
SybilDefender: Defend Against Sybil Attacks in

Large Social Networks

Wei Wei∗, Fengyuan Xu∗, Chiu C. Tan†, Qun Li∗

∗The College of William and Mary, †Temple University
∗{wwei, fxu, liqun}@cs.wm.edu, †cctan@temple.edu

Abstract—Distributed systems without trusted identities are
particularly vulnerable to sybil attacks, where an adversary
creates multiple bogus identities to compromise the running of
the system. This paper presents SybilDefender, a sybil defense
mechanism that leverages the network topologies to defend
against sybil attacks in social networks. Based on performing
a limited number of random walks within the social graphs,
SybilDefender is efficient and scalable to large social networks.
Our experiments on two 3,000,000 node real-world social topolo-
gies show that SybilDefender outperforms the state of the art by
one to two orders of magnitude in both accuracy and running
time. SybilDefender can effectively identify the sybil nodes and
detect the sybil community around a sybil node, even when the
number of sybil nodes introduced by each attack edge is close
to the theoretically detectable lower bound. Besides, we propose
two approaches to limiting the number of attack edges in online
social networks. The survey results of our Facebook application
show that the assumption made by previous work that all the
relationships in social networks are trusted does not apply to
online social networks, and it is feasible to limit the number of
attack edges in online social networks by relationship rating.

I. INTRODUCTION

Distributed systems are vulnerable to sybil attacks [7], in

which an adversary creates many bogus identities, called sybil

identities, and compromises the running of the system or

pollutes the system with fake information. The sybil identities

can “suppress” the honest identities in a variety of tasks,

including online content ranking, DHT routing, file sharing,

reputation systems, and Byzantine failure defenses. There are

some similar attacks in ad hc and sensor networks [16], [17].

Sybil attacks can be mitigated by assuming the existence

of a trusted authority, which can rate-limit the introduction

of fake identities by requiring the users to provide some cre-

dentials, like social security number, or by requiring payment.

However, such requirements will prevent users from accepting

these systems, as they impose additional burdens on users.

Recently, there has been an increasing interest in defending

against sybil attacks in social networks [6], [12], [18], [19],

[20]. In a social network, two user identities share a link

if a relationship is established between them. Each identity

is represented as a node in the social graph. To prevent the

adversary from creating many sybil identities, all the previous

sybil defense schemes are built upon the assumption that the

number of links between the sybil nodes and the honest nodes,

also known as attack edges, is limited. As a result, although

an adversary can create many sybil nodes and link them in

an arbitrary way, there will be a small cut between the honest

region and the sybil region. The small cut consists of all the

attack edges and its removal disconnects the sybil nodes from

the rest of the graph, which is leveraged by previous schemes

to identify the sybil nodes. Note that the solution to this

problem is non-trivial, because finding small cuts in a graph

is an NP hard problem. To limit the number of attack edges,

previous schemes assume that all the relationships in social

networks are trusted and they reflect the trust relationships

among those users in the real world, and thus an adversary

cannot establish many relationships with the honest users.

However, it has been shown that this assumption does not

hold in some real-world social networks [5].

In the past few years, online social networks have gained

great popularity and are among the most frequently visited

sites on the Web [3]. The large sizes of these networks require

that any scheme aiming to defend against sybil attacks in

online social networks should be efficient and scalable. Some

previous schemes can achieve good performance on a very

small network sample (2000 nodes in [18] and 30000 nodes

in [6]), but their algorithms are computationally intensive and

cannot scale to networks with millions of nodes. For the

schemes that performed evaluation on million-node samples of

online social networks, SybilGuard [20] admits O(
√
n log n)

sybil nodes per attack edge, where n is the number of honest

nodes; SybilLimit [19] improves over SybilGuard by accepting

O(log n) sybil nodes per attack edge, but it is still away from

the theoretical lower bound by a log n factor. Besides, both

SybilGuard and SybilLimit identify one sybil node at a time,

and thus to detect the sybil region all the nodes in the social

graph need to be examined.

To address the weaknesses of previous work, in this paper

we propose SybilDefender, a centralized sybil defense mecha-

nism. It consists of a sybil identification algorithm to identify

the sybil nodes, a sybil community detection algorithm to

detect the sybil community surrounding a sybil node, and two

approaches to limiting the number of attack edges in online

social networks. Our scheme is based on the observation that

a sybil node must go through a small cut in the social graph

to reach the honest region. An honest node, on the contrary, is

not restricted. Now if we start from a sybil node to do random

walks, the random walks tend to stay within the sybil region.

The main contributions of this work include:

• Based on performing a limited number of random walks

within the social graphs, the sybil identification algorithm

and the sybil community detection algorithm are efficient

and scalable to large social networks.

• We evaluate SybilDefender using two large-scale social

network samples from Orkut and Facebook, respectively.

The results show that the performance of our sybil identi-

fication algorithm approaches the theoretical bound, and it

outperforms SybilLimit, the state of the art sybil defense

mechanism that applies to large social networks, by one

to two orders of magnitude in both accuracy and running

time. Besides, our sybil community detection algorithm

can effectively detect the sybil community around a sybil

node with short running time.

• We propose two practical techniques to limit the number

of attack edges in online social networks, and develop

a Facebook application to demonstrate the feasibility of

one of the techniques. The survey results of our Facebook

application show that the assumption made by previous

work that all the relationships in social networks are

trusted does not hold in online social networks, and it

is feasible to limit the number of attack edges in online

social networks by relationship rating.

II. RELATED WORK

One promising way to defend against sybil attacks in social

networks is to leverage the social network topologies. Yu

et al. proposed decentralized algorithms, SybilGuard [20] and

SybilLimit [19], to determine whether a suspect node is sybil

or not. SybilGuard and SybilLimit both rely on the assumption

that social networks are fast mixing (explained later), and the

number of attack edges is limited. To identify sybil nodes,

the schemes make use of random routes, a special kind

of random walks in which each node uses a pre-computed

random permutation as a one-to-one mapping from incoming

edges to outgoing edges. SybilGurad suffers from high false

negatives, as each attack edge may introduce O(
√
n log n)

sybil nodes without being detected. The improved version

of SybilGuard, SybilLimit, reduces this value to O(log n),
which is still larger than the proved lower bound Ω(1) [19]

by a log n factor. Moreover, to detect the sybil region with

SybilGuard or SybilLimit, all the suspect nodes in the social

graph need to be tested. By contrast, with our sybil community

detection algorithm, the sybil community around a sybil node

can be detected in one run of the algorithm. GateKeeper [12]

is another decentralized sybil defense scheme that heavily

relies on the assumption that the social networks are random

expander. This is a strong assumption which has not been

validated by previous research. Our evaluation shows that

GateKeeper suffers from high false positive and negative rates

and cannot effectively identify sybil nodes on the real-world

asymmetric social topologies.

SybilInfer [6], a centralized sybil defense algorithm, lever-

ages a Bayesian inference approach that assigns a sybil

probability, indicating the degree of certainty, to each node

in the network. It achieves low false negatives at the cost of

high computation overhead. The overall time complexity of

SybilInfer is O(|V |2 log |V |), where V is the set of vertices in

the social graph. In the evaluation SybilInfer handled networks

with up to 30K nodes, which is much smaller than the size

of regular online social networks. The algorithm proposed by

Xu et al. [18] calculates the shortest path between every pair

of nodes within the network in each round, which makes it

impractical for even small-sized social networks. In contrast,

SybilDefender only relies on performing a limited number of

random walks in the social graph, and it is scalable to large

networks.

III. SYSTEM MODEL

We denote the social network as a graph G consisting of

vertices V and edges E. There are n honest users in the social

network, each with one identity, denoted as an honest node in

V . There are also one or more malicious users in the social

network, each with a number of sybil identities. Each sybil

identity is denoted as a sybil node in V . A relationship between

two identities in the social network is represented as an edge

connecting the two corresponding nodes in G. The edges in G
are undirected. We name the edge between a sybil node and an

honest node an attack edge. The sybil region consists of all the

sybil nodes, while the honest region consists of all the honest

nodes. All the sybil nodes are controlled by an adversary. Thus

the adversary can create arbitrary edges within the sybil region.

SybilDefender is built upon the following assumptions:

The honest region is fast mixing. Fast mixing means a

random walk of length Θ(log n) is long enough such that with

probability at least 1 − 1
n

, the last traversed node is drawn

from the node stationary distribution of the graph [20]. The

stationary distribution is a probability distribution π for V
such that π = πP , where P is the transition matrix of the

random walk process [11]. It can be easily proved that πi,

the stationary probability of node i, is equal to di

2|E| . Yu et

al. have shown that the real-world social networks are fast

mixing [19]. The previous sybil defense schemes [6], [19],

[20] are also built upon this assumption.

One known honest node. We assume that there is at least

one known honest node in the social network. This node is

the starting point of our sybil identification algorithm.

The administrator knows the social network topology. This

means that SybilDefender is a centralized sybil defense mech-

anism. Considering that all the current online social networks

are under centralized control, it is natural for the administrators

of these networks to take charge of mitigating sybil attacks.

The size of the sybil region is not comparable to the size

of the honest region. Given the large user base of the current

online social networks (Facebook (over 500 million), Twitter

(over 200 million), Orkut (over 120 million)), it is reasonable

to assume that the adversary cannot create such many sybil

identities, especially considering that signing up a new user

account always includes verifying an email address, providing

some personal information, and solving CAPTCHAs.

The number of attack edges is limited. As a result, when

the adversary creates many sybil nodes, there will be a

disproportionately small cut between the honest region and

the sybil region. The existence of a small cut disturbs the

fast-mixing property: the mixing between the honest nodes

is fast, while the mixing between the honest nodes and the

sybil nodes is slow. Previous schemes limit the number of

attack edges by assuming that the honest users only establish

links with their real-world friends [6], [12], [19], [20], which

has been shown to not hold in online social networks. The

experiment by Bilge et al. [5] shows that on Facebook, the

acceptance rate of friendship requests from a bogus account

is around 20%. If an adversary launches a sybil attack, all the

links created in this way are attack edges. We will address this

problem in Section IV-C.

IV. SYBILDEFENDER DESIGN

SybilDefender consists of three components: a sybil identifi-

cation algorithm, a sybil community detection algorithm, and

two supporting approaches to limiting the number of attack

edges. The three components can be used in conjunction to

best mitigate sybil attacks. The task of the sybil identification

algorithm presented in Section IV-A is to determine whether a

suspect node is sybil or not. Then we show how to efficiently

detect the sybil community around a sybil node with our sybil

community detection algorithm presented in Section IV-B.

The reason why we need the second algorithm is that simply

examining all the nodes in the social graph to find the sybil

community is impractical. Finally, both algorithms are built

upon the assumption that the number of attack edges is limited.

In Section IV-C we propose two approaches to supporting this

assumption in online social networks.

A. Sybil Identification Algorithm

In this subsection we present a sybil identification algorithm

that takes the social graph G(V,E), a known honest node h,

and a suspect node u as inputs, and outputs whether u is sybil

or not. Our algorithm is based on random walks. A random

walk on a graph is defined by the sequence of moves of a

particle between nodes of G. If the particle is at node i with

degree di, then the probability that the particle follows the

edge (i, j) and moves to a neighbor j is 1/di.
The intuition of our sybil identification algorithm is that,

as there is a small cut between the honest region and the

sybil region, the random walks originating from a sybil node

tend to get “trapped” into the sybil region. Also, since we

assume that the size of the sybil region is not comparable to

the size of the honest region, the number of nodes traversed

by the random walks originating from an honest node will be

larger than the number of nodes traversed by the random walks

originating from a sybil node, as long as the random walks are

long enough and we perform the random walks many times.

For simplicity, we define the number of times one node being

traversed by a set of random walks as the frequency of that

node. Note that one node may be traversed by the same random

walk multiple times.

The sybil identification algorithm consists of two phases,

Algorithm 1 and Algorithm 2. The first phase takes G and h
as inputs, and outputs the thresholds used by the second phase

to identify sybil nodes. It only needs to be invoked once for

each social network topology. As shown in Algorithm 1, the

Algorithm 1 PreProcessing(G, h)

1: J = {h}
2: for i = 1 to f do

3: Perform a random walk with length ls = logn originating from h
4: J = J ∪ {the ending node of the random walk}
5: end for

6: l = lmin

7: while l <= lmax do

8: for i = J.first() to J.last() do

9: Perform R random walks with length l originating from node i
10: Get ni as the number of nodes with frequency no smaller than t
11: end for

12: output 〈l,mean({ni : i ∈ J}), stdDeviation({ni : i ∈ J})〉
13: l = l + 100
14: end while

algorithm first performs f short random walks with length

ls = log n originating from the known honest node h. The f
ending nodes are drawn from the node stationary distribution

of the honest region, since we assume that the honest region

is fast mixing. Following the proof in [20], the ending nodes

are all honest nodes with high probability. After this the

known honest node h and the f ending nodes are treated as

judge nodes, from which the algorithm sets up the criterion

to identify sybil nodes. Note the possibility that sybil nodes

may exist in the group of the judge nodes does not influence

the effectiveness of the algorithm, due to their very limited

number. Starting from a minimum length lmin to a maximum

length lmax, with an interval of 100 hops, for each length

l, the algorithm performs R (ranging from 1000 to 2000 in

our evaluation) random walks originating from every judge

node, and counts the number of nodes whose frequency is

no smaller than a threshold t, which is a small constant

(5 in our evaluation). The algorithm collects f + 1 such

values for each length l. Then it computes the mean and

standard deviation of the f + 1 values and outputs a tuple

as 〈l,mean, stdDeviation〉.

Algorithm 2 SybilIdentification(G, u, tuples from Alg.1)

1: l = l0
2: while l <= lmax do

3: Perform R random walks with length l originating from u
4: m = the number of nodes whose frequency is no smaller than t
5: Let the tuple corresponding to length l in the outputs of Algorithm 1

be 〈l,mean, stdDeviation〉
6: if mean−m > stdDeviation ∗ α then

7: output u is sybil
8: end the algorithm
9: end if

10: l = l ∗ 2
11: end while

12: output u is honest

As shown in Algorithm 2, to determine whether a suspect

node u is sybil, the algorithm first performs R random walks

with an initial length l = l0 originating from u. l0 is larger

than or equal to lmin used in Algorithm 1. The algorithm then

compares the number of nodes whose frequency is no smaller

than t with the mean value in tuple 〈l,mean, stdDeviation〉
outputted by Algorithm 1. If the former is smaller than the

latter by an amount larger than stdDeviation ∗ α (α = 20 in

TABLE I
NOTATIONS USED IN THE ANALYSIS

G(V,E) social graph, V is the set of nodes, E is the set of edges

P transition matrix of the random walk process

n number of honest nodes in G
λ initial state vector of the random walk process

π stationary distribution of G
l random walk length

Ql accumulated probability distribution of the nodes being
traversed by a random walk with length l

t threshold frequency used in the sybil identification algorithm

R number of random walks originating from a given node

D(d) number of nodes with degree d

our evaluation), we consider u is sybil and end the algorithm.

Otherwise, the algorithm doubles l and repeats the process,

until l is larger than lmax. If u is still not identified as sybil

when the value of l reaches lmax, we consider it honest and

end the algorithm.

Given a social graph G(V,E) and a known honest node h,

lmax, the maximum random walk length that decides when

to end the algorithm, can be determined as follows. We do

R random walks originating from h with length lmax. The

number of nodes with frequency no smaller than t should be

larger than |V |/2. Given that we assume the sybil region is

smaller than the honest region, lmax determined in this way

is large enough for R random walks originating from a sybil

node to cover the sybil region, so as to exhibit the difference

between the random walks originating from an honest node

and from a sybil node. Our algorithm adaptively tests the

suspect node while doubling the random walk length each

time. This guarantees that the algorithm can identify the sybil

nodes in differently sized sybil regions: for small sybil regions

short random walks are already enough, while for large regions

long random walks need to be performed, since the footprint

of short random walks in a large sybil region may be similar

to that in the honest region.

1) Analysis of the Sybil Identification Algorithm: In this

subsection we investigate the validity of our sybil identification

algorithm with theoretical analysis. For the ease of analysis

we list the used notations in Table I. A random walk with

length l on an undirected graph G can be modeled as a

Markov Chain process. The starting state of the random walk

is described as λ, the initial state vector of V . λv = 1 if v
is the starting node of the random walk, otherwise λv = 0.

As defined in Section III, P is the transition matrix of the

random walk process. Therefore, the probability distribution

of the nodes being visited by the ith hop of the random walk

is λP i. Based on our fast-mixing assumption, λP i converges

to the stationary distribution π of G with i ≥ Θ(log n). The

accumulated probability distribution of nodes being traversed

by a random walk with length l is Ql =
∑l

i=0 λP
i, and

(Ql)j , the jth element in vector Ql, is the expected number

of times node j being traversed by a random walk with length

l. Therefore, R · (Ql)j is the expected number of times node j
being traversed by R random walks with length l originating

from the same honest node, i.e., the expected frequency of j.

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 0 5000 10000 15000 20000 25000 30000

#
 o

f
n

o
d

es
 w

h
o

se
 f

re
q

u
en

cy
 >

=
 5

random walk length

Pre-processing Results
Caculated Expectation

Fig. 1. pre-processing results and calculated expectation values

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 0 5000 10000 15000 20000 25000 30000

#
 o

f
n
o
d
es

 w
h
o
se

 f
re

q
u
en

cy
 >

=
 5

random walk length

Pre-processing Results
Theoretical Approximation

Fig. 2. pre-processing results and theoretical approximate results

The pre-processing phase of our sybil identification algo-

rithm sets up the criterion to identify sybil nodes by perform-

ing R random walks originating from each judge node with ev-

ery length value l ∈ {lmin, lmin+100, ..., lmax}, respectively,

and records the mean and the standard deviation of the number

of traversed nodes with frequency no smaller than t. Define set

Sl as {j|R·(Ql)j ≥ t}, then |Sl| = |{j|∑l

i=0 R·(λP i)j ≥ t}|
is the expected number of nodes whose frequency is no smaller

than t with R l-hop random walks. With a randomly chosen

source node and R = 2000, based on our Facebook data set,

we calculate |Sl| for different lengths and draw the calculated

expectation curve in Figure 1. To demonstrate the validity

of our sybil identification algorithm, we set the number of

judge nodes to be 10 and draw the pre-processing results

curve based on the mean value outputs of the pre-processing

phase in the same figure. It shows that even with a small

number of judge nodes, the two curves match well when the

random walk length is smaller than 10000 hops. As the random

walk length increases there shows some horizontal segments

in the calculated expectation curve. This is because in a fast-

mixing network, (λP i)j converges to
dj

2|E| with i ≥ Θ(log n),
where dj is the degree of node j and E is the set of edges.

This means that with l ≥ Θ(log n) the value of
∑l

i=0(λP
i)j

for all the nodes with the same degree increases by the

same amount when l increases by 1, and thus their expected

frequency,
∑l

i=0 R · (λP i)j , will reach the threshold t at the

same random walk length, which leads to the jumps in the

calculated expectation curve. Note that although the calculated

expectation curve is divided into horizontal segments when the

random walk length is large, its inflection points still match

well with the pre-processing results curve. Figure 1 illustrates

that with a small number of judge nodes and limited R, the

results derived from the pre-processing phase of the sybil

identification algorithm are already accurate enough to match

with the expectation values.

Moreover, we will show that the results derived from the

pre-processing phase starting from a random honest node are

generic enough to serve as the criterion to identify sybil nodes.

Since the network is fast mixing, given a random starting node,

i.e., a random initial state vector λ, we have

Ql =

l∑

i=0

λP i

≈ λ+ λP + ...+ λPΘ(logn)−1 + π + ...+ π
︸ ︷︷ ︸

l−Θ(logn)+1

≈ lπ.

Besides, πj =
dj

2|E| , then we have (Ql)j ≈ l
dj

2|E| . Recall that

R · (Ql)j is the expected frequency of node j. To make this

value no smaller than t, we have

R · (Ql)j ≈ R · l dj
2|E| ≥ t ⇒ dj ≥

2t|E|
lR

. (1)

Define S′
l = {j|dj ≥ 2t|E|

lR
}. Then |S′

l | is the approximate

number of nodes whose frequency is no smaller than t with R
l-hop random walks. Let D(d) be the number of nodes with

degree d. Then

|S′
l | =

max∑

d=⌈
2t|E|
lR

⌉

D(d). (2)

Following Equation 2 we draw the theoretical approximation

curve in Figure 2 based on our Facebook data set, and we

compare it with the pre-processing results curve identical

to that in Figure 1. Note that Equation 2 is irrelevant to

the initial state vector λ, so the shape of the theoretical

approximation curve does not rely on the starting node. Figure

2 shows that the pre-processing results also match well with

the theoretical approximate results. Similar to the caculated

expectation curve, there are horizonal segments in the theo-

retical approximation curve. This is because node degrees are

integers and l needs to increase by a certain amount such that

the value of
2t|E|
lR

reaches the next integer. Nevertheless, the

middle point of each horizonal segment still matches with the

pre-processing results curve. Figure 2 illustrates that the pre-

processing results drawn from a random honest node can be

effectively used as the criterion to identify sybil nodes.

To gain an understanding of the difference between the

footprint of random walks originating from an honest node

and from a sybil node, assume ϕ is the expected number of

hops for the random walks starting from a sybil node to enter

the honest region. If we draw the curve for the number of

nodes with frequency no smaller than t based on the random

walks starting from that sybil node, it is approximately like

moving the pre-processing results curve in Figures 1 and 2

to the right by ϕ and then raising it by the size of the sybil

region. In the evaluation we will show that this difference is

large enough to identify the sybil nodes.

B. Sybil Community Detection Algorithm

After one sybil node is identified, our sybil community

detection algorithm can be used to detect the sybil community

surrounding it. The sybil community detection algorithm takes

the social graph G(V,E) and a known sybil node s as inputs,

and outputs the sybil community around s. The sybil node s
can be identified by our sybil identification algorithm or any

previous scheme. We define a sybil community as a subgraph

of G consisting of only sybil nodes, and there is no small cut

in this subgraph. The reason why we make this definition is

that if a small cut does divide the sybil region into two parts

S1 and S2, and the known sybil node s is in S1, then, from

the point of view of s, the honest region and S2 are similar,

since there is already a small cut between S1 and the honest

region and also a small cut between S1 and S2. When there

is a small cut in the sybil region, our algorithm can detect the

sybil community s belongs to.

Our algorithm relies on performing partial random walks

originating from s. Each partial random walk behaves the same

as the standard random walks used in the previous subsection,

except that it does not traverse the same node more than

once. Therefore, when a partial random walk reaches a node

with all the neighbors traversed by itself, this partial random

walk is “dead” and cannot proceed. This property makes a

partial random walk originating from a sybil node less likely

to leave the sybil region, compared with a standard random

walk, since many such walks “die” when they hit the border of

the sybil region. Similar to the sybil identification algorithm,

the intuition behind this algorithm is that the partial random

walks originating from a sybil node tend to be trapped within

the sybil region, and thus we can detect the sybil community

by examining the nodes traversed by the partial random walks.

Algorithm 3 WalkLengthEstimation(G, s)

1: l = l0/2
2: deadWalkRatio = 0
3: while deadWalkRatio < β do

4: l = l ∗ 2
5: deadWalkNum = 0
6: for i = 1 to R do

7: Perform a partial random walk originating from s with length l
8: if the partial random walk is dead before it reaches l hops then

9: deadWalkNum++
10: end if

11: end for

12: deadWalkRatio = deadWalkNum / R
13: end while

14: output l

The sybil community detection algorithm consists of two

phases, Algorithm 3 and Algorithm 4. The task of Algorithm 3

is to estimate the needed length of the partial random walks

used in Algorithm 4. Starting from an initial length l0, the

algorithm performs R partial random walks originating from

s and counts the ratio of dead walks, which are the walks

that cannot proceed before they reach the required length.

If this ratio is smaller than β, a threshold close to 1 (0.95

in our evaluation), the algorithm doubles the current length

and performs the partial random walks again. This process is

repeated until the dead walk ratio is no smaller than β. Then

the algorithm outputs the current random walk length l. The

reasoning is that the number of untraversed sybil nodes is very

small (often equals to 0 in our evaluation) when the dead walk

ratio is close to 1 and with a relatively large R (2000 in our

evaluation).

Algorithm 4 SybilRegionDetection(G, s, l from Alg.3)

1: Set the frequency of all the nodes to be 0
2: for i = 1 to R do

3: Perform a partial random walk originating from node s with length l
4: s.frequency++
5: for j = 1 to l do

6: Let the jth hop of the partial random walk be node k
7: k.frequency++
8: end for

9: end for

10: traversedList = Sort the traversed nodes by their frequency in de-
creasing order

11: counter = 0
12: S = ∅
13: do

14: counter = conductance(S)
15: for i = traversedList.first() to traversedList.last() do

16: if node i ∈ S then

17: continue
18: end if

19: if conductance({i} ∪ S) <= conductance(S) then

20: S = {i} ∪ S
21: end if

22: end for

23: while (counter > conductance(S))
24: output S

Algorithm 4 takes G, s, and the estimated length l as inputs

and outputs the sybil community surrounding s. The reason

why we need Algorithm 4 is that not all the nodes traversed

by the partial random random walks in Algorithm 3 are sybil

nodes, as some walks pass the small cut and enter the honest

region, and we need an algorithm to select the sybil nodes

from the set of traversed nodes. To achieve this, Algorithm 4

leverages a metric called conductance [9], defined as follows.

Let d be the sum of the degrees of all the nodes in set S,

and a be the number of edges with one endpoint in S and

one endpoint in S. Then the conductance of S is a/d. The

conductance of a set S measures the quality of the cut between

S and S: the smaller the conductance is, the smaller the cut is.

Since we assume that there is a small cut between the honest

region and the sybil region, using conductance as the objective

of the greedy algorithm fits the problem well. In this algorithm

we let the conductance of an empty set be 1.

Algorithm 4 runs by first performing R partial random

walks originating from the known sybil node s, with the

length decided by Algorithm 3. Then the algorithm sorts all

the traversed nodes by their frequency in decreasing order.

Starting from the first node, which is always s, the algorithm

iterates the sorted list and adds the encountered node to set S if

doing so does not increase the conductance of S. After all the

nodes in the sorted list are examined, the algorithm records the

current conductance value, starts a new iteration from the top

of the list and examines each node that is not in S. This process

is repeated until the conductance value stays the same at the

end of two consecutive iterations. Then the algorithm outputs

S as the detected sybil community. The intuition is that by

performing the partial random walks originating from a sybil

node with suitable length many times, the sybil community

surrounding the sybil node is covered by the partial random

walks. Also, the sybil nodes tend to be in front of the honest

nodes in the sorted list, since a large number of partial random

walks cannot enter the honest region. As a result, the greedy

algorithm will first try to add the nodes that are more likely

sybil to S. This algorithm only relies on performing R partial

random walks originating from a sybil node, which makes it

very efficient and scalable to large-sized social networks.

C. Limiting the Number of Attack Edges

It has been shown that not all the relationships in online

social networks are trusted [5]. One approach to limiting the

number of attack edges in these networks is to allow the users

to rate their relationships. To demonstrate this we develop a

Facebook application named Rate Your Relationships [2]. The

users of the application can rate each of their relations on

Facebook either as “Friend” or “Stranger”, where “Stranger”

means the user hardly has any impression about this relation.

The number of attack edges can be limited by removing the

relationships rated as stranger from the social graph when

applying the sybil defense schemes. The rationale is that

even if an adversary can create many links between the sybil

identities and the honest identities, it is hard for him to

convince the honest users that those sybil identities are their

acquaintances. The survey results of our Facebook application

are presented in Section V-D.

We can also use the concept of activity network [13], [15] to

limit the number of attack edges. Activity network is a network

graph that is based on the interaction between users, rather

than mere relationship. Two nodes share an edge in an activity

network if and only if they have interacted directly through

the communication mechanisms or applications provided by

the corresponding social network. If the sybil defense schemes

leverage the topologies of the activity networks, the number

of attack edges an adversary can create can be further limited.

V. EVALUATION

A. Data Sets and Experiment Setup

In this section we evaluate the effectiveness of SybilDe-

fender using two data sets [10], [15] from Orkut and Facebook,

respectively. The Orkut data set consists of 3,072,441 nodes

and 117,185,083 edges, with an average degree of 76.28,

while the Facebook data set consists of 3,097,165 nodes and

28,377,481 edges, with an average degree of 18.32. To the

best of our knowledge, these are the largest data sets that have

ever been used in evaluating the sybil defense schemes that

leverage social network topologies.

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 0 2000 4000 6000 8000 10000

#
 o

f
n
o
d
e
s
 w

h
o
s
e
 f
re

q
u
e
n
c
y
 >

=
 5

random walk length

Honest
Sybil

Honest

Sybil

Fig. 3. Difference between the coverage of random walks originating from
honest nodes and from sybil nodes

In the experiments we use two models to construct the sybil

regions respectively: the preferential attachment (PA) model

[4] and the Erdös-Rényi (ER) model [8]. Both models are

widely used in network analysis. The networks constructed

with the PA model are scale free, which means their node de-

grees follow a power-law distribution, a well accepted property

of social networks [10], [15]. It has been used in previous

research to build the sybil regions [6], [14]. The topologies

built through the ER model, on the other hand, are random

networks with no particular bias, which emulate the arbitrary

structures of the sybil regions. In our experiments, to build

a sybil region and connect it to a real-world social network

sample, we follow the suggestion by Yu et al. [20] that the

most effective way for an adversary to launch a sybil attack is

to first compromise a small number of existing nodes, so as to

quickly increase the number of attack edges. We first randomly

select nodes from the data set to be compromised nodes, until

the number of edges between the compromised nodes and

the other nodes is g0, which is the number of attack edges.

The compromised nodes are all sybil nodes. They introduce

γ additional sybil nodes, and establish a connected scale-

free topology through the PA model, or a connected random

topology through the ER model among all the sybil nodes. We

label all the other nodes in the data set as honest nodes. The

average degree of the sybil region built with the PA model

is set to be equal to the average degree of the corresponding

data set, while the average degree of the sybil region built

with the ER model ranges from 8 to 11, representing a sparse

topology compared with the realistic social networks. Note that

in the evaluation of some previous schemes, the social network

samples are first pre-processed by removing the nodes with

small degrees [6], [19], to prevent such nodes from degrading

the effectiveness of these schemes. Instead, we do not make

any modification on the published data sets.

B. Evaluation of the Sybil Identification Algorithm

Yu et al. [19] proved that for all the sybil defense mecha-

nisms that leverage the fast-mixing property, the number of

admitted sybil nodes per attack edge is lower bounded by

Ω(1). In this subsection we will show that the performance of

our sybil identification algorithm approaches this theoretical

bound, and our algorithm outperforms SybilLimit by one to

two orders of magnitude in both accuracy and running time.

The intuition of our sybil identification algorithm is that,

because of the existence of a small cut between the honest

region and the sybil region, there is a difference between the

coverage of random walks originating from an honest node and

from a sybil node. Figure 3 illustrates this difference. Here,

we use the PA model to construct the sybil region. We set the

size of the sybil region to be 10000 nodes, and the number

of attack edges to be 1000. In the experiments we perform

1000 random walks originating from each randomly selected

source node. The upper curve in Figure 3 is the number of

nodes traversed by random walks originating from an honest

node no smaller than 5 times, while the lower curve is the

number of nodes traversed by random walks originating from

a sybil node no smaller than 5 times. Each point in the curves

represents the mean value of 20 experiments. It is easy to

see that the difference is larger than 200,000 nodes when

the random walk length reaches 10000 hops. As described

in Algorithm 2, we use τ = mean − α ∗ stdDeviation as

the threshold to identify sybil nodes. In our experiments we

observe that stdDeviation < 1500, so the sybil nodes can be

identified even with a relatively large α, to limit the number

of falsely identified honest nodes.

To evaluate our sybil identification algorithm, the parame-

ters we used in the experiments are as follows: lmin = 100,

lmax = 10000, l0 = 1000, t = 5, α = 20, ls = 20, f = 100,

R ∈ {1000, 1500, 2000}. When building the sybil regions, we

set the number of attack edges to be 1000. We define the false

positive rate as the percentage of the honest nodes identified

to be sybil, and the false negative rate as the percentage of

the sybil nodes identified to be honest. In the experiments we

obtain the false positive and negative rates of our algorithm.

As we use large-scale topologies in the experiments, it is

infeasible to examine all the honest nodes to get the exact

false positive rate. To estimate the false positive rate of the

algorithm, in each experiment we randomly select 1000 honest

nodes as suspects and use our sybil identification algorithm to

test them. To get the false negative rate, in each experiment we

use our algorithm to test every sybil node. In the experiments

we vary the number of sybil nodes per attack edge. For each

value we evaluate the algorithm on two real-world topologies,

using two sybil region construction models, and with three

values of R, the number of random walks performed in the

algorithm, respectively.

Table II shows the results when each attack edge introduces

10 sybil nodes and 5 sybil nodes, respectively. It is easy to

see that our algorithm achieves very low false positive and

negative rates in all the cases. We find that all the sybil nodes

that cannot be correctly identified are compromised nodes, as

they are on the small cut between the honest region and the

sybil region. Similarly, all the falsely identified honest nodes

are close to the small cut.

Table III shows the results when each attack edge introduces

only one sybil node. The false negative rate for the Facebook

data set is higher than the results shown in Table II. This is

because the difference between the coverage of the random

walks originating from an honest node and from a sybil node

becomes smaller compared with the cases when each attack

TABLE II
FALSE POSITIVE AND NEGATIVE RATES OF THE SYBIL IDENTIFICATION ALGORITHM

10 sybil nodes per attack edge (10000 sybil nodes) 5 sybil nodes per attack edge (5000 sybil nodes)
Orkut Facebook Orkut Facebook

PA Model ER Model PA Model ER Model PA Model ER Model PA Model ER Model

F+ F− F+ F− F+ F− F+ F− F+ F− F+ F− F+ F− F+ F−

1000RWs 0 0 0 0.11% 0 0.07% 0.1% 0.16% 0 0.02% 0 0.28% 0 0.22% 0.1% 0.54%

1500RWs 0 0.01% 0 0.11% 0.4% 0.08% 0.2% 0.1% 0 0.02% 0 0.32% 0.3% 0.12% 0.2% 0.44%

2000RWs 0 0 0 0.04% 0.3% 0.1% 0.5% 0.1% 0 0 0 0.22% 0.5% 0.04% 0.5% 0.4%

TABLE III
1 SYBIL NODE PER ATTACK EDGE FALSE POSITIVE AND NEGATIVE RATES

Orkut Facebook
PA Model PA Model

F+ F− F+ F−

1000RWs 0 0.6% 0% 6.2%

1500RWs 0 0.7% 0.4% 4.4%

2000RWs 0 0.2% 0% 1.4%

10000 sybils F+ 5000 sybils F+ 1000 sybils F+ 10000 sybils F− 5000 sybils F− 1000 sybils F−
0

10%

20%

30%

40%

50%

60%

70%

fa
ls

e
 r

a
te

SybilDefender

SybilLimit

0 1.4%

15.16%

1.4%

61.3%

8.55%

1.5% 1.2%0.3% 0.1%0.5% 0.04%

Fig. 4. Comparison between the false positive and negative rates of
SybilDefender and those of SybilLimit

TABLE IV
FALSE RATES OF SYBILLIMIT ON THE FACEBOOK DATA SET

PA Model ER Model

F+ F− F+ F−

10000 sybils 1.5% 8.55% 0.6% 15.35%

5000 sybils 1.2% 15.16% 1.4% 32.62%

1000 sybils 1.4% 61.3% 0.8% 85.3%

edge introduces more sybil nodes. The experimental results

show that our sybil identification algorithm can identify nearly

all the sybil nodes when each attack edge introduces 10 or

5 sybil nodes, and an overwhelming majority of sybil nodes

when each attack edge introduces 1 sybil node, both with very

low false positive rate.

1) Comparison with existing schemes: We fully imple-

mented SybilLimit and evaluated it using our Facebook data

set. Following the method in [19], we found the optimal

parameters for SybilLimit on the Facebook data set. We set w,

the length of random routes, to be 20 hops, and r, the number

of instances of the random route generation protocol, to be

10000. Table IV lists SybilLimit’s false positive and negative

rates when each attack edge introduces 10 sybil nodes, 5 sybil

nodes, and 1 sybil node, respectively. The results show that

when each attack edge introduces one sybil node, SybilLimit

accepts the majority of the sybil nodes.

Figure 4 compares the false positive and negative rates of

SybilDefender with those of SybilLimit, when the sybil region

is built with the PA model. It is easy to see that in all the three

cases the false positive rate of SybilDefender is lower than that

of SybilLimit, and the false negative rate of SybilDefender

is lower than that of SybilLimit by one to two orders of

magnitude. The reason is SybilLimit assumes that almost

all the short random routes originating from an honest node

will stay within the honest region, and it bounds the number

of admitted sybil nodes by the number of attack edges and

random route length. When each attack edge introduces few

sybil nodes, SybilLimit cannot effectively identify the sybil

nodes. On the other hand, SybilDefender interprets the small

cut between the honest region and the sybil region as a bias in

the coverage of the random walks originating from an honest

node and from a sybil node. It can effectively identify the

sybil nodes even when the number of sybil nodes introduced

by each attack edge approaches the theoretical lower bound.

On one core of an Intel Xeon 2.93GHz processor, the

average running time to test one sybil node by SybilDefender,

with R = 2000, is 0.87 seconds, comparing to 11.56 seconds

by SybilLimit. The average running time to test one honest

node by SybilDefender is 7.11 seconds, comparing to 83.55

seconds by SybilLimit. The reason why SybilDefender is faster

than SybilLimit by more than 10 times is that SybilLimit

invokes a large number (r = 10000 for our Facebook data

set) of instances of the random route generation protocol [19].

Within each instance a random routing table is generated for

every node in the social graph. By contrast, SybilDefender

only relies on performing a limited number of random walks.

Viswanath et al. proposed using a community detection

algorithm [14] as the ranking algorithm to investigate the

similarity between different sybil defense schemes. We eval-

uated their algorithm using our two data sets, and found

that the algorithm alone cannot be used to identify the sybil

nodes. The reason is that the algorithm starts from an honest

node and iteratively adds nodes that improves the normalized

conductance at each step. In our evaluation the normalized

conductance always reaches the first inflection point after

adding only several honest nodes. As a result, their algorithm

cannot distinguish the sybil nodes from the honest nodes

without providing a cutoff point.

We also evaluated Gatekeeper [12] using our data sets,

which heavily relies on the assumption that the social networks

are random expander. This assumption is stronger than our

fast-mixing assumption and has not been validated in previous

research, which makes Gatekeeper suffer from high false

positive and negative rates on the real-world social topologies

that exhibit asymmetries. For example, on our Facebook data

TABLE V
PERFORMANCE OF THE SYBIL COMMUNITY DETECTION ALGORITHM

10 sybil nodes per attack edge (10000 sybils)

Percentage of Number of falsely
found sybil nodes detected honest nodes
Orkut Facebook Orkut Facebook

PA model 99.91% 99.82% 0.3 0.3

ER model 99.85% 99.84% 0 0.7

1 sybil node per attack edge (1000 sybils)

Percentage of Number of falsely
found sybil nodes detected honest nodes
Orkut Facebook Orkut Facebook

PA model 99.4% 98.4% 0.1 1.1

ER model 98.7% 98.3% 0.1 0.3

set with a 10000-node sybil region built through the PA model,

the average false positive rate of Gatekeeper is 11.7%, and the

average false negative rate is 17.2%. When the sybil region

is built with the ER model, the average false positive rate is

11.7%, and the average false negative rate is 14.7%. In the

evaluation we used the parameters (m = 100, fadmit = 0.2)

recommended by [12] and repeated each experiment 20 times.

C. Evaluation of the Sybil Community Detection Algorithm

To evaluate our sybil community detection algorithm, the

parameters we used in the experiments are as follows: l0 =
100, β = 0.95, R = 2000. We test the algorithm on two

social topologies, with the sybil region built through two

models, respectively. The number of attack edges is 1000,

and the size of the sybil region depends on how many sybil

nodes are introduced by each attack edge. As the goal of our

sybil community detection algorithm is to detect the sybil

community surrounding a known sybil node, when running

each experiment we randomly select a sybil node as the

starting node of our algorithm, and we get the percentage of

the sybil nodes that can be detected, as well as the number

of the honest nodes that are falsely detected. We repeat each

experiment 20 times and calculate the mean value. Table V

shows the results when each attack edge introduces 10 sybil

nodes and 1 sybil node, respectively. It is easy to see that our

algorithm can detect an overwhelming majority of the sybil

region in all the experiments, and on average less than 1 honest

node is falsely detected in each experiment. The undetected

sybil nodes are all compromised nodes, the sybil nodes directly

connecting to the honest nodes through attack edges. Our sybil

community detection algorithm achieves high accuracy with

short running time. For example, it takes 16 seconds to detect

an 10000-node sybil region connecting to the Facebook data

set on one core of an Intel Xeon 2.93GHz processor.

D. Survey Results of the Facebook Application

To investigate the user experience of our Facebook applica-

tion, we carried out a survey through the Amazon Mechanical

Turk platform [1]. In the survey we asked the respondents to

use our application to rate all the relations in their Facebook

friend lists. We get the results from 214 respondents. Their

average number of relations is 118, and the average time to

finish the survey is 249 seconds. This indicates that it does

not take long for the online social network users to rate their

relationships. The average percentage of strangers among all

the relations is 19.8%, which shows that the assumption made

by previous work that all the links in social networks are

trusted does not apply to online social networks. In the survey

76.6% of the respondents would like to rate their relationships

when they know this can help to defend against malicious

users. This shows that relationship rating is a promising way

to limit the capacity of the adversary to create attack edges.

VI. CONCLUSION

We present SybilDefender, a scheme that leverages the

network topologies to defend against sybil attacks in large

social networks. Our evaluation shows that SybilDefender can

correctly identify the sybil nodes even when the number of

sybil nodes introduced by each attack edge approaches the

theoretically detectable lower bound, and it can effectively

detect the sybil community surrounding a sybil node with

different sizes and structures.

ACKNOWLEDGMENT

The authors would like to thank all the reviewers for their

helpful comments. This project was supported in part by

US National Science Foundation grants CNS-1117412 and

CAREER Award CNS-0747108.

REFERENCES

[1] Amazon mechanical turk. https://www.mturk.com/mturk.
[2] Rate your relationships. http://apps.facebook.com/ratingrelationships/.
[3] The top 500 sites on the web. http://www.alexa.com/topsites.
[4] R. Albert and A. Barabási. Statistical mechanics of complex networks.

Rev. Mod. Phys, 74:47–97, 2002.
[5] L. Bilge, T. Strufe, D. Balzarotti, and E. Kirda. All your contacts are

belong to us: automated identity theft attacks on social networks. In
WWW, 2009.

[6] G. Danezis and P. Mit. Sybilinfer: Detecting sybil nodes using social
networks. In NDSS, 2009.

[7] J. R. Douceur. The sybil attack. In IPTPS, 2002.
[8] P. Erdös and A. Rényi. On random graphs. Publicationes Mathemticae

(Debrecen), 6:290–297, 1959.
[9] R. Kannan, S. Vempala, and A. Vetta. On clusterings: Good, bad and

spectral. In FOCS, 2000.
[10] A. Mislove, M. Marcon, K. P. Gummadi, P. Druschel, and B. Bhat-

tacharjee. Measurement and analysis of online social networks. In
ACM/USENIX IMC, 2007.

[11] M. Mitzenmacher and E. Upfal. Probability and Computing. Cambridge
University Press, 2005.

[12] N. Tran, J. Li, L. Subramanian, and S. S.M. Chow. Optimal sybil-
resilient node admission control. In IEEE INFOCOM, 2011.

[13] B. Viswanath, A. Mislove, M. Cha, and K. P. Gummadi. On the evolution
of user interaction in facebook. In SIGCOMM WOSN, 2009.

[14] B. Viswanath, A. Post, K. P. Gummadi, and A. Mislove. An analysis of
social network-based sybil defenses. In SIGCOMM, 2010.

[15] C. Wilson, B. Boe, A. Sala, K. P. N. Puttaswamy, and B. Y. Zhao. User
interactions in social networks and their implications. In EuroSys, 2009.

[16] K. Xing and X. Cheng. From time domain to space domain: Detecting
replica attacks in mobile ad hoc networks. In IEEE INFOCOM, 2010.

[17] K. Xing, F. Liu, X. Cheng, and D. H. Du. Realtime detection of clone
attacks in wireless sensor networks. In IEEE ICDCS, 2008.

[18] L. Xu, S. Chainan, H. Takizawa, and H. Kobayashi. Resisting sybil
attack by social network and network clustering. In SAINT, 2010.

[19] H. Yu, P. B. Gibbons, M. Kaminsky, and F. Xiao. Sybillimit: A near-
optimal social network defense against sybil attacks. In IEEE Symposium

on Security and Privacy, 2008.
[20] H. Yu, M. Kaminsky, P. B. Gibbons, and A. Flaxman. Sybilguard:

defending against sybil attacks via social networks. In SIGCOMM, 2006.

