
MobiShare: Flexible Privacy-Preserving Location

Sharing in Mobile Online Social Networks

Wei Wei, Fengyuan Xu, Qun Li

Computer Science, The College of William and Mary

{wwei, fxu, liqun}@cs.wm.edu

Abstract—Location sharing is a fundamental component of
mobile online social networks (mOSNs), which also raises sig-
nificant privacy concerns. The mOSNs collect a large amount
of location information over time, and the users’ location pri-
vacy is compromised if their location information is abused by
adversaries controlling the mOSNs. In this paper, we present
MobiShare, a system that provides flexible privacy-preserving
location sharing in mOSNs. MobiShare is flexible to support a
variety of location-based applications, in that it enables location
sharing between both trusted social relations and untrusted
strangers, and it supports range query and user-defined access
control. In MobiShare, neither the social network server nor the
location server has a complete knowledge of the users’ identities
and locations. The users’ location privacy is protected even if
either of the entities colludes with malicious users.

I. INTRODUCTION

In the past few years, online social networks (OSNs) have

gained great popularity and are among the most frequently

visited sites on the Web. Besides, the popularity of mobile

devices such as cell phones and tablets keeps being exploding,

and these mobile devices are becoming smarter. Most cell

phones sold today are capable of accessing the Internet over

WiFi or cellular networks, and determining their locations

through GPS or cellular geolocation. As a result, it is not

surprising to see the rapid fusion of OSNs with mobile

computing, that is, a new paradigm called mobile online social

networks (mOSNs).

The mOSNs can be classified into two types. The first type

consists of the existing OSNs, like Facebook and Twitter,

turning mobile. That is, they tail the contents and access

mechanisms for mobile users, and allow accesses from mobile

devices. The second type mOSNs are the newly emerging

OSNs that are dedicated to mobile users, such as Foursquare

and Gowalla. These new mOSNs are designed to explicitly

take advantage of the location information provided by the mo-

bile devices. Compared with traditional OSNs, both of these

two kinds of mOSNs take a step further in that they provide

the location-based services. Instead of explicitly inputting their

locations, recent smartphone platforms that support various

localization technologies make it much easier for the users to

access and share their locations with each other.

While the location-based features make mOSNs more pop-

ular, they also raise significant privacy concerns. Users’ loca-

tions may reveal sensitive private information, such as inter-

ests, habits, and health conditions, especially when they are in

the hands of the adversaries. The threat is even more serious

when it comes to mOSNs, because users’ physical locations

are now being correlated with their profiles. Considering that

all the current mOSNs are under centralized control, users’

location privacy will be compromised if the location data

collected by the mOSNs are abused, inadvertently leaked, or

under the control of hackers. Without a guarantee of privacy,

users may be hesitant to share locations through mOSNs [3].

Given the popularity of mOSNs and the sensitivity of the lo-

cation data users place at them, it is critical to limit the privacy

risks posed by today’s mOSNs while retaining their functions.

As indicated in previous research [7], location and presence

are two sources of privacy leakage introduced by mOSNs.

SmokeScreen [4] solves the problem of how to flexibly share

presence with both friends and strangers while preserving user

privacy. However, until now no scheme has been proposed

to address the same problem for location sharing in mOSNs.

Previous work [8], [12] discussed sharing locations between

established relations in a privacy-preserving way. However,

restricting location sharing to established social relations

makes a large class of mobile social applications, such as

Serendipity [5], impossible. Besides, E-SmallTalker [11] and

E-Shadow [9] preserve location privacy by limiting social

information sharing in physical proximity via local wireless

communications. In a mOSN, users may want to see the

locations of both friends and strangers within some ranges,

while at the same time they should be able to control how their

own location information is accessed by others. To protect

users’ location privacy, the system should work in a way

that an adversary controlling the mOSN cannot obtain users’

location information. Unfortunately, no scheme proposed so

far meets these requirements.

In this paper, we present a privacy management system

called MobiShare, which provides flexible privacy-preserving

location sharing in mOSNs. Our system is flexible in that it

supports the features of location sharing in real-world mOSNs,

including sharing locations between both trusted social re-

lations and untrusted strangers, querying locations within a

certain range, and user-defined access control. MobiShare

leverages the existing OSNs and requires no change to their

architectures, but these OSNs are not trusted to access users’

location information. In MobiShare, the social network server

stores users’ identity-related information, while an untrusted

third-party location server stores users’ anonymized location

updates mixed with dummy location updates. The adversary

cannot link a precise location to an identified user, as long as



he cannot control both entities. A user’s location information

is not leaked to the malicious users who are unauthorized

to access his locations either, even if these malicious users

collude with the social network server or the location server.

II. SYSTEM ARCHITECTURE AND THREAT MODEL

A. System Model

To protect users’ location privacy, MobiShare stores users’

identity-related information and anonymized location updates

at two separate entities, the social network server and the

location server. Figure 1 shows the system architecture of

MobiShare. The social network server can be a server of

any existing OSN that wants to provide the location-sharing

service. It manages users’ identity-related information, e.g.,

their profiles and friend lists. The location server is an un-

trusted third-party server that stores the anonymized location

updates of the users. For example, A company may implement

the location server so as to profit from the OSNs or the

users. Besides, some privacy advocacy organization, like the

Electronic Frontier Foundation (EFF), can provide the location

server to help protect user privacy. Given that all the current

smartphones are able to access the Internet with wireless

techniques like 3G, it is reasonable to assume that users can

communicate with the servers through cellular networks.

We assume that each user has a unique identifier at the

social network server. This identifier is used as his identity in

MobiShare. Each user generates by himself a public-private

key pair and a symmetric session key, and shares the session

key with all his social network friends. Each cellular tower has

a unique identifier and generates by itself a symmetric secret

key, and shares them with the location server. The location

server also shares a symmetric secret key with the cellular

towers. The servers and the cellular towers are connected by

high-speed secure links, and the social network server cannot

identify the communicating cellular towers by observing the

IP addresses in the connections. For example, this can be

achieved by using proxies provided by the cellular carriers.

B. Trust and Threat Model

The social network server and the location server are not

trusted to access users’ location information. We assume that

either the social network server or the location server can be

compromised and controlled by an adversary seeking to link

users’ identities to their locations, but the adversary cannot

control both entities. This model is rational in that many

security breach cases usually involve the hack of databases or

logs in a single system, or dishonest insiders within a system

trying to fetch sensitive information [1]. It is unlikely that

the two servers operated by independent organizations can be

controlled by the same adversary. Besides, some users may

also be malicious, who seek to obtain the location information

they are unauthorized to access. The social network server or

the location server may collude with these malicious users.

For example, an employee of the social network company may

register for the location-sharing service, and collude with the

server to extract other users’ location information.

Social Network Server User A

Location Server

Cellular Tower

User B

Fig. 1. System architecture

This work does not investigate how to improve location pri-

vacy within the cellular networks. The wireless Enhanced 9-1-

1 rules [2] of the Federal Communications Commission (FCC)

require that the cellular carriers can locate the subscribed cell

phones with an accuracy of 50 to 300 meters. Also, for each

subscribed cell phone the cellular carrier generally knows the

owner’s name and address. Therefore, we make no attempt to

conceal the devices’ locations from the cellular networks, i.e.,

the cellular towers are trusted.

III. SYSTEM DESIGN

We separate the problem of privacy-preserving location

sharing into two cases, sharing locations between friends and

between strangers, and solve them separately. A summary of

the notations used in this section is given in Table I.

A. Service Registration

Before using the location-sharing service, each user needs

to register for the service at the social network server. During

registration, user A shares his public key PubKeyA with the

social network server, and defines his access control settings,

which consist of two threshold distances, dfA and dsA. dfA
is the threshold distance within which A is willing to share

his location with his social network friends. If the distances

between A and some of his friends are larger than dfA,

they cannot access A’s current location. Similarly, dsA is the

threshold distance within which A agrees to share his location

with arbitrary users. After registration, A keeps a record of

his social network identifier IDA, while the social network

server stores an entry as 〈IDA, PubKeyA, dfA, dsA〉 in its

subscriber table, where the user identity is the primary key.

B. Authentication

After user A’s handset connects to cellular tower C, an

encrypted data transmission link is established based on mo-

bile telecommunication techniques such as 3G/4G. To let the

cellular tower authenticate his identity, A sends an authen-

tication request as (IDA, ts, SigA(IDA, ts)) to the cellular

tower, where IDA is A’s social network identifier, and ts is a

timestamp used to prevent replay attack. The message is signed

by A’s private key. The cellular tower forwards this message

to the social network server. Upon receiving the message,

the social network server searches its subscriber table for A’s

registration information, including A’s public key PubKeyA
and the threshold distances dfA and dsA.



The social network server first uses PubKeyA to verify

A’s signature. If the verification succeeds, it sends a reply

as (IDA, dfA, dsA) to the cellular tower. The cellular tower

forwards this message to A. A checks if IDA, dfA, and dsA
are correct. If so, A sends an OK message to the cellular

tower. On the reception of the OK message, the cellular tower

stores an entry as 〈IDA, dfA, dsA〉 in its user info table, where

the user identity is the primary key. After this an authenticated

and secure communication link is established between A and

the cellular tower, and A’s identity is attached to this link.

C. Location Updates

When the users upload their location updates, the task of the

cellular towers is to perform anonymization such that the user

identities cannot be inferred from the anonymized location

updates. This is achieved by leveraging both pseudonyms and

dummy location updates. We assume that each cellular tower

periodically generates fake IDs, and saves them in a fake ID

pool. The number of needed fake IDs depends on the number

of users connecting to this cellular tower and their location

update frequency. Each location update from a user consumes

k fake IDs. The fake IDs can be efficiently generated using

a cryptographic hash function, such as SHA-1, and a random

salt value as follows: fake IDi = SHA(fake IDi−1⊕salt).
Assuming user A periodically gets his current location

through techniques such as GPS or cellular geolocation, to

update his location, A sends a message to the cellular tower

as (IDA, (x, y), SessA(x, y)), where (x, y) is A’s current

location, and SessA(x, y) is the location encrypted with A’s

session key. This session key is shared with all his social

network friends. Upon receiving the location update from A,

the cellular tower performs coarse location verification by

checking if (x, y) is within its working range. If so, the cellular

tower keeps a record of A’s current location in its user info

table. Then the cellular tower picks k fake IDs from its fake

ID pool. One of the k fake IDs is used to replace A’s identity

in the real location update. Let this fake ID be FIDA. The

other k−1 fake IDs are used by the cellular tower to construct

dummy location updates. The cellular tower stores FIDA at

A’s entry in the user info table, and sends the mapping between

A’s identity and the k fake IDs to the social network server,

which stores an entry as 〈IDA, F IDA, F ID1, ..., F IDk−1〉
in its fake ID table, where the user identity is the primary key.

With this table the social network server knows, given any user

identity, the fake ID used in the latest real location update and

the fake IDs used in the latest dummy location updates.

To anonymize the location update from A, the cellular

tower will send k location updates to the location server.

Only one location update contains A’s real location, while

the other k − 1 are dummies. The real location update

is of the form as (FIDA, (x, y), SessA(x, y), dfA, dsA). It

contains A’s fake ID, plaintext and encrypted locations, and

the threshold distances. To construct the dummy location

updates, the cellular tower follows the method proposed by

Kido et al. [6] and generates k − 1 dummy locations within

its coverage. The ith dummy location update is of the form

TABLE I
SUMMARY OF NOTATIONS

IDA User A’s social network identifier, used as his identity

FIDA User A’s fake ID

PubKeyA User A’s public key

PrivKeyA User A’s private key

SessKeyA User A’s session key, shared with all his friends

dfA User A’s friend-case threshold distance

dsA User A’s stranger-case threshold distance

CIDC Cellular tower C’s identifier

SecKeyC Cellular tower C’s secret key, shared with the location server

SecKeyLoc Location server’s secret key, shared with the cellular towers

as (FIDi, (xi, yi), stri, dfi, dsi). FIDi is one of the k fake

IDs from the fake ID pool; (xi, yi) is one of the dummy

locations generated by the cellular tower; stri is a random

string imitating the encrypted location; dfi and dsi are the

threshold distances of a random user whose information is

stored in the cellular tower’s user info table. Note that for the

dummy location updates, the cellular tower does not need to

really encrypt the locations. Instead, it only needs to generate

arbitrary strings with the length of an encrypted location. Like

generating fake IDs, these strings can be created efficiently

using a hash function and a salt value.

The cellular tower sends the k location updates to the

location server in a random order with random time intervals

following the exponential distribution. The location server

stores them in its location update database. The database

consists of a number of tables. Each table represents a ge-

ographic region. The updates of locations within a region will

be stored in the corresponding table, where the fake ID is

the primary key. Organizing the location update database in

this way improves search efficiency and reduces computation

overhead. For instance, given one location, to find all the fake

IDs within a range, instead of checking all the stored location

updates, the location server only needs to search the tables of

the regions that overlap the queried circular area. Note that the

entries in the location update database expire after a certain

period of time (15 minutes in our implementation).

D. Querying Friends’ Locations

Figure 2 shows the messages involved in querying friends’

locations. To query the locations of his friends within a certain

range, say 1 mile, user A sends query(IDA, ‘f’, ‘1mi’) to the

cellular tower. The cellular tower appends its identifier and a

sequence number, which are encrypted by the location server’s

secret key, to this message, and forwards query(IDA, ‘f’,

‘1mi’, SecKeyLoc(CIDC , seq)) to the social network server.

The identifier will be used by the location server to find the

secret key shared by this cellular tower to encrypt the reply.

Upon receiving the query, the social network server looks

up the currently used fake IDs of A and all A’s friends in its

fake ID table. Let FIDlist be a list consisting of the fake IDs

of all A’s friends in random order, including the fake IDs used

in each friend’s latest real location update and the fake IDs

used in each friend’s latest dummy location updates. Assume

A has f friends, then the size of FIDlist is kf . The social



UserACellular Tower CSocial Network ServerLocation Server

query(FIDA, ‘f’, FIDlist, ‘1mi’, SecKeyLoc(CIDC, seq))

query(IDA, ‘f’, ‘1mi’)

SecKeyC((FIDi, Sessi(xi,yi))…, seq)

((IDi, Sessi(xi,yi)) ...)

query(IDA, ‘f’, ‘1mi’, SecKeyLoc(CIDC, seq))

(SecKeyC((FIDi, Sessi(xi,yi))…, seq), mapping entries)

Fig. 2. Querying friends’ locations

UserACellular Tower CSocial Network ServerLocation Server

query(‘s’, ‘1mi’, SecKeyLoc(FIDA, CIDC, seq))

query(IDA, ‘s’, ‘1mi’)

(SecKeyC((FIDi, (xi,yi))…, seq), FIDlist)

((IDi, (xi,yi)) ...)

query(‘s’, ‘1mi’, SecKeyLoc(FIDA, CIDC, seq))

(SecKeyC((FIDi, (xi,yi))…, seq), mapping entries)

Fig. 3. Querying strangers’ locations

network server replaces A’s identity with FIDA, which is

the fake ID used in A’s latest real location update, and sends

query(FIDA, ‘f’, FIDlist, ‘1mi’, SecKeyLoc(CIDC , seq)) to

the location server. On the reception of the query, the location

server checks which fake IDs in FIDlist are within 1 mile

away from FIDA. For each of these nearby fake IDs, the

location server enforces access control based on that fake ID’s

friend-case threshold distance stored in the location update

database. For example, if one fake ID is 0.7 miles away from

FIDA, but its friend-case threshold distance is 0.5 miles, the

location server will not send the location of this fake ID to A,

even though it is within the queried range.

After finishing the distance computation and the access con-

trol enforcement, the location server sends a reply to the social

network server as SecKeyC((FIDi, Sessi(xi, yi))..., seq).
To prevent the social network server from prying the contents,

this message is encrypted with the cellular tower’s shared se-

cret key. The reply may contain multiple location entries. Each

entry is of the form as (FIDi, Sessi(xi, yi)), where FIDi

is a fake ID in FIDlist which is within the queried range

and has passed the access control enforcement. Sessi(xi, yi)
is FIDi’s encrypted location stored in the location update

database. As mentioned in the previous subsection, if FIDi

is a fake ID used in the latest real location update of a user,

then Sessi(xi, yi) is FIDi’s location encrypted with this

user’s session key shared with all his friends, including A.

Otherwise, if FIDi is a fake ID used in one of the dummy

location updates, then Sessi(xi, yi) is an arbitrary string with

the length of an encrypted location.

Upon receiving the reply, the social network server appends

a mapping entry for each of A’s friends to the message, and

forwards it to the cellular tower. Each mapping entry is of

the form as (FIDj , IDj), where FIDj is the fake ID used

in friend j’s latest real location update, and IDj is friend j’s

identity. Note that the social network server does not provide

the mapping entries for the fake IDs used in the dummy

location updates. Assume A has f friends, then f mapping

entries are appended to the reply. The reply received by the

cellular tower contains the encrypted location entries and the

mapping entries. The cellular tower first uses its secret key

shared with the location server to decrypt the location entries.

Then for each location entry that has a matching mapping

entry with the same fake ID, it replaces the fake ID in the

location entry with the user identity. The location entries that

do not have a matching mapping entry, which are from the

dummy location updates, are all discarded by the cellular

tower. Until now each remaining location entry has the form as

(IDi, Sessi(xi, yi)), which includes both the user identity and

the encrypted location. The cellular tower sends these entries

to A. Since we assume that all of A’s friends have shared

their session keys with A, A can decrypt and get the plaintext

locations of the nearby friends.

E. Querying Strangers’ Locations

Figure 3 shows the messages involved in querying strangers’

locations. To query the locations of arbitrary users within a

certain range, say 1 mile, A sends query(IDA, ‘s’, ‘1mi’)
to the cellular tower. The cellular tower keeps a record of

the queried range at A’s entry in the user info table. Then it

removes IDA, and appends FIDA, which is the fake ID used

in A’s latest real location update, the cellular tower identifier,

and a sequence number to the message, all of which are en-

crypted by the location server’s secret key. The cellular tower

sends query(‘s’, ‘1mi’, SecKeyLoc(FIDA, CIDC , seq)) to

the social network server, which directly forwards the query

to the location server.

On the reception of the query, the location server looks up

the fake IDs that are within 1 mile away from FIDA. For each

of these fake IDs, the location server enforces access control

based on its stranger-case threshold distance. Assuming there

are n nearby fake IDs that pass the access control enforce-

ment, the location server randomly picks another recently

received (k−1)n fake IDs from the location update database.

These fake IDs are mixed with the n nearby fake IDs in

the reply to achieve k-anonymity. The reply sent from the

location server to the social network server is of the form as

(SecKeyC((FIDi, (xi, yi))..., seq), F IDlist). This message

includes n location entries, each of which contains a nearby

fake ID and its plaintext location. All these location entries

are encrypted with the cellular tower’s secret key. FIDlist



consists of the n nearby fake IDs mixed with the (k − 1)n
randomly selected fake IDs. On the reception of the reply, the

social network server cannot pry the contents of the encrypted

location entries, nor can it learn which fake IDs in FIDlist are

currently close to A, since it cannot distinguish the n nearby

fake IDs from the (k − 1)n padded fake IDs.

As mentioned in Section III-C, to anonymize each location

update from a user, the cellular tower generates k− 1 dummy

location updates and sends all the k updates to the location

server. Therefore, approximately (k − 1)/k of the kn fake

IDs in FIDlist come from dummy location updates. The

social network server can simply filter out all these fake IDs

based on its fake ID table. For each of the remaining fake

IDs, the social network server appends to the reply a mapping

entry as (FIDj , IDj , dsj), where IDj is user j’s identity,

and dsj is user j’s stranger-case threshold distance. Then it

sends (SecKeyC((FIDi, (xi, yi))..., seq),mapping entries)
to the cellular tower.

After the cellular tower receives the reply, it first uses its

secret key to decrypt the location entries. To defend against

the attack that the location server colludes with a malicious

user, the cellular tower randomly selects one location entry

that has a matching mapping entry in the reply, and checks if

the distance between the location in this entry and A’s current

location stored in the user info table is smaller than both the

queried range and the stranger-case threshold distance in the

mapping entry. If the check fails, the reply is discarded and

the location server is suspected of behaving maliciously. Oth-

erwise, for each location entry that has a matching mapping

entry, the cellular tower replaces the fake ID with the user

identity and gets the location entry as (IDi, (xi, yi)). The

cellular tower sends all these entries to A. Until now A learns

both the identities and the locations of the nearby users who

are willing to share their location information.

IV. EVALUATION

We have implemented an experimental system based on the

design presented in Section III. The client is implemented in

JAVA on a MOTOROLA DROID 2 Global smartphone. A

laptop is set up to emulate the cellular tower. The smartphone

communicates with the laptop through Verizon’s 3G data

service. The social network server and the location server are

deployed on two third-party cloud hosting services, provided

by JoyentCloud and Linode, respectively. In our experiments

we use a data set consisting of 48,014 users and the social

network topology among them as a social network sample,

which is collected in a separate research project [10]. We set

k, the anonymity level, to be 5, and we use 128-bit AES for

symmetric key encryption and decryption.

The size of our client executable is 252KB. When running,

it has a memory footprint of 12MB. Figure 4 shows the client

interface. The client is set to update its location every 30

seconds, and query the locations of friends or nearby strangers

every 1 minute. Our evaluation shows that each hour the

client only consumes 1.5% of the battery power, with average

CPU utilization of 0.3%. This indicates that both the power

Fig. 4. Client interface

consumption and the computation overhead incurred by the

client is small.

To investigate the overhead incurred by our scheme on the

cellular towers, we create a large number of dummy users

on another laptop, and connect those users to the emulated

cellular tower. When there are 1000 connecting users, the

cellular tower service only uses 4.1% of the CPU power and

91MB memory, which shows that the cellular tower service

consumes a very limited amount of system resources.

V. CONCLUSION

In this paper, we present MobiShare, a privacy management

system that provides flexible privacy-preserving location shar-

ing in mOSNs. By separating user identities and anonymized

location updates onto two entities, users’ location privacy is

protected if either entity is compromised by the adversary.

ACKNOWLEDGMENT

The authors would like to thank all the reviewers for their

helpful comments. This project was supported in part by

US National Science Foundation grants CNS-1117412 and

CAREER Award CNS-0747108.

REFERENCES

[1] Chronology of data breaches security breaches 2005-present.
http://www.privacyrights.org/data-breach.

[2] Enhanced 9-1-1 wireless services. http://www.fcc.gov/pshs/services/911-
services/enhanced911/.

[3] L. Barkhuus and A. K. Dey. Location-based services for mobile
telephony: a study of users’ privacy concerns. In INTERACT, 2003.

[4] L. P. Cox, A. Dalton, and V. Marupadi. Smokescreen: Flexible privacy
controls for presence-sharing. In ACM MobiSys, 2007.

[5] N. Eagle and A. Pentland. Social serendipity: Mobilizing social software.
IEEE Pervasive Computing, 4(2):28–34, 2005.

[6] H. Kido, Y. Yanagisawa, and T. Satoh. An anonymous communication
technique using dummies for location-based services. In ICPS, 2005.

[7] B. Krishnamurthy and C. E. Wills. Privacy leakage in mobile online
social networks. In USENIX WOSN, 2010.

[8] K. P. N. Puttaswamy and B. Y. Zhao. Preserving privacy in location-
based mobile social applications. In HotMobile, 2010.

[9] J. Teng, B. Zhang, X. Li, X. Bai, and D. Xuan. E-shadow: Lubricating
social interaction using mobile phones. In IEEE ICDCS, 2011.

[10] W. Wei, F. Xu, C. C. Tan, and Q. Li. Sybildefender: Defend against
sybil attacks in large social networks. In IEEE INFOCOM, 2012.

[11] Z. Yang, B. Zhang, J. Dai, A. Champion, D. Xuan, and D. Li.
E-smalltalker: A distributed mobile system for social networking in
physical proximity. In IEEE ICDCS, 2010.

[12] G. Zhong, I. Goldberg, and U. Hengartner. Louis, lester and pierre: Three
protocols for location privacy. In Privacy Enhancing Technologies, 2007.


