, holds
the global object aggregation information reported by eachIP .
While Snoogle does not restrict the number ofKeyIPs, for
the simplicity, this paper only considers the singleKeyIP
setup.

Users query Snoogle using a portable device such as a cell
phone. Snoogle provides two different kinds of queries, alocal
query and adistributed query. A local query is performed
when a user directs his query to a specificIP . This type
of query occurs when a user wishes to search for objects at
a specific location. A user performs a distributed query when
he queries theKeyIP . The distributed query capability allows
Snoogle to scale since users do not need to flood everyIP to
find a particular object. We discuss querying in further detail
in the next section.

C. Data Processing in Object Sensors

Each object sensor contains two types of data,payload data
and metadata. Payload is a short description of the attached
physical object.Metadata is a representation of thepayload.
For example, thepayload of an object sensor attached to
a folder can be a short note describing the contents of the
folder. The metadata is a set of tuples,{term1 : freq1 :
id1} · · · {termn : freqn : idn}, where term is a single word
describing thepayload, andfreq indicates the importance of
this term in describing thepayload. A user storing information
into an object sensor is responsible for sending thepayload
and metadata. To minimize the data transmission cost, the
data in the object sensor can also be pre-compressed using
compression schemes described in the next section.

D. Data Processing and Storage at IP s

IPs in Snoogle have two data processing roles. First,
IPs collect data from object sensors within their range and
organize the data into an inverted index. Due to reliabilityand
space concerns, the inverted index table in theIP is stored
in the on-board flash memory of sensors rather than RAM.
Second,IPs periodically send aggregated update information
that reflects the object dynamics in its area, to theKeyIP so

that theKeyIP can maintain a consistent inverted index of
IPs. IPs performs the following three data operations.

Insert: This operation is executed when a new object comes
into the IP ’s region and sends the metadata to theIP . The
IP stores the new metadata and object id into its inverted
table.

Delete: When a physical object leaves the vicinity of a
particular IP , e.g., a user moves a book from one office
to another, the corresponding object sensor is no longer
associated with the previousIP . The IP then performs a
“delete” operation to remove all the metadata of the leaving
object from its inverted table.

Modify: This operation is performed when there is a change
in the object sensor’s data. When this happens, the object
sensor sends a modification request to theIP . Since theIP
inverted table is stored in the flash memory, which does not
support random writes, the “modify” operation is achieved by
the combination of a “delete” and an “insert”.

We improve the flash storage efficiency, basing on the
observation that theIP only stores the metadata of the objects,
instead of the whole payload data which has to be considered
in the general storage media. We take advantage of the small
granularity write capability of the NOR flash (TelosB on-
board flash memory) and allowIPs to be able to append
the object metadata sequentially in the flash memory without
extraread and write required in the NAND flash. In this way,
the flash erasing operation (once the flash is full) is kept to the
minimum. In addition, we also implement a “delete” function
that efficiently invalidates the metadata associated with an
object sensor. We perform the “delete” by zeroing out the
necessary bytes in the flash memory, avoiding the expensive
read and write method used in general flash storage system.
That same memory location is not overwritten until there is a
sector delete during garbage collection.

After the sensor sends its id and metadata to theIP , the
information is first stored in a buffer in RAM. Once the buffer
is full, a hash function is applied to every term in the buffer.
The hash results are used as the indices that map to the lookup
table entries. We maintain the lookup table (INDEX in Fig. 2)
in RAM to store the address pointing to the flash page. Each
flash page has the size of 256 bytes. Those flash pages which
are associated to the same lookup entry are organized in a
chained structure, very similar to the structure of the linked
list in data structure. The value of the lookup table entry
always points to the head of the flash page chain. The most
populated terms that are mapped to the same lookup table
entry are flushed to the flash memory, and the flash address
is returned to the lookup table entry. This flushing operation
continues until there are enough empty buffer slots to hold the
incoming object terms. The lookup table manages the flash
addresses in a chained structure that multiple flash pages can
be assigned to the same table entry. Fig. 2 illustrates the IP
storage architecture.

When theIP receives a query, it applies the hash function
to the query to map each query term to a lookup table entry,
and obtains the flash address. This address stores a locationof



h(t5)

h(t9)

h(t10)

h(t16)

h(t11)

h(t12)

paddr8

paddr5

paddr3

paddr2

paddr4

paddr1

mica:4

IndexPoint (IP)

BUFFER INDEX

~ ~
paddr1 paddr3 paddr4 F

LA
S

H
R

A
M

s2: t10, 2
s5: t16, 3
s9: t11, 1
s3: t10, 3
s1: t12, 2

h(sensor)=t12,2
h(mica)=t10,4

s1: t10, 4

paddr2
s2: t10, 2
s3: t10, 3
s1: t10, 4

s5: t16, 3 s19: t11, 1s1: t12, 4

Object Sensor s1

sensor:2

flash read/write

Fig. 2. Sensor S1 sending data toIP

the flash page chain head which contains that particular term.
Next, each flash page in the chain is sequentially read to the
RAM, and scanned for the matching elements. Eventually, a
list of matching terms with associated sensor ids is obtained,
then a ranked list of sensor ids that best match the query is
derived using an information retrieval (IR) algorithm further
elaborated in the next section.

Finally eachIP will periodically send the updated metadata
terms and sensors, which reflect the object dynamics in the
region, to theKeyIP . TheKeyIP stores the data and checks
for inconsistency. This inconsistency arises when sensors
moved from oneIP (IP1) to another (IP2) beforeIP1 have
a change to update its record. Since all sensors have a unique
id, this inconsistency is easily detected by theKeyIP . The
KeyIP then informs bothIPs verify the sensor data. For
example, bothIP1 andIP2 report having sensors1. EachIP
will send a message directed tos1. If s1 is no longer in the
range ofIP1, then onlyIP2 will receive a reply.IP1 will
deletes1 from its inverted index table.

E. Communication Compression

A Bloom filter [1] is used in Snoogle to compress groups
of terms together. A Bloom filter with am-bit array andk
independent hash functions is used for everyn words. The
m-bit array is first initialized to “0”. Then, for each word,
the hash function maps the input to a value between0 and
m − 1, corresponding to the bit position in the bit array, and
that bit is then set to “1”. Aftern words are inserted, the
resulting value of the array becomes the summary of then
words. The collection of the arrays becomes the summary
of the document. To check whether or not a word is in the
document, we apply thek hash functions to the word and
check if the resulting bit positions are all “1”s in any of the
array collection. Any “0” indicates there is no match. However,
a result of all matching “1”s only indicates there is a certain
probability that there is a real match. The uncertainty is due to
false positive (or collision, we use false positive and collision
interchangeably in this paper). If a Bloom filter hasm bits,
k functions, and holdsn words, the probability of having a
collision (incurs the false positive) with another word is

(1 − (1 −
1

m
)kn)k ≈ (1 − e−kn/n)k. (1)

When m and n are fixed, the optimal false positive rate can
be achievable when [2]

k = ln2 ·
m

n
(2)

Bloom filters can be further compressed to achieve better
transmission efficiency [3]. This is based on the observation
that am-bit string may be transmitted by a less number of
bits without any information loss. We denotez as the number
of bits after compression. Note the compression only works
(z < m) when there are less “1”s than “0”s (or in reversed
case). Mitzenmacher [3] indicated that each bit of the Bloom
filter has roughly 1/2 probability to be “1” or “0” when a
Bloom filter is tuned to have optimal false positive rate. This
tells us an optimal Bloom filter almost cannot be compressed.
It also means there is trade-off between false positive and
compression ratio. To gain transmission efficiency, we haveto
sacrifice the false positive rate. Mitzenmacher [3] continued to
point out that the procedure of compressing a Bloom filter is
actually equivalent to hash each term into az/n bit string.
Therefore, instead of doing complicated bit operations, we
simply hash each term to az/n bit string, and concatenate
the n hash results together to generate an array. Suppose the
hash function is perfect, the probability of having a collision
with another word for eachz/n bit string is roughly(1

2
)z/n.

Selecting the correct compression method is crucial for
Snoogle system. The optimal bloom filter achieves the lowest
false positive rate, while the compressed bloom filter scores
better compression ratio [4] so that it can achieve better
transmission efficiency and lower processing overhead. We
believe that the low transmission cost and processing overhead
are more desirable for extremely resource constrained sensor
nodes. Therefore, we use the compressed Bloom filter for our
Snoogle system. Actually, with carefully chosen parameters,
we can lower the false positive rate to an acceptable level. As
we will describe in the evaluation section, given the data set
with 1512 words, and compressed Bloom filter size of 16 bits,
the false positive rate is only about 2.3%.

III. PERFORMING QUERY

As mentioned earlier, there are two ways of querying
Snoogle. The first is to query anIP directly, the second is
to query theKeyIP first, and then to perform the distributed
query given a list of most relevantIPs returned by the
KeyIP .

The first query method is used when a user is only interested
in finding the object in some specific area, or if the user has
an approximate idea where the object might be found. For
example, a user wants to find a particular magazine, but only
if it is within a short distance from where he is currently at.
Thus, he only queries theIP near him by sending a few terms
that describe this magazine. TheIP evaluates the answers to
the user. Each answer is the id of an object that best matches
the user query. The user can then query the sensor directly, or
physically find the sensor and hence the object.

The second query method is used when a user wishes to
find an object regardless of where it is, or has no idea which
IP to start querying. The user first queries theKeyIP with
several terms describing the target object. TheKeyIP then
returns a ranked list ofm IPs that contain objects that best



match the query, wherem is a system parameter. The user
then perform the distributed top-k query from the returnedm
IPs and find the satisfied answers.

A. Improving Query Accuracy

When a user queries anIP , he receives a ranked list of
sensor ids that best match his query from theIP as his answer.
This ranking is derived from a score for each sensor contained
within thatIP based on the query terms. For example, the user
issues a query with two query terms,(tx, ty) to an IP with
three sensors,(s1, s2, s3). The score fors1 is the sum of the
weight of tx in s1 and weight ofty in s1. The score fors2

ands3 are determined in a similar fashion.
The weight of a term in a sensor is determined using the

TF/IDF weighing algorithm from IR research. The intuition
behindTF/IDF is that the importance of a term in describing
a sensor is based on two considerations. The first is the number
of times that term appears in that sensor, theTF . The more
often a term appears in the sensor, the more relevant that term
is in describing that sensor. In our system, theTF value is
given as part of the metadata of the sensor.

The second consideration is how important that term is
among thecollection of all sensors in a particularIP . The
IDF is determined as

IDF = log(
Total number of sensors

Number of sensors containing the term
).

The idea here is that if a term appears in many sensors found
within an IP ’s neighborhood, it is less important. Consider
the extreme case where a term appears in every sensor under
an IP . Then, any one of the sensors returned will contain
that term, making that term not descriptive of any one sensor
at all. To get theIDF value, we need the total number of
sensors and the number of sensors containing the term. The
first one is easy to get since anIP knows all sensors in its
neighborhood. The second value is acquired while processing
the query at anIP . Given a query term, anIP counts the
number of the matches with stored terms in its flash memory.

Putting it all together, the weight for a termtx in IP s1 is
Weight of tx = (TFtx

in s1) · (IDFtx
in s1).

The aboveTF/IDF scoring methods can also be used to
evaluate the weight of theIP in the distributed query. We
initially considered CORI weighing algorithm [5] when a user
queries theKeyIP , but there was no noticeable improvement.
Thus we use a simpleTF/IDF algorithm throughout this
paper.

B. Performing Top-k Query

While Snoogle is capable of returning a ranked list of all
relevant objects matching a query to a user, a user will usually
want to limit the number of replies due to limited device
display or battery power. Snoogle allows the user to specifya
top-k query which returns thek best matches to a user query.
The k is a user specified value.

For a local query, returning the top-k query is straightfor-
ward since anIP needs to only return the topk answers to
the user. For a distributed query, a naive top-k query scheme

is for the user to perform a top-k query for each of them
IPs returned byKeyIP . By collecting them · k answers
the user can then obtain the topk objects. However, the
message complexity ofO(mk) is too expensive for the energy
constrained system.

Algorithm 1 Distributed Top-k Query Algorithm
1: Input: k IPs: IP1, IP2, · · · , IPm

2: Output: top-k answers:Obj1, Obj2, · · · , Objk

3: EachIP sorts its objects in descending order of the weights
4: for from i = 1 to i = m do
5: queryIPi for the top answer; eachIP removes the first object

from the sorted list and sends it to user
6: store the top answertai and its associated weight in an array:

a[i].obj = tai, a[i].weight = weight(tai), a[i].ip = IPi

7: end for
8: set the number of committed objects, numcommit=1
9: while num commit < k do

10: sort the array in descending order of weight so that
a[1].weight ≥ a[2].weight ≥ · · · a[m].weight

11: senda[2].weight and numcommit toIP a[1].ip
12: IP a[1].ip removes from its sorted list a list of objects (sayl

of them) such that the last object has the highest weight less
thana[2].weight, sayw

13: IP a[1].ip sends the first min(l,k− num commit)
14: commit all retrieved objects with weight greater than

a[1].weight, change the value of numcommit, set
a[1].weight = w

15: end while
16: return all the committed objectsObj1, Obj2, · · · , Objk

Our distributed top-k query algorithm is shown in Algo-
rithm. 1. The basic idea can be explained as follows. Upon
receipt of the list ofm rankedIPs, the user queries each
IP for the most relevant object, denoted astai, 1 ≤ i ≤ m.
The user stores them objects in an arraya such that
a[i].obj = tai, a[i].weight = weight(tai), a[i].ip = IPi,
whereweight(tai) returns the weight score determined byTF
andIDF as we discussed previously. After collecting the top
weighing objects from allm IPs, the user does a sorting in the
descending order of the object weight, and obtains a new array
that a[1].weight ≥ a[2].weight ≥ · · · ≥ a[m].weight. By
now, the first top-k answer:a[1].obj, is immediately available.
The next phase is to search for the remaining answers. The
user sets the threshold value asa[2].weight, and queries
a[1].ip for the objects (excludinga[1].obj) that weights more
than the threshold value. Note that among all them IPs, it
is possible forIP a[1].ip to solely hold objects with weights
no less thana[2].weight, so there is no reason to firstly query
other IPs. Ignoring all the committed objects (i.e., they are
definitely top-k objects), eachIP has a new top weighing
object, and the same process continues till all top-k objects
are found. The algorithm stops any time whenk top objects
are retrieved.

To bound the number of messages transmitted in the pro-
cess, we make the following observations. First, eachIP in
total sends out at most one object that will not appear in the
top-k list. Therefore, the number of messages sent by all the
IPs is at mostm + k including the top-k objects and those



“useless” objects that will not appear in the top-k list. Second,
for each query sent out to theIP , we will get back at least
one object (which may appear or not appear in the final top-k
objects). Thus, the number of queries sent out to all theIPs is
bounded by the number of received objects, which is at most
m + k. Combining the two observations, we conclude that
the number of messages in this process is at most2(m + k).
Compared to the message complexity ofm·k in naive scheme,
obviously our distributed top-k query scheme is much more
efficient.

IV. M OBILITY AND SECURITY

A. Supporting Mobile Objects

As objects can be mobile, there will inevitably be objects
moving in and out of anIP ’s neighborhood. Snoogle uses a
combination ofbeacon and timer methods to ensure anIP
maintains up-to-date information

In the beacon method, theIP will periodically broadcast
a beacon that identifies itself. An object sensor in the neigh-
borhood that receive this beacon will compare it against the
previous beacon. Matching beacons indicates that the object
is still covered by the sameIP , and the sensor does nothing.
Otherwise, the sensor will report its metadata and id to the
new IP .

In the timer method, the communication is initiated by each
individual sensor. Each object sensor periodically broadcasts
a “keepalive” message. At the same time, theIP maintains a
timer. If theIP does not receive any “keepalive” message from
a certain associated object before the timer expires, theIP
considers the object is gone, and then deletes the all data ofthe
object sensor from its storage. Thebeacon andtimer methods
can be regarded as a “pull” or a “push”. In the beacon method,
IPs pull the status information from the object sensors. In the
timer method, object sensorspush their status toIPs.

The beacon scheme consumes less energy than thetimer
method since the object sensors only need to wake up in the
duty cycle to listen the beacons. They do not need to transmit
any message as long as there is no movement. Thetimer
method, however, offers better reliability. When an object
moves to anotherIP neighborhood, the previousIP can
notice an object missing through the timer, and the newIP
also can also be notified by the timer message sent by the
moving object. In short, thebeacon method is more suitable
for static objects, while thetimer method works better for
mobile ones. In practice, the two methods can be properly
combined depending on the system requirement.

B. Providing Security and Privacy

Since Snoogle is built on sensors, it shares all common secu-
rity threats with other applications in sensor networks. Besides,
Snoogle also poses unique security and privacy requirements
in searching. The concern is that a search engine like Snoogle
may violate personal privacy by revealing object information
to others. For example, a user may not want his private object
(e.g., a DVD movie) to be searchable by strangers, but only
his friends and himself. In another example, a thief can query
Snoogle for a list of locations most likely to have valuables

like laptops. He can then optimize his haul by targeting the
highest ranked location first.

To address these concerns, Snoogle must have a security
mechanism to prevent the private objects from being searched
by unauthorized users. In other words, a user needs to be
authenticated before he can search private objects. We adopt
the public key cryptography rather than the symmetric key
scheme to have a clean user interface and a simple key
management. Recent research [6], [7], [8] have demonstrated
that public key schemes are feasible for sensor nodes. We
developed an Elliptic Curve Cryptography (ECC) public key
scheme for Snoogle. The reason we choose ECC over more
popular RSA is that ECC can be more efficiently implemented
in resource constrained sensors. Due to the space limit, we
omit the discussion of ECC implementation on TelosB motes.
The interested reader is referred to our technical report [9] for
more details. On TelosB sensor motes, it takes 1.4s to generate
a public key. In Snoogle, the access control is performed at
the IP instead of atKeyIP in a distributed fashion.

We provide security protections in Snoogle by adding a
security tag to the private object. The security tag has an
OwnerID field and aGroupMask field. The OwnerID refers
to the owner identification. TheGroupMask determines which
group of users has the privilege to access the object. The ECC-
based user authentication is very similar to RSA.

If a user wants to search private objects, he first sends
the query and the certificate, where the certificate is issued
by a Certification Authority like Snoogle administrator. The
IP first verifies the user certificate and the makes sure the
correspondingOwnerID and GroupMask matching with the
object tag. Then, theIP uses the derived user public key (from
the certificate) to encrypt a randomly chosen secret key, and
sends the ciphertext to the user. If the user can successfully
decrypt the key, it proves that the user is the legitimate owner
of the certificate. Finally, theIP and the user the key to
establish a secure channel. This key can also be used to achieve
the user privacy. The user can simply encrypt his query terms
by using the key so that no one can learn the query content.

V. PERFORMANCEEVALUATION

We implement a prototype of Snoogle, including object
sensors, IPs and user module, on TelosB motes, a research
platform developed by Berkeley. TelosB hardware features a
lower-power TI MSP430 16-bit micro-controller with 10KB
RAM and 48KB ROM. The on-board IEEE 802.15.4/ZigBee
compliant radio transceiver facilitates the wireless communi-
cation with other IEEE 802.15.4 compliant devices. TelosB
also has an on-board flash memory with 1MB space, which
enables our prototypeIP to store as many as 262,144 terms
and the associated object ids and term frequency. The low-
power feature (5.1µA) current draw in sleep mode) of TelosB
motes allows object sensors to stay alive for long time. We
use an HP iPAQ for the user module. The HP iPAQ features
a 522MHz ARM920T PXA270 processor, 64MB RAM and
128MB flash memory. The software ofIPs, object sensors
and user module are written by NesC language on TinyOS
version 1.1.15.



To better discern the performance of the system, we break
the search system down into individual components and eval-
uate each separately. We mainly focus on object sensor and
IP interaction. The reason is twofold. First, both the sensor
andIP are power constrained and computationally challenged
devices, while theKeyIP can be a resource-rich device.
This makes the performance of the object sensor andIP
crucial for the validity of the system. Second, we believe
most user queries will be directed towardsIPs, rather towards
the KeyIP . This is mainly due to privacy restrictions. For
instance, a user looking for his keys will most likely start
querying familiar locations rather than the entire building.

We derive our workload by collecting information from
various conference abstracts. The title, authors and affiliations
of each accepted entry becomes the metadata terms in each
sensor. We use the IR definition ofTF to obtain the weight
of each metadata term. This yields a workload sufficient for
about80 sensors, each of which has about 15 to 25 unique
words on average.

A. Data Input and Maintenance at IP s

The startup phase for our search system occurs when the
IP is first initialized and contains no object data at all.
This is a costly activity since theIP has to identify all the
sensors within its range, and obtain their metadata. Fortunately,
this initialization phase occurs rarely since ourIP utilizes
persistent flash memory for data storage to protect against data
loss. The main metric we use to evaluate this portion is the
time latency needed for anIP to obtain necessary data from
object sensors and update the collected data for the future
changes to give accurate answers for queries. To reduce the

5 10 15 20 25 30 35 40
0

100

200

300

400

500

Number of Metadata Terms

Tr
an

sm
is

si
on

 T
im

e 
(m

s)

 

 
Hashed Text
Plain Text

Fig. 3. Time taken to transmit metadata toIP

transmission cost and improve the storage efficiency, Snoogle
adopts the idea of compressed Bloom filter to compress the
metadata terms. In particular, a hash function residing in the
object sensor convert each plaintext metadata term into a 2-
byte digest before transmitting the data over to theIP . We
perform a comparison test to learn the benefit of the data
compression. Fig. 3 shows the time taken to transmit hashed
data to theIP compared to the plaintext method. As we can
see, the transmission time grows linearly as the number of
terms increases when the plaintext data is used, while it takes
much less time for theIP to collect the same amount of
data in the compressed form. It only takes90ms to collect 40

compressed terms. However, it requires more than 5 times of
amount of time to transfer 40 uncompressed terms.

0 5 10 15 20 25 30
0

50

100

150

200

250

Number of Object Sensors

To
ta

l T
im

e 
Ta

ke
n 

(m
s)

 

 
Insertion with buffer
Insertion without buffer

Fig. 4. Insertion performance with buffer and without buffer at IP

Next, we show how the buffer helps to further improve the
data collection efficiency. AnIP has limited RAM and uses
flash memory to store the sensor metadata. Flash memory,
unlike conventional disk, is written on a per page basis, usually
on the magnitude of 256-512 bytes per page. When there are
multiple sensors wanting to send data to an IP, theIP will
have to periodically halt transmission to flush the coming data
into flash. This lengthens the time taken for an object sensor
to successfully transmit data to anIP , especially during the
initial stage when a group of object sensors upload the data to
the IP. To solve this issue, theIP maintains a small buffer in
RAM , e.g., 256 bytes, to buffer sensor data before flushing to
flash. The IP therefore does not need to invoke the expensive
flash flushing routine as long as there is enough buffer space
to hold the coming object terms, and picks a spare time later
to flush the buffered terms into the flash.

We set the buffer size with 256 bytes, equivalent to the
page size of the flash memory setup. Since each object term
requires 4 byte memory space, including 2 byte digest, 1 byte
term frequency and 1 byte for the object id, a 256-byte buffer
can hold at most 64 object terms. In the both experiments, 30
object sensors, each having 10 terms, sequentially transmit the
data to theIP . We record the average waiting time of each
object sensor and present the results in Fig. 4. It clearly shows
that each object sensor waits significantly less amount of time
when theIP uses the buffer.

We also notice that the variation of the object sensor waiting
time without anIP buffer is much larger. Our investigation
reveals that the variation is determined by the amount of time
taken to flush the data to the flash. Since each compressed
term is further hashed by theIP (as previously described in
Section 4) to an index table, different terms can be mapped
to different positions of index entries. The number of entries
can be any value between 1 and the number of terms. The
bigger the number is, the longer time is required because the
IP has to flush more flash pages. As the comparison, this
variation is much smaller with a buffer enabledIP . The reason
is that, theIP buffer keeps track of the index entry position
of each term. When the number of buffer empty slots is not
enough to hold the coming data, the buffer first flushes the
most populated terms that hashed to the same index position,



0 200 400 600 800 1000 1200 1400
150

200

250

300

350

Number of Terms in IP

D
el

et
io

n 
Ti

m
e 

(m
s)

 

 
Actual Time

Fig. 5. The amount of time to delete an object with 10 terms.

and stops flushing if there are enough space. As the result,
with a high probability the number of pages required to be
flushed is less than that in a bufferlessIP .

When an object is removed from its original location, the
IP has to update its inverted index table to reflect such change.
As described previously, theIP can do a “delete” operation
to remove a certain object from its storage. The “delete”
operation requires theIP to scan the entire valid flash storage
area and tag the deleted object terms to be invalid. It is not
difficult to suggest that “delete” performance is determined by
the size of stored flash data. Our experiment results, as shown
in Fig. 5, exactly show this trend. The experiment is conducted
in the following way. We select a specific object sensor with
10 terms, and perform deletion with different amounts of data
loaded in theIP , ranging from 0 to 1600 terms. Initially,
the deletion time does not vary much when the number of
loaded terms increases. The reason is that theIP has to scan
at least one flash page for each index entry, no matter how
many terms have already been stored in the flash. When the
term number continues to grow, some index entries require
more flash page to store the metadata terms. Therefore, the
deletion operation has to scan more flash pages. As the result,
the time consumption increases accordingly.

Note that deletion does not have to be done each time a
sensor leaves anIP ’s neighborhood. A simple list can be kept
by theIP that records the ids of sensors that have left. Then,
before theIP replies to a query, it removes the sensors found
in the list from the answer. This way, the user will still havethe
correct answer. TheIP can then perform the deletion in the
background when there are no other pending query requests.

B. Local Query

To evaluate the local query performance, we focus query
latency. We first test the performance of the query latency of
Snoogle. Then, we demonstrate the Snoogle query efficiency
by a comparison test that compares the latency performance
between Snoogle and a flat structured network.

1) Query Latency: Query latency is the time taken for a
user querying anIP to receive a reply. This includes the time
to transmit, process and reply to a query. To better evaluateour
search system, we measure the query latency using common
web search characteristics. From [10], the average number of
query terms per search is less than 3. We then determine the

average time taken to complete a user query comprising of one
to four terms. Fig. 6 shows the results. We see that the query
response time increases as the number of query terms increase.
As mentioned in section4.1, multiple flash pages may have
to be read from flash memory to determine theIDF of each
query term. This accounts for the increase in query response
time.

1 2 3 4
0

50

100

150

200

250

300

Number of Query Terms

To
ta

l T
im

e 
Ta

ke
n 

(m
s)

Fig. 6. Time taken forIP to respond to a query

2) Compare to searching without IP s: An alternative
searching method is to have users query the sensors sequen-
tially, and then collect the replied data to find the desired
information. This method gets rid of theIP . To evaluate we
implement this alternative searching scheme and compared
the performance against our Snoogle system. The alternative
searching scheme is implemented as follows. A group of
sensors are organized to a chained structure. The user always
queries the chain head sensor, the queried sensor searches the
query term in its memory and puts the results at the pre-
assigned position in the message packet, and then forward
the query to the next sensor in the chain. The2nd sensor
repeats the above searching and puts the results in its pre-
assigned position. This procedure repeats until the last sensor
finishes the query processing. The last sensor directly replies
to the user. We believe this is the most efficient way that
a general searching scheme can achieve because it requires
lowest amount of the message transmission. We select 10
sensors for the both experiment setups. Each sensor is pre-
loaded with the metadata of one conference paper. The user
performs a single term query to the both systems. We measure
the user query response time with the number of object
sensors changes from 1 to 10. In Fig. 7, we show the

2 4 6 8 10
0

50

100

150

200

Number of Object Sensors

Q
ue

ry
 R

es
po

ns
e 

Ti
m

e(
m

s)

 

 
Without IP
With IP

Fig. 7. Query latency with and withoutIP s

difference in query response time in two different searching



systems. We see that the query response time in Snoogle
system remains relatively constant. The time taken in general
searching system, however, increases linearly with the number
of objects increases. This proves Snoogle achieves much better
scalability then any general searching scheme.

C. Distributed Top-k Query

As we discussed in Section III-B, the message complexity
is the major concern in the distributed top-k query. To evaluate
the performance of our top-k query scheme, we use the same
dataset, which is composed of 80 objects. We evenly and
randomly distribute these objects into eightIPs (eachIP has
10 objects). In this way, we create a testbed for the distributed
query with eightIPs, which are returned from theKeyIP
for the user query (notem = 8). In the next step, the user
performs the distributed top-k query.

2 3 4 5 6 7 8
10

20

30

40

50

60

70

80

k value

M
es

sa
ge

 U
ni

ts

 

 

Naive Scheme
top−k (2 term query)
top−k (3 term query)
top−k (4 term query)

Fig. 8. Message complexity of distributed top-k query.

We implement our distributed top-k query scheme on our
simulator since our interest is the message complexity only.
The rule of determining the message complexity is explained
as follows. 1. A single user query to a certainIP is counted as
one message unit. 2. The answer withk objects from a certain
IP is counted ask message units since the message length
grows ask increases. We run the simulations for three different
queries with two, three and four query terms, respectively.
We first randomly distribute the objects into eightIPs, then
run the query and count the message numbers. We repeat this
procedure for 100 times for each simulation and calculate the
average message count values. For the comparison purpose,
we also implement the naive top-k query scheme. Note there
is no change in message complexity of naive scheme given
variant object distribution and query term numbers.

The simulation results are shown in Fig. 8. As we can see,
the performance of naive scheme is significantly worse than
that of our distributed top-k query scheme. Whenk increases
by one, the naive scheme needsm more messages (herem =
8). Comparatively, the number of extra messages required for
our top-k query is much less thanm. As the result, whenk
increases to eight, the naive scheme costs 72 messages, while
our top-k query only needs 32 messages on average. The figure
also shows that the number of query terms has no significant
impact on the performance of the distributed top-k query, the
performance of two, three and four term query is very close
to each other.

0 2 4 6 8 10
4.8

5

5.2

5.4

5.6

5.8

Number of Query Terms

Q
ue

ry
 R

es
po

ns
e 

Ti
m

e 
(s

)

 

 
Response Time

Fig. 9. User perceived private object query response time.

D. Security Overhead for User Query

Finally, we add the authentication module to theIP and
test the performance of private object query. We used an ECC
public key cryptosystem designed for TelosB motes. Our ex-
tensive optimization allows TelosB mote to efficiently perform
ECC public key operation. Our experiment shows it only takes
1.4s to do a point multiplication. To the best of our knowledge,
this is the best ECC performance achieved on TelosB motes by
academic implementations. When the user queries the private
objects, the user’s identity and access privilege have to be
verified. The 160-bit ECC based authentication is performed
for the verification purpose. The user query response time is
presented in Fig. 9. To query a private object, the user waits
around 4.9s to pass the authentication check. Obviously, the
authentication time dominates the overall response time. This
is because that the ECC based authentication scheme requires
3 ECC point multiplications, which contribute more than 90%
of the overall delay.

VI. SYSTEM L IMITATIONS

Communication Reliability In the course of running our
experiments, we observed that dropped messages has larger
effect on performance than originally expected. Dropped mes-
sages resulted in occasional objects that suddenly disappear
and reappear at a different location. This occurs when anIP
has deleted a leaving object, but the newIP does not detect the
moving object due to packet loss during beacon sending and
reply. This suggest that a reliable communication mechanism
might be useful.

System Scalability. Our Snoogle design utilizes one
KeyIP to manage all theIPs. In practice, multipleKeyIPs
can be deployed for scalability. For example, in an office com-
plex consisting of several buildings, each building can have its
own KeyIP . SinceKeyIPs are resource rich devices, less
constraints are placed on techniques for information exchange.

Another concern for scalability is that a singleIP is insuf-
ficient when there are too many objects. AnIP in Snoogle
uses4 bytes of flash memory to store each descriptive term.
Assuming that an object can be described with20 terms, anIP
with 1MB flash can support over10000 objects, a relatively
large number. For applications which involve extremely large
number of objects, a more powerfulIP can be used.



Mobility Support. While Snoogle supports the search for
a mobile object, it does not track a moving object in real
time. Due to the power constraints in bothIPs and object
sensors, Snoogle cannot afford very frequent beacon or timer
mechanism so that anIP may not immediately detect a
moving object in its neighborhood. Therefore, a snapshot of
the system view does not necessarily give accurate moving
object locations. However, once the object stops at a certain
place for a certain amount of time (e.g., a beacon cycle), the
IP at that location will capture the object and updateKeyIP
with the new indexed items. Obviously, a large number of
moving objects will trigger many index updates fromIPs to
the KeyIP , which may cause much battery drain and could
be a concern of theIP life-cycle. We currently assume there
are limited moving objects in the system and reserve theIP
power management in our future work.

VII. R ELATED WORK

Effective methods for retrieving data has been studied in
sensor networks [11], [12]. However, searching in sensor
networks are primarily restricted to numeric data, and have
not been expanded to handle textual data.

Indoor localization research shares similarities with Snoogle
in that sensors are attached to mobile objects [13], [14], [15].
However, most localization research is focused on allowinga
sensor to determine its location. One exception is MAX [16]
which extends the localization idea to finding objects. In
MAX, a user can query for a particular object attached with
a sensor through an interface and receive hints on where the
object can be found, i.e. “top shelf on third room”. However,
the search functions in MAX is more akin to thegrep
function, determining the presence or absence on a sensor ina
particular location. The user in general has to know in advance
what he is looking for, e.g. “my cellphone”. Searching in
Snoogle is different since a user can discover new knowledge
by searching using some general terms and obtain a ranked
list of related matches. This is done by adopting information
retrieval research into sensor network. In addition, the security
system proposed in MAX does not provide a fine-grained and
flexible access control.

The architecture for ourIP follows improvements in low
level flash storage. One early work by [17] introduced a
file system especially tailored for sensors, providing common
file system primitives like append, delete and rename. While
a sensor file system can perform the functionalities of our
IP , our IP architecture emphasizes good indexing and query
response time and not file system functionalities. In this regard,
our IP architecture is closer to MicroHash [18] which focuses
on efficient indexing of numeric data. Our architecture differs
from MicroHash in that we allow indexing of arbitrary kinds
of terms, not just numeric ones, and we adopt information
retrieval algorithms to reply to queries. Recent work by [19]
can also be considered for anIP .

VIII. C ONCLUSION

In this paper, we presented Snoogle, an information re-
trieval system built on sensor networks. Our system reduces

communication costs by employing compressed Bloom filter
on sensor data, while maintaining low rates of false positive.
We also introduced a flexible security method using public
key cryptography that protects user privacy. Our current im-
plementation incurs a five second latency. Currently we are
working on different techniques to further reduce the latency
for security.

ACKNOWLEDGMENTS

The authors would like to thank all the reviewers for their
helpful comments. This project was supported in part by US
National Science Foundation award CCF-0514985 and CNS-
0721443.

REFERENCES

[1] B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” in Communications of the ACM, 13(7):422-426, 1970.

[2] L. Fan, P. Cao, J. Almeida, and A. Broder, “Summary cache:A scalable
wide-area web cache sharing protocol.” inSIGCOMM 1998.

[3] M. Mitzenmacher, “Compressed bloom filters,” inProc. of the 20th
Annual ACM Symposium on Principles of Distributed Computing, 2001.

[4] J. Li, B. T. Loo, J. M. Hellerstein, M. F. Kaashoek, D. Karger, and
R. Morris, “On the feasibility of peer-to-peer web indexingand search,”
in IPTPS03.

[5] J. C. French, A. L. Powell, J. P. Callan, C. L. Viles, T. Emmitt, K. J.
Prey, and Y. Mou, “Comparing the performance of database selection
algorithms,” inResearch and Development in Information Retrieval.

[6] N. Gura, A. Patel, A. Wander, H. Eberle, and S. Shantz, “Comparing
elliptic curve cryptography and rsa on 8-bit cpus,” inCHES, 2004.

[7] A. Liu and P. Ning, “TinyECC: Elliptic curve cryptography for sensor
networks,” 2005.

[8] H. Wang and Q. Li, “Efficient Implementation of Public KeyCryptosys-
tems on Mote Sensors (Short Paper),” inInternational Conference on
Information and Communication Security (ICICS), LNCS 4307, Raleigh,
NC, Dec. 2006, pp. 519–528.

[9] H. Wang, B. Sheng, C. C. Tan, and Q. Li, “WM-ECC: an Elliptic
Curve Cryptography Suite on Sensor Motes,” College of William and
Mary, Computer Science, Williamsburg, VA, Tech. Rep. WM-CS-2007-
11, 2007.

[10] B. J. Jansen, A. Spink, J. Bateman, and T. Saracevic, “Real life
information retrieval: a study of user queries on the web,”SIGIR Forum
1998.

[11] S. R. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong, “TinyDB:
an acquisitional query processing system for sensor networks,” ACM
Trans. Database Syst., 2005.

[12] P. Bonnet, J. Gehrke, and P. Seshadri, “Towards sensor database
systems,” in MDM 2001: Proceedings of the Second International
Conference on Mobile Data Management. London, UK: Springer-
Verlag, 2001, pp. 3–14.

[13] R. Want, A. Hopper, V. Falcao, and J. Gibbons, “The active badge
location system,” Tech. Rep., 1992.

[14] A. Harter, A. Hopper, P. Steggles, A. Ward, and P. Webster, “The
anatomy of a context-aware application,” inMobile Computing and
Networking.

[15] N. Priyantha, A. Chakraborty, and H. Balakrishnan, “The cricket
location-support system,” inMobiCom 2000.

[16] K.-K. Yap, V. Srinivasan, and M. Motani, “MAX: human-centric search
of the physical world,” inSensys 2005.

[17] H. Dai, M. Neufeld, and R. Han, “ELF: an efficient log-structured flash
file system for micro sensor nodes,” inSenSys 2004.

[18] D. Zeinalipour-Yazti, S. Lin, V. Kalogeraki, D. Gunopulos, and W. A.
Najjar, “MicroHash: An efficient index structure for flash-based sensor
devices.” inFAST 05.

[19] C. C. Tan, B. Sheng, H. Wang, and Q. Li, “Microsearch: To search
a world in a grain of sand,” inthe Sixth International Conference on
Pervasive Computing, 2008.


