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Abstract—This paper presents APT, a localization system for
outdoor pedestrians with smartphones. APT performs better
than the built-in GPS module of the smartphone in terms
of accuracy. This is achieved by introducing a robust dead
reckoning algorithm and an error-tolerant algorithm for map
matching. When the user is walking with the smartphone, the
dead reckoning algorithm monitors steps and walking direction
in real time. It then reports new steps and turns to the map-
matching algorithm. Based on updated information, this algo-
rithm adjusts the user’s location on a map in an error-tolerant
manner. If location ambiguity among several routes occurs after
adjustments, the GPS module is queried to help eliminate this
ambiguity. Evaluations in practice show that the error of our
system is less than 1/2 that of GPS.

I. INTRODUCTION

We have noticed several occurrences of blind people losing
their way in our university. It is disconcerting to see those
visually impaired people disoriented on campus even though
the routes are comparably familiar and thus simple to follow.
We realize that the fundamental reason why blind people lose
their way is that they do not know their current location and
easily miss a turn or go toward a wrong direction. We aim to
build a system to assist the blind people with smartphones by
providing accurate location information and, combined with a
digital map, offering guidance audio messages. Compared with
blind navigation systems such as RFID based technology, it is
our belief that this system can be rapidly and inexpensively
deployed. Toward this goal, this paper solves the localization
problem by designing an accurate outdoor pedestrian tracking
system.

GPS, the most accurate localization service for smart-
phones at present, has inherent limitations in its accuracy. Our
GPS measurements show error up to 15 meters in a clear-sky-
view environment and up to 20 meters when trees are around.
Such accuracy restricts the development of our system.

Our goal is to improve localization accuracy to a few meter-
s. This touches the fundamental limitation of GPS and enables
accuracy-demanding applications. To improve the accuracy of
the GPS module on smartphones, we tried several approaches
including taking the average for consecutive GPS readings
and consulting GPS location history data. Unfortunately, the
improvement is negligible. The underlying reason is that GPS
error does not have a useful pattern. It can be arbitrary from
time to time and from location to location.

The work was done when the first author was visiting the College of William
and Mary.

To realize our goal, we base our solution on three observa-
tions. First, pedestrians have regular movements that provide
opportunities for an accurate dead reckoning system. Second,
though the accuracy of GPS is unsatisfactory, it works well
in distinguishing between distant routes. Third, we can easily
generate augmented maps on a smartphone. Based on these
observations, we design a dead reckoning algorithm and a map-
matching algorithm. The dead reckoning algorithm detects
steps and turns, and triggers our map-matching algorithm.
When map-matching fails to uniquely determine a route, it
requests location information from the GPS component. The
main purpose of GPS is to help distinguish between distant
routes, thus GPS is requested infrequently. Consequently, the
increased energy efficiency is another advantage of our system
(the accelerometer and gyroscope are known to consume
much less energy than GPS [1]). However, there are various
challenges in implementing the ideas above, such as different
phone placements, phone axes reorientation and error-tolerant
map-matching. Tackling these challenges constitutes our con-
tributions, which can be enumerated as follows.

First, we propose a robust dead reckoning algorithm (Sec-
tion V). This algorithm features two designs. First, instead of
detecting walking steps as usual, we manage to find accel-
eration patterns that can reflect travel distance and be easily
detected. This design simplifies the detection problem, and the
resulting algorithm can also tolerate different placement of the
phone. Second, we do not require the user to hold the phone
flat out when using the system. Usually, this requirement is
for walking direction estimation. We relax this requirement by
re-orienting the phone’s axes robustly so that different ways
to hold the phone yield the same direction estimation.

Second, we propose an error-tolerant map-matching algo-
rithm (Section VI). The novelty is that it tolerates possible
errors of the dead reckoning algorithm and GPS. This tolerance
is achieved by trying all possible routes that are within our
error tolerance threshold. In some cases, this scheme finds sev-
eral possible routes and cannot determine which one is correct.
Then, GPS can be used to help eliminate this ambiguity.

Third, we evaluate our approach using real-world measure-
ments conducted around the campus (Section VII). The results
show that our approach can achieve a localization accuracy
within 5 meters, while GPS-based solutions have error up to
15 meters.

The rest of this paper is organized as follows. We review
related works in Section II, and report GPS observations



in Section III. Section IV overviews our solution, followed
by detailed description of the dead reckoning algorithm in
Section V and the map matching algorithm in Section VI. We
conduct evaluation in Section VII, discuss related issues in
Section VIII and conclude our paper in Section IX.

II. RELATED WORKS

Many indoor localization systems can achieve localization
accuracy to within a few meters. Radar [2] is a classic
indoor localization system using wireless signal fingerprinting
to localize a user. It requires a training period that incurs
labor-intensive data collection. Recently, researchers try to
eliminate this training period by solving a system of equations
to find the wireless propagation model [3]. SparseTrack [4]
is an indoor pedestrian tracking system, where a user carries
a smartphone and a special sensor mote (Cricket mote). The
smartphone is for dead reckoning where the accelerometer and
the digital compass are for distance estimation and direction
estimation respectively. The error accumulation problem of
the dead reckoning system is tackled by the special sensor
mote, which has ultrasound ranging capability and can com-
municate with other sparsely deployed special sensor motes
in the infrastructure. Our dead reckoning system differs in the
type of sensors used and in the techniques. Additionally, the
error accumulation problem in our system is solved by the
map-matching component. Localization is also an important
research problem in wireless sensor networks [5]–[8].

Smartphones have become pervasive in the past several
years. Among the numerous applications for smartphones,
many require position information [9]–[11]. For these applica-
tions, GPS is the most popular choice, but it is power-hungry.
Much research effort has been devoted to improving the energy
efficiency issue of GPS [12]–[18]. One common approach is
to substitute power-hungry GPS with energy-efficient local-
ization schemes such as WiFi and cellular-tower. Following
this idea, EnTracked [14] focuses on position tracking, and
EnTrackedT [16] focuses on trajectory tracking. A-Loc [12]
tries to track positions for mobile search applications with
dynamic accuracy. RAPS [15] turns on GPS in a rate-adaptive
manner. CAPS [13] is a cell-ID based positioning system
that leverages position history for localization. If multiple
applications request location service simultaneously, then a
unifying middleware layer can help reduce the use of GPS [17].
Another idea for saving energy is to modify GPS in hardware.
LEAP [18] shifts the position calculating step of the GPS
hardware to the cloud, providing energy efficient trajectory
service. Other localization methods are also proposed for
smartphones. EV-Loc [19] integrates electronic and visual
signal for accurate localization and tracking. E-Shadow [20]
has a localization component using direction information.

Several works consider off-line localization. AutoWit-
ness [21] is a system for tracking stolen personal property.
In the system, a special tag is embedded inside an asset to be
protected. The tag contains an accelerometer and a gyroscope
for dead reckoning, and a GSM/GPRS model for reporting data
to a server. The server performs map-matching to recover the
traveled route. We differ in both the dead reckoning system and
the map-matching algorithm. First, our dead reckoning system
is designed specifically for pedestrians, and theirs is for cars.
The solutions are not applicable to each other due to different

movement properties. Second, we focus on online tracking,
while the off-line map-matching algorithm in AutoWitness
cannot be easily extended to this scenario. Another work
considers utilizing temporal stability and low-rank structure
for improving localization accuracy [22].

III. ERROR CHARACTERISTICS OF SMARTPHONE GPS

We consider improving GPS accuracy based solely on GPS.
This requires the knowledge of GPS error characteristics. For
this purpose, we conducted GPS measurements around Sunken
Garden, Williamsburg, VA (N37.270851◦,W76.711682◦). The
smartphone we use is the Samsung Galaxy S II on the android
platform. It is programmed to collect GPS data once a second.
Our first encountered issue is that at any location, if the GPS
coordinate stabilizes, then it will never change, or will not
change for at least several hours. Experiments with different
phones, locations and durations all lead to the same result.
One possible explanation is that this is a strategy of the GPS
hardware and/or Android system for saving energy. But this
phenomenon implies that staying in one place longer does not
help improve GPS accuracy. Thus, the natural and seemingly
possible solution, staying in a place and taking the average of
all GPS readings, will not work well in practice. Finally, we
resort to the following strategy for data collection. Every time
the readings stabilize, we change the phone’s location briefly.
Among the measurements we conducted, we report two typical
ones.

The first consists of data collected at locations shown
in Figure 1. The data are organized into tuples. Each tuple
consists of three stabilized GPS readings with each at a
different location. In December 2011, we collected 7 datasets
at different times with each dataset containing 10-20 tuples.
We find that the tuples are different from each other, even for
consecutive ones. We plot all the tuples in Figure 2 differen-
tiating datasets by color. We can see that GPS readings at the
same location can differ up to 15 meters. It is worth noting
that all three locations have a clear view of the sky. Further
study shows that it is hard to find any obvious temporal/spatial
correlation among tuples. Consequently, we believe that in our
scenario, historical GPS data or neighborhood GPS data do not
help much in improving GPS accuracy.

The second measurement is for testing pedestrian track-
ing. Note that continuously updating GPS is currently the
most accurate methodology for smartphone-based tracking.
We selected a route around Sunken Garden, and a large
portion of this route is covered by trees. A user holding
the smartphone walks along the route five times. The GPS
coordinates are recorded every second. Figure 3 shows the five
walks differentiated by color. We can see that the accuracy of
GPS is worse than that of the previous scenario. Even after
removing obvious outliers, the error can still be more than 20
meters. More importantly, there is no obvious error pattern in
different repetitions. (If we can find a useful pattern, we may
use it to improve accuracy.)

As a result, we find that it is unlikely to improve local-
ization accuracy based solely on GPS. To achieve our goal,
other information is required. For this reason, we design a
dead reckoning system to refine the user’s location, as well as
a map matching system to map a user’s location onto a map.



Fig. 1. Three locations in Sunken Garden,
Williamsburg, VA. Each location has a clear
view of the sky.
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Fig. 2. GPS coordinates (in meters) for the three
locations. From bottom to top, the three clusters
correspond to locations A, B and C.

Fig. 3. GPS coordinates for five walks distin-
guished by color. A large portion of the route
is covered by trees.
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Fig. 4. Flowchart of our system.

GPS is still required, but its use is limited to help reduce route
ambiguity.

IV. OUR SOLUTION OVERVIEW

In this section, we briefly introduce our system. In subse-
quent sections, we will motivate each component individually,
followed by detailed descriptions.

Our system can be organized into the framework in
Figure 4. The system consists of two components, a dead
reckoning component and a map-matching component. It takes
as input four pieces of information: accelerometer, gyroscope,
map and GPS, and outputs user’s current location.

When the user walks, both the accelerometer and the
gyroscope of the phone keep sampling and sending the samples
to the dead reckoning algorithm. The dead reckoning algorithm
processes the data in real time. On one hand, it monitors the
acceleration data to detect a step and reports new steps to
the map-matching component. On the other hand, it monitors
gyroscope data for possible turns. If a turn is detected, then the
dead reckoning algorithm uses the acceleration data to reorient
the phone’s axes and compute the angular displacement of
the turn. It then reports the angular displacement to the map-
matching component. An example of the reported angular
displacement is “turn, 80◦, left”.

The map-matching component combines all information to
produce the final location of the user. Using map information, it
maintains all possible routes of the user, and updates the user’s
location once a new step or a new turn is reported by the dead
reckoning algorithm. Whenever a unique location of the user
is required but the system cannot tell between several routes,
then the GPS component is queried to eliminate ambiguity.

As we can see, among the four pieces of information, the
map information can be queried once and used many times
and the GPS is queried only when the system cannot tell
which route is correct. The other two pieces of information
need frequently updating, but it is well known that the ac-
celerometer and gyroscope consume much less energy than
GPS. Therefore, our solution is also energy efficient.

V. DEAD RECKONING

There are two parts of our dead reckoning system: travel
distance estimation and direction estimation. The challenge in
this section is to deal with complex pedestrian movements and
tolerate the different ways pedestrians carry their phones. In
our system, the user does not need to hold the phone flat out
in front of them.

A. Estimating distance

For pedestrians, estimating travel distance by taking the
double integral of acceleration results in large error due to
complex human movement. Instead, a common approach is to
count the number of walking steps and then multiply it by the
stride length (e.g., [4]). This can be explained by the following
simple formula

d = ns · ls (1)

where d is the distance traveled, ns is the number of walking
steps and ls is the stride length trained beforehand. To this
end, step detection is critical. This can be done by observing
and identifying acceleration patterns during a typical walking
step [23]. There are quite a few step-counter apps in Google
Play (previous Android Market).

Unfortunately, we find that different placement of the
phone has a large impact on the accuracy of each step counter.
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(b) Gyroscope readings

Fig. 5. A 6-step walk along a straight line. The readings in (b) is from the
phone in hand.

To illustrate, we carry out an experiment where a user holds
one phone in front and carries another phone in his pants’
pocket with both phones recording acceleration data. Both
phones are synchronized manually by starting the program
simultaneously. We show in Figure 5(a) the acceleration mag-
nitudes (i.e.,

√
x2 + y2 + z2 where x, y, z are accelerometer

readings in three dimensions) of the two phones over a 6-step
duration. The difference in the patterns is evident. Having the
phone in hand produces desired data, which contain 6 recurring
patterns; while keeping the phone in the pocket produces only
3 recurring patterns. This 3-pattern phenomenon also arises if
the pedestrian swings the phone in their hand.

This is caused by the nature of walking. While walking,
there is always one foot touching the ground. For the pocket
phone, left foot touching the ground is different from right foot
touching the ground. Thus, each pattern in this case actually
corresponds to two steps of pedestrian. The case where the
phone swings in the user’s hand is similar. It seems that we
need to differentiate between different placement of the phone
for accurate distance estimation, which is complicated.

Fortunately, no matter how the phone is placed, we find
that acceleration always shows some recurring patterns. Those
patterns only differ in the number of human steps one pattern
corresponds to. For convenience, we refer to a pattern as a
period. Thus, we can generalize (1) to

d = np · lp
where d is the travel distance, np is he number of periods
and lp is the travel distance within a period. Here, a period
does not necessarily correspond to one human step—it may
correspond to two steps, or only a half. As long as the number

of periods is proportional to the travel distance, we can define
any pattern as a “period” and count its number. Relaxing
“human step” to “period” significantly simplifies our problem.
The travel distance within a period can be trained, as before,
or can be estimated by the method in Section VIII. For ease
of presentation, we still refer to the newly defined period as
a step. Thus, we refer to detecting a period as step detection,
and travel distance within a period as step length.

Following this idea, we define an up-down pattern as a step,
which is captured by the following level crossing algorithm.
Suppose the series of acceleration magnitudes up to now are
x1, x2, . . . , xn where xn is the most recent. We map reading
xn to a bit according to

Q(xn) =


1 if xn > µn + σn
0 if xn < µn − σn
∧ otherwise

where µn is the average of the series, σn is the corresponding
standard deviation, and ∧ is an undefined state. The two
thresholds µn + σn and µn − σn are two levels for charac-
terizing “up” and “down” respectively. Both µn and σn can
be updated incrementally based on new incoming acceleration
magnitudes. This mapping yields a sequence of bits. Then we
merge consecutive 1s into a single bit 1, 0s to 0, and ∧s into
∧. A pattern “10” or “1 ∧ 0” is defined as a step. Whenever
a step is detected, dead reckoning system will report it to
the map-matching component. Note that the two thresholds
µn + σn and µn − σn can be adjusted for better performance.
This simple algorithm also appears in the secret key extraction
literature [24].

It is worth mentioning that using acceleration magnitude,
instead of acceleration in a certain direction, can tolerate differ-
ent ways pedestrians carry the phone, because the acceleration
magnitude is the same no matter which direction the phone is
pointing.

B. Estimating direction

This task is more challenging. Previously, the magnetic
digital compass was the only choice for determining direction
for smartphones. However, it is easily influenced by the en-
vironment (simply putting two phones together will influence
the compasses). Recently, gyroscopes are equipped in more
and more smartphones, e.g, iPhone 4S, Google Galaxy Nexus,
HTC EVO 3D, etc. Though its main purpose is for games, we
will use it for direction estimation.

Different ways to hold the phone put a challenge on
direction estimation. On one hand, the gyroscope data are with
respect to the Cartesian frame of reference of the phone itself,
which is represented by the orthogonal xyz axes with the x-
axis pointing to the right side of the phone, the y-axis pointing
to the top of the phone and the z-axis leaving the screen. On the
other hand, the Cartesian frame of reference we need should
be the XY Z axes system with the X-axis pointing to right-
hand side of the user, the Y -axis pointing to the direction
the user is facing and the Z-axis pointing to the sky. (We
intentionally use capitalized XY Z to distinguish between the
two references.) To allow different ways to hold the phone, the
two references can be different, as shown in Figure 6. In fact,



Fig. 6. Usual way of holding a phone and the two Cartesian references.

the two references are different in most cases. We can obtain
xyz angular velocity data, but we need Z-axis data.

This problem also arises in the vehicular context [21],
[25], where the solution is to find the rotation matrix between
the two references by acceleration measurement. This may
work for cars in a state of uniform motion in a straight line
and for static human, but not for pedestrians. Any sinlge
rotation matrix is unable to characterize all the rotations during
walking, because the rotation keeps changing in a single human
step. We show in Figure 5(b) the gyroscope readings during
the 6-step experiment. The angular velocity varies over time.

We resort to average rotation as an approximation. Our
method is based on two observations. First, the angular velocity
at each axis follows a recurring pattern. Therefore, integrating
them along time may reduce the fluctuations. Second, when a
pedestrian walks in a straight line, the average acceleration
in any axis does not fluctuate much. To illustrate the two
observations, we perform another experiment where the user
walks in a straight line, makes a 90◦ left turn, and then walks
in a straight line again. We plot in Figure 7(a) the angular
displacement in each axis by integrating gyroscope readings
along time. Observe that the displacement around any axis
remains roughly the same before/after the turn. Figure 7(b)
shows the sliding-window-smoothed acceleration data. The
acceleration does not fluctuate much before/after the turn, but
is quite unusual during the turn. Thus, if we can determine
when a turn is occurring and exclude the data during the turn,
we can approximately treat the phone as in static case by using
the average acceleration and integrated angular displacement.

Following these observations, our method works as follows.
First, we integrate gyroscope readings around the phone’s xyz
axes similar to how we produce Figure 7(a). Second, we mon-
itor angular displacement around all three axes to determine
straight walking. Within a time window, if all three angular
displacements do not exceed a pre-determined threshold, then
we believe the user walked along a straight line. Third, for the
duration when the user walks in a straight line, we average the
acceleration readings in each direction. Suppose the obtained
averages are µx, µy, µz respectively. Then, the adjusted angular
displacement around Z-axis for an incoming turn is calculated
as (αµx +βµy + γµz)/

√
µ2
x + µ2

y + µ2
z where α, β, γ are the

angular displacements computed in the first step. The rationale
behind this formula is that the average acceleration during a
straight walk should approximate gravity. Therefore, we can

infer how a Z-axis vector (the gravity) is decomposed into
three components: µx in x-axis, µy in y-axis and µz in z-axis.
Reversing this process back properly on angular measurements
will recover the angular velocity and angular displacement
around the Z-axis. Using this procedure, we recover the Z-axis
angular displacement in Figure 7(c). The result is promising.
The angular displacement is 91.56◦ in this case. It is worth
emphasizing that error is inevitable. Even though all sensors
report perfect measurements, it is nearly impossible to find the
exact rotation due to complex human movement as mentioned
before. This is in contrast to the vehicular scenario.

There are two issues left. The first is the threshold for
detecting a turn. We find from experiments that the angular
displacement in a straight line walk can change up to ±10◦.
Therefore, the detection threshold cannot be less than 20◦.
We set the threshold to be 30◦ in our experiments. Note that
this threshold is purely for detecting turns, and is for angular
displacement around the phone’s axes. This setting results in
the second issue, i.e., we may not be able to detect shallow
turns, and the reported angular displacements contain non-
negligible errors. This issue poses a challenge on the map-
matching algorithm, which needs to tolerate such errors.

VI. MAP MATCHING

After the dead reckoning algorithm reports new steps and
new turns, the map-matching component will incorporate this
information to refine the user’s current location. This section
describes how this is done. We will first consider the scenario
with perfect information, then adjust the process to tolerate
various errors. There are several existing works on mapping
GPS coordinates to a map (e.g., [26]), but the technique is not
directly applicable to our scenario.

We give several definitions. Since our target is to match a
walk with a map, we define three terms: map, walk and map
matching.

Definition 1 (map). A map M is a subset of points in 2-D
Euclidean space. It is characterized by a tuple (V,L,E) where
V is a set of vertices, L : V −→ R2 describes vertex locations,
and E ⊆ V 2 is the set of edges characterizing permissible
straight-line paths between vertices. A point is in the map if
and only if the point is one of the vertices or lies on an edge.

It is worth mentioning that we do not include “curves” in
our definition, though the inclusion is possible by extending
the definition of “tuple”. There are two reasons why we did not
include this. First, it is hard to characterize the map if arbitrary
curves are allowed. Second, most curves can be approximated
quite well by several straight lines. Note that our definition
can be directly extended to 3-D scenarios.

Definition 2 (walk). A walk W is a sequence of 2-D
points and the associated timestamps. It is represented by
(x1, y1), (x2, y2), . . . , (xn, yn) with timestamps t1, t2, . . . , tn.

Though the output of the dead reckoning system is in
terms of steps and turns, it is straightforward to rewrite
them in the above form. Sometimes we omit the timestamps,
but they are implicit. This definition is discrete for practical
concerns. Though a walk should be continuous in nature, any
dead reckoning system can only report locations at discrete
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(a) Angular displacements around xyz axes
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(b) Sliding window smoothing for acceleration
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Fig. 7. A 90◦-left-turn experiment. The window size in (b) is the number of readings within 1 second.

times. Locations at any time in between are interpolated.
Additionally, direction information is implicit in the sequence
due to timestamps.

Definition 3 (matching). A matching of a walkW to a mapM
is a function f that maps every points of W to a point in M.
A matching is an exact matching if the mapped walk f(W)
can be obtained from W by a combination of the following
transformations: (1) translation, (2) rotation around any line
perpendicular to the 2-D surface of the map. A matching is
correct if the mapped walk is equal to the ground-truth.

The requirement on rotation axis is because of the direction
information in the walk. Our dead reckoning system can tell
the diference between left turn and right turn. This information
is kept by putting the restriction on rotation axis.

A. Perfect information

We consider perfect information in this subsection. We
assume dead reckoning involves no error, i.e., the distance
estimation and direction estimation are perfect and the map
is perfect. Unfortunately, even under this assumption, we may
still not be able to match a walk correctly.

The cause is ambiguity. It is possible to find an exact
matching, but multiple may exist. One simple example is
that the walk is short and is along a straight line. Many
edges of the map can lead to exact matching. Additionally,
the computational overhead can be intolerable in the worst-
case where every edge corresponds to one or several exact
matching(s). To this end, we introduce position fix, which is
realized by GPS receivers.

Definition 4 (position fix). A position fix P is a pair of points
(p1, p2) where p1 ∈ W and p2 ∈M. A position fix is satisfied
if the user’s position p1 is matched with the point p2 in the
map.

The intuition of a position fix is to “pin” the user’s position
to the map. In practice, this can be done using the GPS
component of the phone. Note that we again assume perfect
information, i.e., the position fix is perfect without error. One
natural question arises, how many position fixes are required
for eliminating ambiguity? We find that two are enough. The
underlying reason is the direction information in the walk,
which is reflected in the rotation axis requirement. If we cannot
tell a left turn from a right turn, then any finitely many position
fixes cannot guarantee ambiguity elimination.

Theorem 1. Given two position fixes P ′ = (p′1, p
′
2) and P ′′ =

(p′′1 , p
′′
2) where p′1 6= p′′1 and p′2 6= p′′2 , there exists at most one

exact matching from walk W to map M that satisfies both P ′
and P ′′.

Proof: Recall that only two operations are allowed for
obtaining an exact matching. After satisfying P ′, we cannot
perform the translation operation any more, thus we may only
carry out rotation around the line that is through p′2 and is
perpendicular to the map. In this case, there is at most one
angular displacement for satisfying P ′′, which completes the
proof.

We consider how to find the exact matching given two
position fixes. There is a straightforward solution that finds
the transformation matrix by analytically solving a system of
equations according to the two position fixes. However, this
solution cannot be easily extended to cope with errors. Instead,
we propose an adaptive algorithm that is easily extended.

The basic idea is trial and error. Starting from one position
fix, we find out all possible routes. Then we use subsequent
points in the walk to test and extend these routes. We rule out
a route from consideration if either case happens: (1) the route
fails to map some point of the walk, e.g., the walk indicates a
turn but there is no corresponding turn in the map by following
the route; (2) we encounter another position fix which cannot
be satisfied by the route. Such a rule will remove all routes
except the correct one due to Theorem 1.

This idea is described in Algorithm 1. We first map
subsequent (with respect to the starting point) walk points, then
reverse the routes and map all previous walk points. We clarify
several issues. First, a route not only records the previous
matching information as history, but also the current route
segment (edge) and the user’s walking direction in this route
segment. Following this, during initialization, each map edge
containing p′2 will introduce one route if p′2 is an end point, or
two routes if p′2 lies on the edge. Second, to refine routes, we
need to add a walk point p to a route t (Line 3 in Algorithm 2).
This is done by checking whether the mapped position is
on the map. If it is on the map, then the process reports a
success status, adds p to the route, and then updates current
route segment and direction. Otherwise, the process reports
a failure status and the corresponding route will be removed
from consideration. It is worth emphasizing that though the
algorithm is written in an off-line manner, it is easy to rewrite
it in an online form.



Algorithm 1: Map matching with perfect information
Input: map M; walk W; two position fixes P ′, P ′′
Output: f :W −→M, a matching
begin1

start←− the index of p′1 in W;2
T ←− find all possible routes through p′2;3
i←− start+ 1;4
while i ≤ n do5

p←− (xi, yi);6
refine routes(T , p);7
i←− i+ 1;8

reverse the direction of all routes in T ;9
i←− start− 1;10
while i ≥ 1 do11

p←− (xi, yi);12
refine routes(T , p);13
i←− i− 1;14

f ←− pick one route from T ;15
end16

Algorithm 2: Subroutine for Algorithm 1: refine routes
Input: T ; p;
begin1

foreach t ∈ T do2
status←− add p to t;3
if status = SUCCESS then4

if p ∈ P ′′ then5
delete all other tacks in T , return;6

7
else8

delete t from T ;9

end10

B. Dealing with errors

In practice, various errors, including distance estimation
error, direction estimation error, and GPS error, are inevitable,
which requires adjustment of Algorithm 1. To introduce our
error tolerance mechanism, we reformulate the representation
of a walk. Previously, a walk was formulated as a set of data
points with timestamps. Here we formulate it as a series of
incremental changes, where a change can be a step or a turn.

The basic idea is to threshold the possible errors and
consider all possible routes. A route is considered as a possible
route if following this route does not yield errors exceeding
our error thresholds. Our algorithm updates the set of possi-
ble routes whenever new information is available. The new
information can be a new step, a new turn, or a GPS update.
We require GPS information because, as mentioned before,
GPS is necessary even if dead reckoning is perfect. Next,
we will describe how we maintain the set of possible routes
when different new information is available. The following
operations can be incorporated to Algorithm 1 with the first
operation corresponding to Line 3 of Algorithm 1 and the rest
implementing the sub-routine refine routes.

1) Initial routes: At the beginning of our algorithm, we
request a GPS coordinate and initialize the set of possible

routes. At this stage, we do not know the walking direction
of the user, thus we try all possible directions. We enumerate
all possible locations of the user on the map by considering
GPS error. Then we enumerate all possible routes through the
possible locations. Here, each route consists of one “current
position” and one “current route segment”. The current route
segment and the walking direction on it are represented by its
two end points, the “from” end point and the “to” end point.
To cope with GPS error, we set the distance error tolerance
of each route as the error of GPS. This error will be set to 0
after we successfully match a new turn in the route.

2) A new step: When the dead reckoning algorithm detects
a new step, we try to add one step to all possible routes.
This is done by adding a step length offset to the “current
position” of each possible route towards the “to” end point. For
any possible route, if the new position is still on the route’s
current route segment, then this route remains in the set of
possible routes. Otherwise, we search over all adjacent route
segments (indicated by the neighbors of the “to” end point)
to find possible ones. An adjacent route segment is possible
if walking to it only requires a shallow turn within angular
error tolerance. (Maybe our dead reckoning fails to detect this
shallow turn.) For each possible route segment, we replicate a
new route, extend it by this possible route segment, and add
the resulting route to the set of possible routes. If no possible
route segments are found, then we still keep this route in the
set of possible routes but decrease its error tolerance by the
step length. If its error tolerance is decreased to 0, then we
remove it from the set of possible routes.

3) A new turn: After a new turn is available, we add
this turn to all possible routes. For each possible route, we
check whether its “current position” is within a certain distance
(distance error tolerance) to any end point of the “current route
segment”. This is because, possible turns may exist at these
end points. If the distance to both end points is beyond the
distance error tolerance, then this route is removed from the set
of possible routes. If the distance to either end point is within
the distance error tolerance, then we check all this end point’s
neighbors to find out all route segments that are reachable
by a turn within the range: the reported angular displacement
plus/minus angular error tolerance. For each satisfying route
segment, we make a duplicate of the route, extend it by the
satisfying route segment, and add it to the set of possible
routes. On the other hand, if no route segment satisfies, then
the route will be removed from the set of possible routes.

4) A new GPS coordinate: When a new GPS coordinate is
available, we check each possible route by verifying whether
the new GPS coordinate is within a certain distance (distance
error tolerance plus GPS error) to the “current position” of the
route. If not, then the route will be removed from the set of
possible routes.

If no possible route exists, the system will restart by
requesting a new GPS coordinate. Two cases need further
consideration. The first is when a step and a turn arrive
simultaneously. This actually happens in practice when the user
makes a turn slowly in several steps. We solve this problem
by ignoring the steps during a turn, because we find that the
displacement during a turn is very short and ignoring it incurs
only small distance errors. The second is when the number of
possible routes becomes intolerable due to our error tolerance



Fig. 8. Evaluation map. This area is around Sunken Garden, Williamsburg,
VA. The stars are vertices and the route segments connecting them are edges.

mechanism. In this case, we request a GPS coordinate, which
will reduce the number of possible routes.

VII. EVALUATION

We conduct our experiments in the area shown in Figure 8.
The map consists of anchor points as vertices and route
segments as edges. The ground-truth coordinates of the anchor
points are manually found from GoogleMap. The ground-truth
should not be obtained from the GPS receiver due to the
GPS error mentioned before. All vertices and edges are input
information for any algorithm using map information.

We compare our algorithm to two GPS-based solutions.
The first is the raw GPS coordinates reported by the GPS
component of the smartphone. The second is to combine
the raw GPS coordinates with the map information. This
combination is done by mapping the raw GPS coordinates to
the nearest point on the map.

Three routes are selected for our experiments, as shown
in Figure 9. For each route, a user walks along the route
with a smartphone held out in front as in Figure 6. In each
second, the phone records three pieces of information: 50
accelerometer readings, 50 gyroscope readings, and one GPS
reading. All readings are recorded with timestamps. These data
are retrieved later from the phone for evaluation. To establish
the ground-truth locations during the walk, whenever an anchor
point is encountered, the user presses a button in our program,
which records the instant timestamp into a file. In this way, we
have the ground-truth (time, location) pair. Later, we query
each localization method for the user’s location at that time,
and compare the returned location with the ground-truth.

The parameters of our algorithm are set as follows. The
threshold for detecting a turn is 30◦, since the angular dis-
placement during a single step can be up to 20◦. The tolerance
for angular error is also 30◦. The tolerance for distance error
is 20m. These settings are based on experience and have not
been optimized. Our algorithm uses one GPS coordinate as a
position fix during initialization. Route ambiguity is eliminated
automatically at the end of each walk.

Figure 10 shows the result. Though the three routes are
selected from simple to complicated with route 1 being the
simplest and route 3 being the most complicated, it turns out
that the error of our algorithm does not necessarily increase.
On the contrary, to some extent, the error decreases. At quite

a few anchor points, the error of our algorithm is close to 0.
This surprising accuracy comes from the turn information. If
there is a turn during the route and our algorithm successfully
detects it, then the user’s location is adjusted to that turning
point, resulting in 0 error. The most complicated route, route
3, contains more turns, and the error is 0 at most anchor
points. The error at non-turn anchor points is at most 5m.
This occurs at anchor point 9 in route 1. In all three routes,
our algorithm have consistently less error than GPS-based
solutions. GPS+Map performs slightly better than pure GPS,
while both have unstable error of about 15 meters. The GPS-
based solutions have different error among three routes. We
suspect that this is caused by time differences and weather,
since we have observed quite large error (up to 30 meters) in
cloudy weather in roughly the same place.

VIII. DISCUSSION AND FUTURE WORK

At the first stage of this project, we evaluated a method
similar to Radar [2] due to the reported meter-level accuracy
of Radar. This is done by collecting WiFi signal information
at different locations as training data and later distinguishing
locations by WiFi information. Though the number of APs in
the experimental area is promising, around ten, it turns out
that the localization accuracy is much worse than GPS. This
may be caused by the fact that outdoor environments do not
have much multi-path effect so that a location can no longer
be fingerprinted well. For our current solution, we also tried
to use more GPS updates to improve the accuracy. This does
not help if we already know the current route segment.

In our current implementation, the step length is obtained
by training. This training period can be avoided by using
GPS and map information. We may query GPS to determine
a traveled route segment on the map and then find the step
length via dividing the route length by the number of steps.
The drawback is that we are not able to track the user
accurately during this period. Note that finding step length by
computing the distance between two GPS coordinates yields
unsatisfactory step length accuracy. Therefore, we propose to
use GPS to determine route segment only, and then use map
information to find step length.

In the future, we plan to implement our solution in different
platforms and evaluate the system in complicated routes and
environments.

IX. CONCLUSION

In this paper, we present APT, a system targeting at
accurate pedestrian localization. It uses the accelerometer,
gyroscope and GPS component of modern smartphones, and
integrates them with external map information. The system
can tolerate GPS error and the different ways to hold the
phone. Measurements from real-world show that its accuracy
is significantly higher than GPS-based solutions.
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Fig. 9. Ground-truth routes.
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(c) Route 3

Fig. 10. Localization errors at anchor points in the route.
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